CN102787582A - 通过构建水资源模型来预警的方法 - Google Patents

通过构建水资源模型来预警的方法 Download PDF

Info

Publication number
CN102787582A
CN102787582A CN2011101302787A CN201110130278A CN102787582A CN 102787582 A CN102787582 A CN 102787582A CN 2011101302787 A CN2011101302787 A CN 2011101302787A CN 201110130278 A CN201110130278 A CN 201110130278A CN 102787582 A CN102787582 A CN 102787582A
Authority
CN
China
Prior art keywords
water
subsystem
early warning
model
ecosystem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101302787A
Other languages
English (en)
Other versions
CN102787582B (zh
Inventor
谭雅懿
王烜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN201110130278.7A priority Critical patent/CN102787582B/zh
Publication of CN102787582A publication Critical patent/CN102787582A/zh
Application granted granted Critical
Publication of CN102787582B publication Critical patent/CN102787582B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供一种通过构建水资源模型来预警的方法,首先通过如下步骤建立水资源模型:(1)根据社会经济子***和生态***水循环的规律,构建社会经济-生态***的水动力学模型,生态***水循环由湖泊河流生态子***及区域供水子***构成;(2)选择适当的水质模型,定量分析社会经济子***所排放的污染物进入到水环境后水质变化的响应关系以及供水子***中水量变化对水质的影响机制,在此基础上将水环境子***嵌入到社会经济-生态***的水动力学模型中,从而构建起能够从水质水量两方面进行综合预警的***动力学模型;该***将水质模型与***动力学模型相结合以构建一套水资源短缺预警体系,有助于提高其科学性、有效性和定量性。

Description

通过构建水资源模型来预警的方法
技术领域
本发明属于水资源短缺预警预测方法领域,特别涉及一种针对区域水资源短缺问题基于***动力学建立的通过构建水资源模型来预警的方法。
背景技术
近年来,随着全球气候变化的加剧和社会经济用水的增加,水资源短缺已经成为21世纪人类继全球气候变暖之后所面临的第二大自然和社会问题。2007年世界水日***就已经开始关注“应对水短缺”问题,这表明水资源危机已经成为国际社会关注的焦点。而在我国,由于降雨从南到北逐渐降低,北方地区长期面临着水资源短缺的问题,70年代以来,海河、黄河、辽河等流域的水量就已经大幅减少,甚至断流。近年来,在全球变暖的背景下,我国水资源最为丰富的西南地区也出现了历史罕见的干旱气候,澜沧江、乌江、嘉陵江等江河水位急剧下降,不断突破历史最低,由此引起了一系列影响社会稳定和环境健康的问题,如生态需水不足,湖泊富营养化严重等。这表明水资源短缺问题已经成为我国环境资源诸问题中的关键因素和首要难题。因此,研究构建一套综合考虑水质水量水生态的水资源短缺预警预报体系,并及时制定应对水资源短缺的应急预案已是刻不容缓,这对于维护社会安定、保障环境安全具有十分重要的现实意义。
但是,目前对于水资源短缺预警的研究往往更为关注水资源***中径流、降雨量和土壤相对湿度等水量指标,通过分析其变化规律来预测水资源短缺的风险,或是仅仅通过分析社会经济***需水是否得到满足来预警水资源危机。然而,水资源***是一个与社会,经济,生态,环境密切相关的复合反馈***,水资源短缺会导致生态需水的匮乏,影响水环境质量,反之生态破坏,环境污染同样会引起可用水资源的锐减,从而进一步加剧水资源短缺状况。因此综合分析水量、水质和水生态要素之间的响应关系,将水质和水生态要素考虑到水资源短缺预警***中是十分科学和必要的。基于水***的复杂性,一些学者选用了擅长研究动态和非线性复杂***的***动力学模型来对水安全进行预警,但仍是偏重于对社会经济***水量变化的模拟和预测,这表明仅仅依靠***方程来实现对水生态和水环境变化的预警是不够的,只有加入专门的水质模型,才能实现对水资源危机的综合预警。
发明内容
本发明目的为提供一种通过构建水资源模型来预警的方法,该方法将水质模型与***动力学模型相结合以构建一套水资源短缺预警体系,有助于提高其科学性、有效性和定量性。
本发明的技术方案如下:
通过构建水资源模型来预警的方法,首先通过如下步骤建立水资源模型:
(1)根据社会经济子***和生态***水循环的规律,构建社会经济-生态***的水动力学模型,生态***水循环由湖泊河流生态子***及区域供水子***构成;
(2)选择适当的水质模型,定量分析社会经济子***所排放的污染物进入到水环境后水质变化的响应关系以及供水子***中水量变化对水质的影响机制,在此基础上将水环境子***嵌入到社会经济-生态***的水动力学模型中,从而构建起能够从水质水量两方面进行综合预警的***动力学模型;
再根据***模型通过如下步骤得出水资源危机应急调控策略:(1)通过对社会经济-生态***供需水量以及水环境质量变化的模拟仿真,得到该区域的水资源短缺警情等级;
(2)通过调整相关参数来模拟其对水资源危机警情的影响,并结合相应的应急调控策略进行分析,并对应急调控策略的优化提供依据。
所述生态***的水动力模型包括区域供水子***及需水子***。
所述供水子***结构参见说明书附图2,供水量约束方程为:
(1)SW(t)=SW(t-Δt)+[I(t)+P(t)+Ed(t)-E(t)-O(t)-SS(t)-SE(t)]*Δt;
(2)TS(t)=SW(t)+SS(t)+GS(t)。
所述需水子***结构参见说明书附图3中包括工业需水量、农业需水量、生活需水量、生态需水量、总需水量。
所述工业需水量的需水量约束方程为:(1)IV(t)=IV(t-Δt)+IV(t-Δt)KI(t)*Δt;(2)DI(t)=IV(t)*AI;(3)IR(t)=DI(t)*ratio1;(4)IW(t)=DI(t)ratio2。
所述农业需水量的需水约束方程为:(1)DA(t)=∑Sn*AAn(t);(2)AR(t)=DA(t)*ratio3;(3)AW(t)=DA(t)*ratio4。
所述生活需水量的需水量约束方程为:(1)NP(t)=NP(t-Δt)+NP(t-Δt)KD(t)*Δt;(2)DD(t)=NP(t)*AD;(3)DR(t)=DD(t)*ratio5;(4)DW(t)=DD(t)*ratio6。
所述生态需水量的需水量约束方程为:
Figure BSA00000499504900021
Figure BSA00000499504900022
所述总需水量的需水量约束方程为:D=DI+DA+DD+DE-IR-AR-DR。
所述水环境子***的约束方程为:
(1)SW(t)C(t)=SW(t)C(t-Δt)+[I(t)CI(t)+Ed(t)Ce(t)-O(t)C(t)+kC(t)SW(t)]Δt;
(2)Ed(t)=IW(t)+AW(t)+DW(t)。
本发明的技术效果在于:
该发明是以区域水资源为研究目标,从***内部的反馈关系入手,分析社会经济子***和生态***的水量供给及其与水环境质量之间的响应机制,针对干旱条件下可能出现的水资源危机,从水质水量两个方面进行预警,为应急调控措施提供依据。
附图说明
图1为本发明所述通过构建水资源模型来预警的方法流程示意图。
图2为本发明的供水子***结构示意图。
图3为本发明的需水子***结构示意图。
具体实施方式
以下结合附图对本发明做进一步说明。
如图1所示,通过构建水资源模型来预警的方法,通过如下步骤建立***:
首先通过如下步骤建立***模型:
(1)根据社会经济子***和生态***水循环的规律,构建社会经济-生态***的水动力学模型,生态***水循环由湖泊河流生态子***及区域供水子***构成;
(2)选择适当的水质模型,定量分析社会经济子***所排放的污染物进入到水环境后水质变化的响应关系以及供水子***中水量变化对水质的影响机制,在此基础上将水环境子***嵌入到社会经济-生态***的水动力学模型中,从而构建起能够从水质水量两方面进行综合预警的***动力学模型;
再根据***模型通过如下步骤得出水资源危机应急调控策略:
(1)通过对社会经济-生态***供需水量以及水环境质量变化的模拟仿真,得到该区域的水资源短缺警情等级;
(2)通过调整相关参数来模拟其对水资源危机警情的影响,并结合相应的应急调控策略进行分析,并对应急调控策略的优化提供依据。
一、分析水资源在社会经济***和生态***的循环机制,以及二者间的反馈关系,例如,区域供水子***为社会经济子***提供水资源,而社会经济***的发展促进水资源的开发,从而提高区域供水***的供水能力,但区域供水***的可供水量受到特定生态需水量的制约,从而使区域供水子***的供水能力保持在一定水平。根据这些内在的联系,利用***动力学软件Stella建立社会经济-生态***的水动力学模型。主要涉及2大子***,即区域供水子***,需水子***(其中又包括工业需水子***,农业需水子***、生活需水子***和生态需水子***)。
下列公式中t和t-Δt都是时间变量,会有一个模拟的初始值,比如以2000年1月为初始值,则t-Δt代表1月的值,Δt相当于一个时间间隔,可以依据1月的值模拟得到2月的值,t就代表2月的值,而3月的值根据2月的值得到,因此这时t-Δt是2月,t是3月。
(1)供水子***的建模思路
考虑了地表水渗漏量的供水子***结构如图2所示。
供水量约束方程:
SW(t)=SW(t-Δt)+[I(t)+P(t)+Ed(t)-E(t)-O(t)-SS(t)-SE(t)]*Δt    (1)
TS(t)=SW(t)+SS(t)+GS(t)                                        (2)
式中,SW为地表水量;I为入流水量;P为降雨量;Ed为污水排放量;E为蒸发量;O为出流水量;SS为地表供水量;SE为渗漏量;GS为地下可供水量;Δt为时间步长;TS为总供水量。
(2)需水子***的建模思路
考虑了生态需水量的需水子***结构如图3所示。
需水量约束方程:
1)工业需水量(DI)
IV(t)=IV(t-Δt)+IV(t-Δt)KI(t)*Δt           (3)
DI(t)=IV(t)*AI                               (4)
IR(t)=DI(t)*ratio1                           (5)
IW(t)=DI(t)*ratio2                           (6)
式中,IV为工业产值;K1为工业产值增长率;DI为工业需水量;AI为万元工业产值用水量;ratio1为工业回用水率;ratio2为工业废水排放率;IR为工业回用水量;IW为工业废水。
2)农业需水量(DA)
DA(t)=∑Sn*AAn(t)                            (7)
AR(t)=DA(t)*ratio3                           (8)
AW(t)=DA(t)*ratio4                            (9)
式中,DA为农业需水量;AAn为各类农业用地耗水量;Sn为农业用地面积;ratio3为农业回用水率;ratio4为农业退水排放率;AR(t)为农业回用水量;AW为农业退水排放量。
3)生活需水量(DD)
NP(t)=NP(t-Δt)+NP(t-Δt)KD(t)*Δt            (10)
DD(t)=NP(t)*AD                                (11)
DR(t)=DD(t)*ratio5                            (12)
DW(t)=DD(t)*ratio6                            (13)
式中,NP为人口总数;KD为人口的变化率(出生率-死亡率+迁入率-迁出率);DD为生活需水量;DR为生活污水回用量;DW为生活污水排放量;ratio5为生活回用水率;ratio6为生活污水排放率,AD为人均用水量。
4)生态需水量(DE)
λ = 1 m Σ i = 1 n E ( η i ) E ( ϵ i ) - - - ( 14 )
D E = λ Σ i = 1 n D Ei n - - - ( 15 )
式中,λ为生态水位系数;m为生态状况指标个数;ηi为当i变化最大的时段内,所有年最低生态水位变量;εi为所有年最低生态水位变量;E(ηi)为ηi的数学期望;E(εi)为εi的数学期望;DE为生态需水量;DEi为最低月均水量;n为年份数。
5)总需水量(D)
D=DI+DA+DD+DE-IR-AR-DR                        (16)
式中,D为总需水量;DI为工业需水量;DA为农业需水量;DD为生活需水量;DE为生态需水量;IR为工业回用水量;AR为农业回用水量;DR为生活污水回用水量。
二、选择适当的水质模型,定量分析社会经济子***所排放的污染物进入到水环境后水质变化的响应关系以及供水子***、需水子***和湖泊(或者河流)生态子***的水量变化对水质的影响机制,由此水质模型与区域供水子***、湖泊(河流)生态子***和社会经济子***建立联系,将之作为水环境子***嵌入到生态-社会经济***的水动力学模型中,从而构建起能够从水质水量两方面进行综合预警的***动力学模型。
水环境子***约束方程:
SW(t)C(t)=SW(t)C(t-Δt)+[I(t)CI(t)+Ed(t)Ce(t)-O(t)C(t)+kC(t)SW(t)]Δt (17)
Ed(t)=IW(t)+AW(t)+DW(t)                                               (18)
式中:C-污染物浓度背景值;CI-入流水中典型污染物浓度;Ce-排放污水中典型污染物浓度;I-入流水量;O-出流水量;SW-地表水量;k-典型污染物沉降系数。
三、由于本发明着眼于对水资源危机的综合预警预报,因此需要快速做出警情判断,为应急决策提供依据,所以并不适合采用传统的评价水资源安全的方法(例如建立指标体系进行评价和打分,根据分值确定等级),但是在所构建的模型中已经基本囊括与水资源的质、量相关的典型参数,并利用***动力学模型建立起了这些参数间的相关关系,基于此,拟采用两项指标——水量供需比(供需比小于1时显示警报)和监测断面典型污染物浓度(根据研究区域的实际情况选择代表污染物,高于国家规定的水质标准显示警报),分别对资源性缺水和水质型缺水两类水资源危机预警。具体警情等级依国家标准和相关文献制定。
四、根据水资源短缺预警级别的划分,可以调整相关参数(具体参数包括万元工业产值用水量,农业亩均耗水量,人均用水量,工业和生活废水回用率,工业污水排放系数,污染物浓度,调水入流量)以模拟其对水资源危机警情的影响,并结合相应的应急调控策略进行分析,并对应急调控策略的优化提供依据。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.通过构建水资源模型来预警的方法,其特征在于,首先通过如下步骤建立水资源模型:
(1)根据社会经济子***和生态***水循环的规律,构建社会经济-生态***的水动力学模型,生态***水循环由湖泊河流生态子***及区域供水子***构成;
(2)选择适当的水质模型,定量分析社会经济子***所排放的污染物进入到水环境后水质变化的响应关系以及供水子***中水量变化对水质的影响机制,在此基础上将水环境子***嵌入到社会经济-生态***的水动力学模型中,从而构建起能够从水质水量两方面进行综合预警的***动力学模型;
再根据***模型通过如下步骤得出水资源危机应急调控策略:
(1)通过对社会经济-生态***供需水量以及水环境质量变化的模拟仿真,得到该区域的水资源短缺警情等级;
(2)通过调整相关参数来模拟其对水资源危机警情的影响,并结合相应的应急调控策略进行分析,并对应急调控策略的优化提供依据。
2.根据权利要求1所述的通过构建水资源模型来预警的方法,其特征在于:所述生态***的水动力模型包括区域供水子***及需水子***。
3.根据权利要求1或2所述的通过构建水资源模型来预警的方法,其特征在于:所述供水量约束方程为:
(1)SW(t)=SW(t-Δt)+[I(t)+P(t)+Ed(t)-E(t)-O(t)-SS(t)-SE(t)]*Δt;
(2)TS(t)=SW(t)+SS(t)+GS(t)。
4.根据权利要求1所述的通过构建水资源模型来预警的方法,其特征在于:所述需水子***结构中包括总需水量,所述总需水量由工业需水量、农业需水量、生活需水量、生态需水量构成。
5.根据权利要求4所述的通过构建水资源模型来预警的方法,其特征在于:所述工业需水量的需水量约束方程为:(1)IV(t)=IV(t-Δt)+IV(t-Δt)KI(t)*Δt;(2)DI(t)=IV(t)*AI;(3)IR(t)=DI(t)*ratio1;(4)IW(t)=DI(t)*ratio2。
6.根据权利要求4所述的通过构建水资源模型来预警的方法,其特征在于:所述农业需水量的需水约束方程为:
(1)DA(t)=∑Sn*AAn(t);(2)AR(t)=DA(t)*ratio3;(3)AW(t)=DA(t)*ratio4。
7.根据权利要求4所述的通过构建水资源模型来预警的方法,其特征在于:所述生活需水量的需水量约束方程为:
(1)NP(t)=NP(t-Δt)+NP(t-Δt)KD(t)*Δt;(2)DD(t)=NP(t)*AD
(3)DR(t)=DD(t)*ratio5;(4)DW(t)=DD(t)*ratio6。
8.根据权利要求4所述的通过构建水资源模型来预警的方法,其特征在于:所述生态需水量的需水量约束方程为:
Figure FSA00000499504800021
Figure FSA00000499504800022
9.根据权利要求4所述的通过构建水资源模型来预警的方法,其特征在于:所述总需水量的需水量约束方程为:D=DI+DA+DD+DE-IR-AR-DR。
10.根据权利要求4所述的通过构建水资源模型来预警的方法,其特征在于:所述水环境子***的约束方程为:
(1)SW(t)C(t)=SW(t)C(t-Δt)+[I(t)CI(t)+Ed(t)Ce(t)-O(t)C(t)+kC(t)SW(t)]Δt;
(2)Ed(t)=IW(t)+AW(t)+DW(t)。
CN201110130278.7A 2011-05-19 2011-05-19 通过构建水资源模型来预警的方法 Expired - Fee Related CN102787582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110130278.7A CN102787582B (zh) 2011-05-19 2011-05-19 通过构建水资源模型来预警的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110130278.7A CN102787582B (zh) 2011-05-19 2011-05-19 通过构建水资源模型来预警的方法

Publications (2)

Publication Number Publication Date
CN102787582A true CN102787582A (zh) 2012-11-21
CN102787582B CN102787582B (zh) 2014-06-18

Family

ID=47153156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110130278.7A Expired - Fee Related CN102787582B (zh) 2011-05-19 2011-05-19 通过构建水资源模型来预警的方法

Country Status (1)

Country Link
CN (1) CN102787582B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108537390A (zh) * 2018-04-20 2018-09-14 珠江水利委员会珠江水利科学研究院 一种水量水质联合调配模拟方法、装置和计算机可读介质
CN113177189A (zh) * 2021-05-20 2021-07-27 中国水利水电科学研究院 一种梯级水库分级分期旱限库容的计算方法
CN113344449A (zh) * 2021-07-02 2021-09-03 水利部交通运输部国家能源局南京水利科学研究院 一种预测月尺度工业需水量的方法
CN117391613A (zh) * 2023-10-08 2024-01-12 菏泽单州数字产业发展有限公司 一种基于物联网的农业产业园管理***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200933495A (en) * 2008-01-18 2009-08-01 Univ Nat Taiwan Ocean System and method used to evaluate water resource environment of a city region
CN101976380A (zh) * 2010-09-14 2011-02-16 华北电力大学 一种水环境实时调控与数字化管理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200933495A (en) * 2008-01-18 2009-08-01 Univ Nat Taiwan Ocean System and method used to evaluate water resource environment of a city region
CN101976380A (zh) * 2010-09-14 2011-02-16 华北电力大学 一种水环境实时调控与数字化管理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
韩奇等: "社会经济-水安全SD预警模型的构建", 《热带农业科学》, vol. 26, no. 1, 28 February 2006 (2006-02-28) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108537390A (zh) * 2018-04-20 2018-09-14 珠江水利委员会珠江水利科学研究院 一种水量水质联合调配模拟方法、装置和计算机可读介质
CN113177189A (zh) * 2021-05-20 2021-07-27 中国水利水电科学研究院 一种梯级水库分级分期旱限库容的计算方法
CN113344449A (zh) * 2021-07-02 2021-09-03 水利部交通运输部国家能源局南京水利科学研究院 一种预测月尺度工业需水量的方法
CN113344449B (zh) * 2021-07-02 2023-08-29 水利部交通运输部国家能源局南京水利科学研究院 一种预测月尺度工业需水量的方法
CN117391613A (zh) * 2023-10-08 2024-01-12 菏泽单州数字产业发展有限公司 一种基于物联网的农业产业园管理***
CN117391613B (zh) * 2023-10-08 2024-03-15 菏泽单州数字产业发展有限公司 一种基于物联网的农业产业园管理***

Also Published As

Publication number Publication date
CN102787582B (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
Ning et al. Assessing pollution prevention program by QUAL2E simulation analysis for the Kao-Ping River Basin, Taiwan
Sonzogni et al. The phosphorus residence time model: theory and application
Campolo et al. Water quality control in the river Arno
CN101858065B (zh) 一种考虑污染胁迫的浅水湖泊生态需水量估算方法
Wan et al. Control of urban river water pollution is studied based on SMS
Luo et al. Using the EFDC model to evaluate the risks of eutrophication in an urban constructed pond from different water supply strategies
Akurut et al. Long-term variations of water quality in the Inner Murchison Bay, Lake Victoria
Jeznach et al. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir
CN102787582B (zh) 通过构建水资源模型来预警的方法
Wang et al. A Fusion Water Quality Soft‐Sensing Method Based on WASP Model and Its Application in Water Eutrophication Evaluation
Yang et al. Urban closed lakes: Nutrient sources, assimilative capacity and pollutant reduction under different precipitation frequencies
Akomeah et al. Water quality modeling of phytoplankton and nutrient cycles of a complex cold-region river-lake system
Yang et al. Integrated water-quality management indicators from river to sea: A case study of the Bohai Sea, China
Hsieh et al. Optimal best management practice placement strategies for nonpoint source pollution management in the Fei-Tsui reservoir watershed
Suarez et al. Evaluation of a coupled hydrodynamic-closed ecological cycle approach for modelling dissolved oxygen in surface waters
Whitehead et al. Simulating metals and mine discharges in river basins using a new integrated catchment model for metals: pollution impacts and restoration strategies in the Aries-Mures river system in Transylvania, Romania
Xiao et al. Modeling megacity drinking water security under a DSS framework in a tidal river at the north Pearl River Delta, China
DJELITA et al. Spatial and temporal patterns of the water quality in the Hammam Boughrara reservoir in Algeria
Guo et al. Study on the simulation of reservoir water environment and the optimization of ecological water replenishment effect: Taking Luhun Reservoir as an example
Vieira et al. Application of a collection model to estimate the revenue in the sub-basin of the Mamanguape river located on the coast of Paraíba state in Brazil territory
Robertson et al. Response in the trophic state of stratified lakes to changes in hydrology and water level: potential effects of climate change
Sentas et al. Dissolved oxygen assessment in Dam-Lake Thesaurus using stochastic modeling
Santy et al. Influence of climate change, land use land cover, population and industries on the pollution of Ganga River
Patil et al. Characterization of a Wastewater Stream (Bellary Nala, Belagavi, Karnataka) Using Conventional and Modeling Approach
Wang et al. Evaluating the effects of different pollution reduction scenarios on the total phosphorus concentration of a mountainous river basin in southwest China using SWAT model: a case study of the Donghe River in Baoshan, Yunnan

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140618

Termination date: 20150519

EXPY Termination of patent right or utility model