CN102729240A - 一种基于连续体结构的飞机油箱检查机器人及其控制方法 - Google Patents

一种基于连续体结构的飞机油箱检查机器人及其控制方法 Download PDF

Info

Publication number
CN102729240A
CN102729240A CN2012102189678A CN201210218967A CN102729240A CN 102729240 A CN102729240 A CN 102729240A CN 2012102189678 A CN2012102189678 A CN 2012102189678A CN 201210218967 A CN201210218967 A CN 201210218967A CN 102729240 A CN102729240 A CN 102729240A
Authority
CN
China
Prior art keywords
stage
snake arm
robot
main control
snake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102189678A
Other languages
English (en)
Other versions
CN102729240B (zh
Inventor
牛国臣
高庆吉
王续乔
王磊
王维娟
王力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Civil Aviation University of China
Original Assignee
Civil Aviation University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Civil Aviation University of China filed Critical Civil Aviation University of China
Priority to CN201210218967.8A priority Critical patent/CN102729240B/zh
Publication of CN102729240A publication Critical patent/CN102729240A/zh
Application granted granted Critical
Publication of CN102729240B publication Critical patent/CN102729240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

一种基于连续体结构的飞机油箱检查机器人及其控制方法。机器人包括移动平台、升降运动单元、蛇臂运动单元、***控制单元和电源模块;本发明机器人是一种仿生机器人,其能在工作人员监控下进入飞机油箱内部进行内漏点确定及腐蚀检查,具有传统离散型机器人所不具有的优良弯曲性能,而且能根据环境障碍物的状况而灵活改变自身形状,并对工作空间狭小的环境和非结构化环境具有独特的适应能力。本机器人能够替代人在油箱中作业,无疑会降低机务人员工作强度、保障人员安全、提高维修效率及降低油箱安全隐患,从而对缩短飞机停场时间、降低经济损失具有重要意义。此外,本机器人上伸入到飞机油箱内的部位几乎无用电设备,因此具有良好的防爆先决条件。

Description

一种基于连续体结构的飞机油箱检查机器人及其控制方法
技术领域
本发明属于民用航空技术领域,特别是涉及一种基于连续体结构的飞机油箱检查机器人及其控制方法。
背景技术
在民航机务维修中,飞机油箱渗漏及腐蚀一直是一个相当棘手的问题。由于工作环境恶劣,操作空间小,油箱内部结构复杂,而且不同机型油箱结构不尽相同,中央油箱和机翼油箱中均有桁条结构,因此燃油渗漏路径难以分析,内漏点及腐蚀位置很难确定,所以检修油箱往往需要很长的停场时间,甚至反复几次才能完成。为尽快地完成抢修任务,快速、准确地查找到漏点及腐蚀的位置就显得特别重要。目前,主要通过人工的方式实现漏点及腐蚀位置的确定,在这种情况下,工作人员常要进入飞机油箱进行检查。在飞机燃油箱中作业存在着易燃、易爆、人员中毒和飞机/设备损坏的危险性,因此亟需一种能够代替人进入油箱进行检查的装置。
发明内容
为了解决上述问题,本发明的目的在于提供一种能够减轻机务人员工作强度、保障其人身安全的基于连续体结构的飞机油箱检查机器人及其控制方法,
为了达到上述目的,本发明提供的基于连续体结构的飞机油箱检查机器人包括移动平台、升降运动单元、蛇臂运动单元、***控制单元和电源模块;
所述的移动平台包括底板、两个万向轮和两个固定轮,其中底板水平设置,两个万向轮和两个固定轮分别设置在底板的底面前后端两侧;
所述的升降运动单元包括底座、直线模组、滑块、伺服电机和联轴器,其中底座将直线模组固定在底板的表面中部;滑块以能够上下滑动的方式安装在直线模组上,同时与蛇臂运动单元下端固连;伺服电机通过联轴器与直线模组上的丝杠上端相连;
所述的蛇臂运动单元包括蛇臂体、蛇臂驱动机构和图像感知模块;其中蛇臂驱动机构安装在滑块上,主要包括多个电机底板、多台蛇臂驱动电机、多个带基座轴承、多个卷线轴和蛇臂支架;其中多个电机底板分多层沿上下方向相隔距离水平设置;每个电机底板的表面两侧并排分别安装有一台蛇臂驱动电机,另一端相应安装有两个带基座轴承;每台蛇臂驱动电机的输出轴通过一个联轴器与一个卷线轴的一端相连,卷线轴的另一端连接在一个带基座轴承上;蛇臂支架设置在位于最上层的电机底板表面上两个卷线轴之间的部位,其两侧面上分别安装有多个换向轮,表面形成有多个用于贯穿蛇臂体上驱动绳的开孔;蛇臂体的下端固定在蛇臂支架上,其由至少五个关节构成,每个关节包括首端圆盘、末端圆盘、多个支撑圆盘、柔性支撑杆和四根驱动绳;其中首端圆盘、多个支撑圆盘和末端圆盘的中部从下至上相隔距离套装在柔性支撑杆上,每个首端圆盘、支撑圆盘和末端圆盘的圆周上形成有多个过孔,上一关节的首端圆盘与下一关节的末端圆盘通过关节连接件相互连接在一起;四根驱动绳分别贯穿设置在首端圆盘、支撑圆盘和末端圆盘上相距90度方位的一个过孔内,下端从蛇臂支架上的一个开孔穿过并通过一个换向轮以正绕线和反绕线交错的方式卷绕在一个相应的卷线轴上,上端固定在该关节的末端圆盘上;图像感知模块包括摄像机及照明灯,两者固定于蛇臂体的上端;
所述的***控制单元安装在底板的表面,包括主控计算机、电机控制板、数据传输模块及照明控制模块;其中主控计算机同时与电机控制板、数据传输模块、照明控制模块及监控站计算机相连,用于将接收到的监控站操作人员在监控站计算机上下达的运动控制指令分解为各个关节的控制量,再向电机控制板发送控制指令,从而使得各关节能够旋转弯曲或使得直线模组进行直线运动;主控计算机还负责计算机器人的空间姿态,并和其他***状态一起反馈到监控站计算机,以便工作人员后续操控;电机控制板与主控计算机和伺服电机以及蛇臂驱动电机相连,用于接收主控计算机的运动指令,然后向伺服电机和蛇臂驱动电机发送驱动信号,以控制这些电机按照指定参数运动;数据传输模块通过RS232与主控计算机相连,同时与摄像机相接,用于将命令和状态在机器人与监控站计算机之间进行传递,同时将摄像机采集的油箱图像传递给监控站计算机;照明控制模块通过数字量采集卡与主控计算机相连,同时与照明灯相接,用于控制照明灯的开关,并配合摄像机提供不同亮度的照明光,以适应不同的光线条件,从而达到较好的图像采集效果;
所述的电源模块安装在底板的表面,用于为整个机器人提供工作电源。
所述的主控计算机采用嵌入式工控机。
所述的蛇臂体的外部设有蛇臂外壳,蛇臂外壳采用具有伸缩和弯曲能力的波纹管制成。
所述的伺服电机和蛇臂驱动电机上安装有光电编码器。
所述的柔性支撑杆采用碳纤维杆。
所述的底板的表面后端还安装有扶手。
本发明提供的基于连续体结构的飞机油箱检查机器人的控制方法包括按顺序进行的下列步骤:
1)***自检及初始化的S1阶段;在此阶段中,主控计算机将对本机器人中各相关设备的工作状况进行检测,并对摄像机和各关节变量数据及运行期间的状态变量进行初始化;
2)对自检结果是否正常进行判断的S2阶段;如果判断结果为“是”,进入S3阶段;否则进入异常处理的S9阶段,然后结束运行;
3)读取监控站计算机下达指令的S3阶段;在此阶段中,主控计算机将在规定的时间内读取地面监控站计算机发出的指令,然后进入S4阶段;
4)对机器人是否读取到新指令进行判断的S4阶段;如果判断结果为“是”,进入S5阶段;否则进入S7阶段;
5)对指令进行解析的S5阶段;对S3阶段中接收到的地面监控站计算机发出的控制指令进行解析,以得到具体控制命令参数,并对伺服电机和蛇臂驱动电机的控制指令进行更新,然后进入S6阶段;
6)关节动作的S6阶段;在此阶段中,主控计算机将产生的控制指令传送到各驱动机构,以执行相应的动作,然后进入S7阶段;
7)进行状态更新的S7阶段;对在此阶段中,主控计算机将机器人位姿、中间结果及环境状况信息进行更新,并发送给数据传输模块,然后进入S8阶段;
8)对是否退出进行判断的S8阶段;如果判断结果为“是”,结束程序运行;否则返回到S3阶段的入口处以继续循环。
本发明提供的基于连续体结构的飞机油箱检查机器人是一种仿生机器人,其能够在工作人员的监控下进入飞机油箱内部进行内漏点的确定及腐蚀检查,具有传统离散型机器人所不具有的优良弯曲性能,而且能够根据环境障碍物的状况而灵活改变自身形状,并对工作空间狭小的环境和非结构化环境具有独特的适应能力。该机器人能够替代人在油箱中作业,无疑会降低机务人员工作强度、保障人员安全、提高维修效率及降低油箱安全隐患,从而对缩短飞机停场时间、降低经济损失具有重要意义。此外,本机器人上伸入到飞机油箱内的部位几乎无用电设备,因此具有良好的防爆先决条件。另外,本机器人体积小、重量轻,通过移动平台可方便实现移动,便于实现多个位置的检修。
附图说明
图1为本发明提供的基于连续体结构的飞机油箱检查机器人整体结构示意图;
图2为本发明提供的基于连续体结构的飞机油箱检查机器人中蛇臂体结构示意图;
图3为本发明提供的基于连续体结构的飞机油箱检查机器人中蛇臂驱动机构结构示意图;
图4为本发明提供的基于连续体结构的飞机油箱检查机器人中***控制单元构成框图;
图5本发明提供的基于连续体结构的飞机油箱检查机器人控制方法流程图。
具体实施方式
下面结合附图和具体实施例对本发明提供的基于连续体结构的飞机油箱检查机器人及其控制方法进行详细说明。
如图1-图4所示,本发明提供的基于连续体结构的飞机油箱检查机器人包括移动平台、升降运动单元、蛇臂运动单元、***控制单元13和电源模块14;
所述的移动平台包括底板17、两个万向轮15和两个固定轮16,其中底板17水平设置,两个万向轮15和两个固定轮16分别设置在底板17的底面前后端两侧;
所述的升降运动单元包括底座12、直线模组11、滑块9、伺服电机6和联轴器7,用于为蛇臂运动单元提供升降功能,使蛇臂运动单元能够伸入飞机油箱内部进行检查,其中底座12将直线模组11固定在底板17的表面中部;滑块9以能够上下滑动的方式安装在直线模组11上,同时与蛇臂运动单元下端固连;伺服电机6通过联轴器7与直线模组11上的丝杠上端相连,在伺服电机6的带动下,滑块9将进行升降运动,从而带动整个蛇臂运动单元上下运动,为机器人提供一个升降自由度;
所述的蛇臂运动单元包括蛇臂体4、蛇臂驱动机构10和图像感知模块;其中蛇臂驱动机构10安装在滑块9上,其是能够驱动蛇臂体4及图像感知模块进入飞机油箱的核心,主要包括多个电机底板36、多台蛇臂驱动电机34、多个带基座轴承28、多个卷线轴31和蛇臂支架29;其中多个电机底板36分多层沿上下方向相隔距离水平设置;每个电机底板36的表面两侧并排分别安装有一台蛇臂驱动电机34,另一端相应安装有两个带基座轴承28;每台蛇臂驱动电机34的输出轴通过一个联轴器32与一个卷线轴31的一端相连,卷线轴31的另一端连接在一个带基座轴承28上;蛇臂支架29设置在位于最上层的电机底板36表面上两个卷线轴31之间的部位,其两侧面上分别安装有多个换向轮30,表面形成有多个用于贯穿蛇臂体4上驱动绳25的开孔;蛇臂体4的下端固定在蛇臂支架29上,其由至少五个关节20构成,每个关节20具有两个自由度,可向各个方向弯曲,因此蛇臂体4至少具有十个自由度,每个关节20包括首端圆盘21、末端圆盘19、多个支撑圆盘24、柔性支撑杆26和四根驱动绳25;其中首端圆盘21、多个支撑圆盘24和末端圆盘19的中部从下至上相隔距离套装在柔性支撑杆26上,每个首端圆盘21、支撑圆盘24和末端圆盘19的圆周上形成有多个过孔,上一关节20的首端圆盘21与下一关节20的末端圆盘19通过关节连接件22相互连接在一起;四根驱动绳25分别贯穿设置在首端圆盘21、支撑圆盘24和末端圆盘19上相距90度方位的一个过孔内,下端从蛇臂支架29上的一个开孔穿过并通过一个换向轮30以正绕线和反绕线交错的方式卷绕在一个相应的卷线轴31上,上端固定在该关节20的末端圆盘19上;图像感知模块包括摄像机1及照明灯2,两者固定于蛇臂体4的上端,其中摄像机1能够将飞机油箱内部的情况传递到外部监测***上,以便于工作人员判断油箱内部状况,而照明灯2则为摄像机1提供照明光;
所述的***控制单元13安装在底板17的表面,包括主控计算机40、电机控制板41、数据传输模块42及照明控制模块43;其中主控计算机40同时与电机控制板41、数据传输模块42、照明控制模块43及监控站计算机相连,用于将接收到的监控站操作人员在监控站计算机上下达的运动控制指令分解为各个关节20的控制量,再向电机控制板41发送控制指令,从而使得各关节20能够旋转弯曲或使得直线模组11进行直线运动;主控计算机40还负责计算机器人的空间姿态,并和其他***状态一起反馈到监控站计算机,以便工作人员后续操控;电机控制板41与主控计算机40和伺服电机6以及蛇臂驱动电机34相连,用于接收主控计算机40的运动指令,然后向伺服电机6和蛇臂驱动电机34发送驱动信号,以控制这些电机按照指定参数运动;数据传输模块42通过RS232与主控计算机40相连,同时与摄像机1相接,用于将命令和状态在机器人与监控站计算机之间进行传递,同时将摄像机1采集的油箱图像传递给监控站计算机;照明控制模块43通过数字量采集卡与主控计算机40相连,同时与照明灯2相接,用于控制照明灯2的开关,并配合摄像机1提供不同亮度的照明光,以适应不同的光线条件,从而达到较好的图像采集效果;
所述的电源模块14安装在底板17的表面,用于为整个机器人提供工作电源。
所述的主控计算机40采用嵌入式工控机。
所述的蛇臂体4的外部设有蛇臂外壳5,蛇臂外壳5采用具有伸缩和弯曲能力的波纹管制成,其能够有效地保护蛇臂体4及飞机油箱内部的环境不受损坏。
所述的伺服电机6和蛇臂驱动电机34上安装有光电编码器,电机控制板41可利用光电编码器位置信号形成位置速度闭环精确控制,并将其反馈到主控计算机40,用来推算出机器人的空间姿态。
所述的柔性支撑杆26采用碳纤维杆,以保证各关节20具有均匀的曲率。
所述的底板17的表面后端还安装有扶手8。
现将本发明提供的飞机油箱检查机器人工作过程阐述如下:
首先由工作人员利用扶手8将本发明提供的基于连续体结构的飞机油箱检查机器人推至位于飞机机翼和机身底部的飞机油箱下方,然后将其上蛇臂运动单元上端放置到飞机油箱入口处,这时机器人将处于指令接收就绪状态;工作人员可由监控站计算机设定需到达的油箱目标位置,并向机器人发送控制指令;机器人根据工作人员的指令通过相应关节的运动控制蛇臂末端到达设定位置,并实时将图像传输到监控站,供检查分析。
如图5所示,本发明提供的飞机油箱检查机器人控制过程包括按顺序进行的下列步骤:
1)***自检及初始化的S1阶段;在此阶段中,主控计算机40将对本机器人中各相关设备的工作状况进行检测,并对摄像机1和各关节20变量数据及运行期间的状态变量进行初始化;
2)对自检结果是否正常进行判断的S2阶段;如果判断结果为“是”,进入S3阶段;否则进入异常处理的S9阶段,然后结束运行;
3)读取监控站计算机下达指令的S3阶段;在此阶段中,主控计算机40将在规定的时间内读取地面监控站计算机发出的指令,然后进入S4阶段;
4)对机器人是否读取到新指令进行判断的S4阶段;如果判断结果为“是”,进入S5阶段;否则进入S7阶段;
5)对指令进行解析的S5阶段;对S3阶段中接收到的地面监控站计算机发出的控制指令进行解析,以得到具体控制命令参数,并对伺服电机6和蛇臂驱动电机3的控制指令进行更新,然后进入S6阶段;
6)关节动作的S6阶段;在此阶段中,主控计算机40将产生的控制指令传送到各驱动机构,以执行相应的动作,然后进入S7阶段;
7)进行状态更新的S7阶段;对在此阶段中,主控计算机40将机器人位姿、中间结果及环境状况信息进行更新,并发送给数据传输模块42,然后进入S8阶段;
8)对是否退出进行判断的S8阶段;如果判断结果为“是”,结束程序运行;否则返回到S3阶段的入口处以继续循环。

Claims (7)

1.一种基于连续体结构的飞机油箱检查机器人,其特征在于:所述的飞机油箱检查机器人包括移动平台、升降运动单元、蛇臂运动单元、***控制单元(13)和电源模块(14);
所述的移动平台包括底板(17)、两个万向轮(15)和两个固定轮(16),其中底板(17)水平设置,两个万向轮(15)和两个固定轮(16)分别设置在底板(17)的底面前后端两侧;
所述的升降运动单元包括底座(12)、直线模组(11)、滑块(9)、伺服电机(6)和联轴器(7),其中底座(12)将直线模组(11)固定在底板(17)的表面中部;滑块(9)以能够上下滑动的方式安装在直线模组(11)上,同时与蛇臂运动单元下端固连;伺服电机(6)通过联轴器(7)与直线模组(11)上的丝杠上端相连;
所述的蛇臂运动单元包括蛇臂体(4)、蛇臂驱动机构(10)和图像感知模块;其中蛇臂驱动机构(10)安装在滑块(9)上,主要包括多个电机底板(36)、多台蛇臂驱动电机(34)、多个带基座轴承(28)、多个卷线轴(31)和蛇臂支架(29);其中多个电机底板(36)分多层沿上下方向相隔距离水平设置;每个电机底板(36)的表面两侧并排分别安装有一台蛇臂驱动电机(34),另一端相应安装有两个带基座轴承(28);每台蛇臂驱动电机(34)的输出轴通过一个联轴器(32)与一个卷线轴(31)的一端相连,卷线轴(31)的另一端连接在一个带基座轴承(28)上;蛇臂支架(29)设置在位于最上层的电机底板(36)表面上两个卷线轴(31)之间的部位,其两侧面上分别安装有多个换向轮(30),表面形成有多个用于贯穿蛇臂体(4)上驱动绳(25)的开孔;蛇臂体(4)的下端固定在蛇臂支架(29)上,其由至少五个关节(20)构成,每个关节(20)包括首端圆盘(21)、末端圆盘(19)、多个支撑圆盘(24)、柔性支撑杆(26)和四根驱动绳(25);其中首端圆盘(21)、多个支撑圆盘(24)和末端圆盘(19)的中部从下至上相隔距离套装在柔性支撑杆(26)上,每个首端圆盘(21)、支撑圆盘(24)和末端圆盘(19)的圆周上形成有多个过孔,上一关节(20)的首端圆盘(21)与下一关节(20)的末端圆盘(19)通过关节连接件(22)相互连接在一起;四根驱动绳(25)分别贯穿设置在首端圆盘(21)、支撑圆盘(24)和末端圆盘(19)上相距90度方位的一个过孔内,下端从蛇臂支架(29)上的一个开孔穿过并通过一个换向轮(30)以正绕线和反绕线交错的方式卷绕在一个相应的卷线轴(31)上,上端固定在该关节(20)的末端圆盘(19)上;图像感知模块包括摄像机(1)及照明灯(2),两者固定于蛇臂体(4)的上端;
所述的***控制单元(13)安装在底板(17)的表面,包括主控计算机(40)、电机控制板(41)、数据传输模块(42)及照明控制模块(43);其中主控计算机(40)同时与电机控制板(41)、数据传输模块(42)、照明控制模块(43)及监控站计算机相连,用于将接收到的监控站操作人员在监控站计算机上下达的运动控制指令分解为各个关节(20)的控制量,再向电机控制板(41)发送控制指令,从而使得各关节(20)能够旋转弯曲或使得直线模组(11)进行直线运动;主控计算机(40)还负责计算机器人的空间姿态,并和其他***状态一起反馈到监控站计算机,以便工作人员后续操控;电机控制板(41)与主控计算机(40)和伺服电机(6)以及蛇臂驱动电机(34)相连,用于接收主控计算机(40)的运动指令,然后向伺服电机(6)和蛇臂驱动电机(34)发送驱动信号,以控制这些电机按照指定参数运动;数据传输模块(42)通过RS232与主控计算机(40)相连,同时与摄像机(1)相接,用于将命令和状态在机器人与监控站计算机之间进行传递,同时将摄像机(1)采集的油箱图像传递给监控站计算机;照明控制模块(43)通过数字量采集卡与主控计算机(40)相连,同时与照明灯(2)相接,用于控制照明灯(2)的开关,并配合摄像机(1)提供不同亮度的照明光,以适应不同的光线条件,从而达到较好的图像采集效果;
所述的电源模块(14)安装在底板(17)的表面,用于为整个机器人提供工作电源。
2.根据权利要求1所述的基于连续体结构的飞机油箱检查机器人,其特征在于:所述的主控计算机(40)采用嵌入式工控机。
3.根据权利要求1所述的基于连续体结构的飞机油箱检查机器人,其特征在于:所述的蛇臂体(4)的外部设有蛇臂外壳(5),蛇臂外壳(5)采用具有伸缩和弯曲能力的波纹管制成。
4.根据权利要求1所述的基于连续体结构的飞机油箱检查机器人,其特征在于:所述的伺服电机(6)和蛇臂驱动电机(34)上安装有光电编码器。
5.根据权利要求1所述的基于连续体结构的飞机油箱检查机器人,其特征在于:所述的柔性支撑杆(26)采用碳纤维杆。
6.根据权利要求1所述的基于连续体结构的飞机油箱检查机器人,其特征在于:所述的底板(17)的表面后端还安装有扶手(8)。
7.一种如权利要求1所述的基于连续体结构的飞机油箱检查机器人的控制方法,其特征在于:所述的控制方法包括按顺序进行的下列步骤:
1)***自检及初始化的S1阶段;在此阶段中,主控计算机(40)将对本机器人中各相关设备的工作状况进行检测,并对摄像机(1)和各关节(20)变量数据及运行期间的状态变量进行初始化;
2)对自检结果是否正常进行判断的S2阶段;如果判断结果为“是”,进入S3阶段;否则进入异常处理的S9阶段,然后结束运行;
3)读取监控站计算机下达指令的S3阶段;在此阶段中,主控计算机(40)将在规定的时间内读取地面监控站计算机发出的指令,然后进入S4阶段;
4)对机器人是否读取到新指令进行判断的S4阶段;如果判断结果为“是”,进入S5阶段;否则进入S7阶段;
5)对指令进行解析的S5阶段;对S3阶段中接收到的地面监控站计算机发出的控制指令进行解析,以得到具体控制命令参数,并对伺服电机(6)和蛇臂驱动电机(3)的控制指令进行更新,然后进入S6阶段;
6)关节动作的S6阶段;在此阶段中,主控计算机(40)将产生的控制指令传送到各驱动机构,以执行相应的动作,然后进入S7阶段;
7)进行状态更新的S7阶段;对在此阶段中,主控计算机(40)将机器人位姿、中间结果及环境状况信息进行更新,并发送给数据传输模块(42),然后进入S8阶段;
8)对是否退出进行判断的S8阶段;如果判断结果为“是”,结束程序运行;否则返回到S3阶段的入口处以继续循环。
CN201210218967.8A 2012-06-28 2012-06-28 一种基于连续体结构的飞机油箱检查机器人及其控制方法 Active CN102729240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210218967.8A CN102729240B (zh) 2012-06-28 2012-06-28 一种基于连续体结构的飞机油箱检查机器人及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210218967.8A CN102729240B (zh) 2012-06-28 2012-06-28 一种基于连续体结构的飞机油箱检查机器人及其控制方法

Publications (2)

Publication Number Publication Date
CN102729240A true CN102729240A (zh) 2012-10-17
CN102729240B CN102729240B (zh) 2014-09-03

Family

ID=46985893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210218967.8A Active CN102729240B (zh) 2012-06-28 2012-06-28 一种基于连续体结构的飞机油箱检查机器人及其控制方法

Country Status (1)

Country Link
CN (1) CN102729240B (zh)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592876A (zh) * 2013-11-15 2014-02-19 福建宏宇电子科技有限公司 一种使用于经编行业的电子横移控制***及控制方法
CN103692440A (zh) * 2013-12-06 2014-04-02 中国民航大学 一种连续型机器人空间路径跟踪方法
CN103879469A (zh) * 2014-03-19 2014-06-25 苏州大学 一种蛇形搜救机器人关节模块
CN104848991A (zh) * 2015-06-05 2015-08-19 天津理工大学 基于视觉的主动式泄漏气体检测方法
CN105050776A (zh) * 2012-11-14 2015-11-11 法国原子能源和替代能源委员会 六足***
CN105209223A (zh) * 2012-11-14 2015-12-30 法国原子能源和替代能源委员会 关节臂
CN105313112A (zh) * 2015-11-04 2016-02-10 上海交通大学 多自由度串联机器人机构
CN105313135A (zh) * 2015-11-04 2016-02-10 上海交通大学 一种可均匀弯曲的串联机器人关节机构
CN105619450A (zh) * 2016-03-17 2016-06-01 上海交通大学 软体机械臂及其控制方法
CN105690378A (zh) * 2016-03-22 2016-06-22 中国民航大学 一种紧凑型易扩展的多关节段蛇臂驱动机构
CN105751211A (zh) * 2016-04-23 2016-07-13 上海大学 一种柔性杆驱动的曲率连续变化机器人及其控制方法
GB2538231A (en) * 2015-05-07 2016-11-16 Airbus Operations Ltd Method and apparatus for aircraft inspection
CN106493720A (zh) * 2015-09-06 2017-03-15 上海科斗电子科技有限公司 柔体机械骨骼
CN106695803A (zh) * 2017-03-24 2017-05-24 中国民航大学 一种连续型机器人姿态控制***
CN106737628A (zh) * 2017-02-14 2017-05-31 深圳源创智能机器人有限公司 一种基于绳索驱动的柔性充电机器人
CN107225564A (zh) * 2017-05-17 2017-10-03 中国科学院自动化研究所 一种可蜷缩的蛇形机械臂
CN107414839A (zh) * 2017-09-15 2017-12-01 中山大学 蛇形机器人控制***
CN107618025A (zh) * 2017-09-20 2018-01-23 西安航空学院 救灾机械臂
CN108098744A (zh) * 2017-12-26 2018-06-01 清华大学深圳研究生院 一种坐标型机械臂
CN108161916A (zh) * 2017-08-24 2018-06-15 北京邮电大学 一种线驱动可同时伸缩和弯曲的柔性机器人
CN108356778A (zh) * 2017-01-27 2018-08-03 波音公司 用于窄小的作业封装物中的四个协作机器人和人员的***
CN109500806A (zh) * 2018-12-22 2019-03-22 上海交通大学 一种多自由度多通道辅助操作柔性机械臂***
CN109795691A (zh) * 2019-01-22 2019-05-24 浙江理工大学 一种无人机飞行抓取***
CN109895079A (zh) * 2019-04-22 2019-06-18 哈尔滨工业大学(威海) 一种全自由度连续体机械臂
CN110253530A (zh) * 2019-08-05 2019-09-20 陕西中建建乐智能机器人有限公司 一种具有蛇形探测头的巡检智能机器人及其巡检方法
CN110308344A (zh) * 2019-06-19 2019-10-08 深圳供电局有限公司 检测机器人
US20190383158A1 (en) * 2018-06-14 2019-12-19 General Electric Company Probe Motion Compensation
CN110927813A (zh) * 2019-12-10 2020-03-27 南京航空航天大学 一种飞机油箱自动探测装置及方法
CN111037533A (zh) * 2019-12-26 2020-04-21 沈阳新松机器人自动化股份有限公司 一种移动式超冗余复合机器人
CN112248838A (zh) * 2020-10-21 2021-01-22 北京理工大学 一种电动汽车用线驱动柔性充电枪及充电方法
CN112428298A (zh) * 2020-11-17 2021-03-02 中国科学院宁波材料技术与工程研究所 一种软体机器人臂及其控制***
CN112621736A (zh) * 2020-11-19 2021-04-09 西安电子科技大学 一种面向深腔作业的柔性机械臂***及连续体机器人
CN112936336A (zh) * 2021-01-27 2021-06-11 西安电子科技大学 一种多种连续体机器人模块化单元、连续体机器人及应用
CN112986268A (zh) * 2021-05-20 2021-06-18 中南大学 一种高铁桥梁表观病害的检测机器人及检测方法
CN113084830A (zh) * 2021-04-06 2021-07-09 山东建筑大学 基于连续体机构的侦查移动机器人
CN113146614A (zh) * 2020-01-23 2021-07-23 精工爱普生株式会社 移动机器人的控制方法和控制装置以及机器人***
CN113386130A (zh) * 2021-05-21 2021-09-14 北部湾大学 一种仿生蛇形机器人控制***及其控制方法
CN113655065A (zh) * 2021-08-13 2021-11-16 北京航空航天大学 一种适用于空间舱室复杂狭窄空间内的材料表面菌蚀斑探测装置
CN115741773A (zh) * 2022-12-01 2023-03-07 康荣杰 一种大扭转刚度连续体关节

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751821A (en) * 1985-03-29 1988-06-21 Birchard William G Digital linear actuator
US4900218A (en) * 1983-04-07 1990-02-13 Sutherland Ivan E Robot arm structure
CN101507865A (zh) * 2009-03-24 2009-08-19 山东科技大学 落井救援机器人
CN102060057A (zh) * 2010-12-27 2011-05-18 中国民航大学 飞机油箱检查机器人***及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900218A (en) * 1983-04-07 1990-02-13 Sutherland Ivan E Robot arm structure
US4751821A (en) * 1985-03-29 1988-06-21 Birchard William G Digital linear actuator
CN101507865A (zh) * 2009-03-24 2009-08-19 山东科技大学 落井救援机器人
CN102060057A (zh) * 2010-12-27 2011-05-18 中国民航大学 飞机油箱检查机器人***及其控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
桑贤臣: "绳驱动介入式主动导管的设计与研究", 《中国优秀硕士学位论文全文数据库信息科技辑》, no. 12, 15 December 2011 (2011-12-15) *
桑贤臣等: "一种新型柔索驱动介入式导管主动头端", 《应用科技》, vol. 38, no. 03, 31 March 2011 (2011-03-31) *

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105209223B (zh) * 2012-11-14 2017-07-04 法国原子能源和替代能源委员会 关节臂
CN105050776B (zh) * 2012-11-14 2017-12-01 法国原子能源和替代能源委员会 六足***
US9919434B1 (en) 2012-11-14 2018-03-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Articulated arm
CN105050776A (zh) * 2012-11-14 2015-11-11 法国原子能源和替代能源委员会 六足***
CN105209223A (zh) * 2012-11-14 2015-12-30 法国原子能源和替代能源委员会 关节臂
CN103592876B (zh) * 2013-11-15 2016-04-06 福建宏宇电子科技有限公司 一种使用于经编行业的电子横移控制***及控制方法
CN103592876A (zh) * 2013-11-15 2014-02-19 福建宏宇电子科技有限公司 一种使用于经编行业的电子横移控制***及控制方法
CN103692440A (zh) * 2013-12-06 2014-04-02 中国民航大学 一种连续型机器人空间路径跟踪方法
CN103692440B (zh) * 2013-12-06 2015-06-17 中国民航大学 一种连续型机器人空间路径跟踪方法
CN103879469B (zh) * 2014-03-19 2016-08-03 苏州大学 一种蛇形搜救机器人关节模块
CN103879469A (zh) * 2014-03-19 2014-06-25 苏州大学 一种蛇形搜救机器人关节模块
US9964959B2 (en) 2015-05-07 2018-05-08 Airbus Operations Limited Method and apparatus for aircraft inspection
GB2538231A (en) * 2015-05-07 2016-11-16 Airbus Operations Ltd Method and apparatus for aircraft inspection
CN104848991A (zh) * 2015-06-05 2015-08-19 天津理工大学 基于视觉的主动式泄漏气体检测方法
CN106493720A (zh) * 2015-09-06 2017-03-15 上海科斗电子科技有限公司 柔体机械骨骼
CN105313112A (zh) * 2015-11-04 2016-02-10 上海交通大学 多自由度串联机器人机构
CN105313135A (zh) * 2015-11-04 2016-02-10 上海交通大学 一种可均匀弯曲的串联机器人关节机构
CN105619450A (zh) * 2016-03-17 2016-06-01 上海交通大学 软体机械臂及其控制方法
CN105690378A (zh) * 2016-03-22 2016-06-22 中国民航大学 一种紧凑型易扩展的多关节段蛇臂驱动机构
CN105751211B (zh) * 2016-04-23 2019-02-01 上海大学 一种柔性杆驱动的曲率连续变化机器人及其控制方法
CN105751211A (zh) * 2016-04-23 2016-07-13 上海大学 一种柔性杆驱动的曲率连续变化机器人及其控制方法
CN108356778A (zh) * 2017-01-27 2018-08-03 波音公司 用于窄小的作业封装物中的四个协作机器人和人员的***
CN106737628A (zh) * 2017-02-14 2017-05-31 深圳源创智能机器人有限公司 一种基于绳索驱动的柔性充电机器人
CN106695803A (zh) * 2017-03-24 2017-05-24 中国民航大学 一种连续型机器人姿态控制***
CN107225564A (zh) * 2017-05-17 2017-10-03 中国科学院自动化研究所 一种可蜷缩的蛇形机械臂
CN107225564B (zh) * 2017-05-17 2020-06-16 中国科学院自动化研究所 一种可蜷缩的蛇形机械臂
CN108161916A (zh) * 2017-08-24 2018-06-15 北京邮电大学 一种线驱动可同时伸缩和弯曲的柔性机器人
CN107414839A (zh) * 2017-09-15 2017-12-01 中山大学 蛇形机器人控制***
CN107618025A (zh) * 2017-09-20 2018-01-23 西安航空学院 救灾机械臂
CN108098744A (zh) * 2017-12-26 2018-06-01 清华大学深圳研究生院 一种坐标型机械臂
US20190383158A1 (en) * 2018-06-14 2019-12-19 General Electric Company Probe Motion Compensation
CN109500806A (zh) * 2018-12-22 2019-03-22 上海交通大学 一种多自由度多通道辅助操作柔性机械臂***
CN109500806B (zh) * 2018-12-22 2020-09-29 上海交通大学 一种多自由度多通道辅助操作柔性机械臂***
CN109795691A (zh) * 2019-01-22 2019-05-24 浙江理工大学 一种无人机飞行抓取***
CN109895079B (zh) * 2019-04-22 2022-03-04 哈尔滨工业大学(威海) 一种全自由度连续体机械臂
CN109895079A (zh) * 2019-04-22 2019-06-18 哈尔滨工业大学(威海) 一种全自由度连续体机械臂
CN110308344A (zh) * 2019-06-19 2019-10-08 深圳供电局有限公司 检测机器人
CN110253530A (zh) * 2019-08-05 2019-09-20 陕西中建建乐智能机器人有限公司 一种具有蛇形探测头的巡检智能机器人及其巡检方法
CN110927813A (zh) * 2019-12-10 2020-03-27 南京航空航天大学 一种飞机油箱自动探测装置及方法
CN111037533A (zh) * 2019-12-26 2020-04-21 沈阳新松机器人自动化股份有限公司 一种移动式超冗余复合机器人
CN113146614A (zh) * 2020-01-23 2021-07-23 精工爱普生株式会社 移动机器人的控制方法和控制装置以及机器人***
CN113146614B (zh) * 2020-01-23 2024-01-16 精工爱普生株式会社 移动机器人的控制方法和控制装置以及机器人***
CN112248838A (zh) * 2020-10-21 2021-01-22 北京理工大学 一种电动汽车用线驱动柔性充电枪及充电方法
CN112428298A (zh) * 2020-11-17 2021-03-02 中国科学院宁波材料技术与工程研究所 一种软体机器人臂及其控制***
CN112428298B (zh) * 2020-11-17 2022-03-15 中国科学院宁波材料技术与工程研究所 一种软体机器人臂及其控制***
CN112621736B (zh) * 2020-11-19 2022-04-01 西安电子科技大学 一种面向深腔作业的柔性机械臂***及连续体机器人
CN112621736A (zh) * 2020-11-19 2021-04-09 西安电子科技大学 一种面向深腔作业的柔性机械臂***及连续体机器人
CN112936336A (zh) * 2021-01-27 2021-06-11 西安电子科技大学 一种多种连续体机器人模块化单元、连续体机器人及应用
CN112936336B (zh) * 2021-01-27 2023-08-25 西安电子科技大学 一种多种连续体机器人模块化单元、连续体机器人及应用
CN113084830A (zh) * 2021-04-06 2021-07-09 山东建筑大学 基于连续体机构的侦查移动机器人
CN112986268A (zh) * 2021-05-20 2021-06-18 中南大学 一种高铁桥梁表观病害的检测机器人及检测方法
CN113386130A (zh) * 2021-05-21 2021-09-14 北部湾大学 一种仿生蛇形机器人控制***及其控制方法
CN113386130B (zh) * 2021-05-21 2023-02-03 北部湾大学 一种仿生蛇形机器人控制***及其控制方法
CN113655065A (zh) * 2021-08-13 2021-11-16 北京航空航天大学 一种适用于空间舱室复杂狭窄空间内的材料表面菌蚀斑探测装置
CN115741773A (zh) * 2022-12-01 2023-03-07 康荣杰 一种大扭转刚度连续体关节

Also Published As

Publication number Publication date
CN102729240B (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
CN102729240B (zh) 一种基于连续体结构的飞机油箱检查机器人及其控制方法
CN107390676B (zh) 隧道巡检机器人及隧道巡检***
CN103978474B (zh) 一种面向极端环境的特种作业机器人
US20170073071A1 (en) Unmanned aircraft and unmanned ground vehicle teaming for remote infrastructure inspection
TWI724335B (zh) 表面處理系統之控制方法
CN112711265B (zh) 移动式多无人机智能巡检成套装备及巡检方法
CN104723318A (zh) 自主工作机器人***
CN102060057B (zh) 飞机油箱检查机器人***及其控制方法
CN109760837A (zh) 一种电缆沟与隧道巡检无人机***
EP3540217B1 (en) Apparatus and methods for maintenance of wind turbine blades
CN104827482A (zh) 一种可自主移动的机器人平台
CN102628425A (zh) 用于风力涡轮机检查的方法和***
CN108227591A (zh) 一种城市综合管廊机器人
TWI698373B (zh) 大型物體用之表面處理系統
CN210452803U (zh) 一种避障巡检机器人
KR102359154B1 (ko) 전력설비 자율진단 로봇
CN109434800A (zh) 一种无线巡检机器人***以及控制方法
CN209928282U (zh) 一种安全警示巡检机器人
CN110927813B (zh) 一种飞机油箱自动探测装置及方法
CN210036823U (zh) 一种石油化工巡检机器人
CN213705621U (zh) 机器人和巡检***
CN207992746U (zh) 一种城市综合管廊机器人
CN207860417U (zh) 一种适用于堆内构件自动视频检查的水下全向移动平台
CN112405564A (zh) 一种车辆基地综合管廊自动巡检机器人
CN104808687B (zh) 基于观测带电检测体的无人驾驶飞艇控制装置的控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20121017

Assignee: TIANJIN JIUYUE TECHNOLOGY Co.,Ltd.

Assignor: CIVIL AVIATION University OF CHINA

Contract record no.: X2024980002388

Denomination of invention: A Aircraft Fuel Tank Inspection Robot Based on Continuum Structure and Its Control Method

Granted publication date: 20140903

License type: Common License

Record date: 20240301