CN102724543B - Ip网络中基于hmm实现媒体质量分析评估控制的方法 - Google Patents

Ip网络中基于hmm实现媒体质量分析评估控制的方法 Download PDF

Info

Publication number
CN102724543B
CN102724543B CN201210234904.1A CN201210234904A CN102724543B CN 102724543 B CN102724543 B CN 102724543B CN 201210234904 A CN201210234904 A CN 201210234904A CN 102724543 B CN102724543 B CN 102724543B
Authority
CN
China
Prior art keywords
state
media quality
layer
media
hmm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210234904.1A
Other languages
English (en)
Other versions
CN102724543A (zh
Inventor
逯利军
钱培专
李晏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CERTUSNET CORP
Original Assignee
CERTUSNET CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CERTUSNET CORP filed Critical CERTUSNET CORP
Priority to CN201210234904.1A priority Critical patent/CN102724543B/zh
Publication of CN102724543A publication Critical patent/CN102724543A/zh
Application granted granted Critical
Publication of CN102724543B publication Critical patent/CN102724543B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法,属于IP网络技术领域。该方法中,媒体质量分析***首先利用隐马尔科夫模型学***均获得IP网络媒体质量分析结果队列。该方法将IP网络当前的媒体质量参数模型化为观察状态,进而利用隐马尔科夫模型解码获得最有可能的隐藏状态作为媒体质量分析评估结果,从而能够在保证考虑客观媒体质量参数的情况下,最大程度地体现用户对于媒体质量的主观评价。

Description

IP网络中基于HMM实现媒体质量分析评估控制的方法
技术领域
本发明涉及IP网络技术领域,特别涉及IP网络媒体质量评估技术领域,具体是指一种IP网络中基于HMM实现媒体质量分析评估控制的方法。
背景技术
随着互联网的不断完善和互联网应用的不断发展,在互联网载体上进行的资源共享和信息交流方式逐渐从单一的文本方式向音、视、画、文本多元方式过渡。在此背景下,互联网承载的音视频信息量越来越大。而互联网这个载体在数据传输上本身具有不确定性与不可靠性,往往复杂的网络环境带来传输数据和共享资源的错误、损坏、不完整等互联网使用者不希望看到的结果。
对于传统的文本交互方式,通常的网络质量诊断工具已经足够,通过诊断一些网络性能参数、配合摘要、签名等数据完整性验证的算法能够诊断出对象文本资源的质量状况(通常意义上只存在完整、缺失、错误、冗余这四种情况)。然而,对于多媒体资源来说,上述的质量诊断工具就无法满足需要,原因如下:
1、多媒体资源的数据量很大,且具备不对等性,即大量的数据中一部分是相对重要的,另一部分则相对次要。
2、多媒体资源对实时性要求高,即并非以完整收取资源为成功的标识,还要加上及时这个概念。
3、多媒体资源使用的性能还受本地资源的限制,举个简单的例子,不同的播放器播放同样的视频文件结果可能完全不同,同样的在性能各异的终端上,多媒体资源的体现也有着很多个体差异。
4、多媒体质量的好坏很大意义上受众观看状态影响,同样的媒体资源可能让同一个人观看两次所得出的结果也不相同。
由于以上原因使得网络音视频资源的质量分析比较复杂。
为了解决这一问题,标准化组织做了大量的工作和评估,将音视频资源播放时的质量等级做了规定。根据GB/T7401-1987标准,视频质量在宏观上一般通过1-5等级打分来描述,5分为最高,1分为最低,这已经被广泛接受。分别为:
1、损害完全不可察觉□评分5;
2、损害可察觉,单并不令人讨厌□评分4;
3、损害可察觉,令人稍有讨厌□评分3;
4、损害可察觉,令人讨厌□评分2;
5、损害可察觉,完全无法忍受□评分1。
现有的媒体资源质量分析方法,主要包括以下几种:
1、参数阈值分析方法
通过计算音视频传输、接收、播放过程中的各种参数,并对各参数在正常情况下的阈值进行记录,当媒体播放时改参数超出正常阈值时,表示媒体质量产生了影响,异常参数的个数来评定媒体资源的质量等级。这个方法还能够被拓展,显然对于不同的参数,其超出阈值所带来的影响不是相同的,对于同一个参数,超出阈值的偏移量造成的影响显然也不一定是线性的。这就需要对各个参数权重进行评估,并对每个参数的影响曲线进行建模来使算法合理。
很显然,这种方式偏向于客观指标。比较著名的例子(也是关联参数较少的,且被广泛认可的)是ITU-T G.1070视频质量模型。该模型针对不同视音频制式的应用,从视频会议到IPTV到其他网络流媒体都有比较好的适用性。该模型由下面的式子表示,同时考虑了编码和网络传输:
Vq = 1 + I coding exp ( - P plv D p plv ) ;
其中Pplv表示网络丢包,表示视频以及服务对丢包的容忍指数,Icoding则表示编码级别的数据损伤。
2、主观评价方法
选择一定量的受众群体,对媒体资源进行打分评估来获取媒体资源的质量情况。
这种方式一般通过制定规范的媒体播放形式,规范的媒体受众体验方式,选择各种不同类型的受众群体,多次测试打分求取期望来对媒体资源的质量作出评判。显然这是一种主观评价方式,属于人体感观(Human component)部分。
3、参数分析和主观评价相结合
这种方式可以看做是上述两种评判方式的综合,通过一定的逻辑来组合参数方式和主观评价方式得出的质量结论,最后得出一个统一的质量参数。
显然上述三种方法各有优势,但是都有一些缺陷
参数分析法具有数学意义上的严谨性,利用一个严谨的数学表达式将参数相互关联生成一个媒体质量打分值。同时,计算方法也是简单的,通过客观的指标计算参数,将参数代入表达式,具有很好的执行效率。但这建立在严谨的数学表达式的基础之上。就目前的一些研究结果来说,还没有任何的数学表达式能够全面的涵盖从媒体资源接收到播放之中的各种参数,退一步考虑,即时存在这样一个数学式,也很难对其证明合理性,涵盖越多参数的表达式越难被广泛认可,同时参数增加造成表达式复杂程度的上升也是指数形式的(各参数之间还会有各种形式的关联,明确意义上的独立参数集被证明是无法找到的)。最后,该方法也很难解决上述媒体质量分析难点第四条——多媒体质量的好坏很大意义上受众观看状态影响,这个问题。
主观评价方式的结果是最正确的,通过合理的流程控制,大量的受众打分和科学的统计方法能够很好的反映媒体本身的质量,但是该方法所付出的代价太大,对一个资源就要受众群体循环体验数次,在效率上的表现和成本的巨大使得该方法只能对少数非常重要的媒体资源进行评价而无法推广。
将两者融合的方式在参数分析和主观评价方面均会遇到上面提到的缺陷,而且由于兼顾两方面的分析,因此无论是参数的采集还是主观意见的采集相比单独的商量中方式会有所精简(一般会精简主观评价方法的过程来达到减少成本的目的)。
马尔科夫模型(Markov Model,或称“马尔可夫模型”)是一个基于概率的生成模式***,所谓生成模式即一个时间离散的n状态状态机,输出在n个状态之间切换。
生成模式又分确定模式和非确定模式,马尔科夫模型属于后者,用来描述非确定的生成模式。定义一个n阶马尔科夫过程是状态间的转移仅依赖于前n个状态的过程。若利用马尔科夫模型描述媒体质量分析过程,则其为一阶马尔科夫过程。
隐式马尔科夫模型(Hidden Markov Model,HMM,或称“隐马尔可夫模型”)是在马尔科夫模型的基础之上考虑了另外一种情况。输出的状态并不一定能够被直观理解,或者说被直观观察、体验,它有可能一种隐藏状态,不容易被感知。
为此隐式马尔科夫模型将马尔科夫模型中的状态扩展为隐藏状态,同时定义了一个新的概念:观察状态。
隐藏状态和观察状态并不要求一一对应,观察状态代表了易于被理解的状态集。但观察状态与隐藏状态之间存在关系,即一个隐藏状态下,观察状态会体现出一些概率上的规律性。
一个一阶隐式马尔科夫模型在数学上被定义为一个三元组:(π,A,B)。其中:
Π=(πi):初始化概率向量;
A=(aij):状态转移矩阵
B=(bij):混淆矩阵Pr(yi|xj);
π是初始化状态向量,A是状态转移矩阵,表示从i-1状态切换到i状态的概率,B是混淆矩阵,代表在隐藏状态为Y下观察状态为X的概率。
隐马尔科夫模型一般有三类应用
1、评估:已知一个隐马尔科夫模型,评估一组观察状态队列出现的概率;
2、解码:对于一个已知的观察状态队列,和一个确定的隐马尔科夫模型,得出最有可能的隐藏状态队列;
3、学习:通过大量的观察队列,来学习生成一个隐马尔科夫模型本身。
隐马尔科夫模型采用前向算法解决评估问题。
在一个确定的观察状态下,在t时刻处于隐藏状态i的概率被称为t时刻状态i的局部概率,用t(j)表示。
则t(j)=Pr(观察状态|隐藏状态j)×Pr(t时刻所有指向j状态的路径)。
当t=1时,没有任何指向当前状态的路径。故t=1时位于当前状态的概率是初始概率,即Pr(state|t=1)=Pr(state),因此,t=1时的局部概率等于当前状态的初始概率乘以相关的观察概率,即:其中π是初始向量,为混淆矩阵中隐藏状态j下观察状态等于kt+1的概率。然后t时刻三种状态的局部概率均已算出,那么t+1时刻状态j的局部概率即可用如下的递推公式计算:
α t + 1 ( j ) = b jk t + 1 Σ i = 1 n α t ( i ) a ij ;
其中,(aij)为状态转移矩阵,(bij)为混淆矩阵,αt+1(j)为t+1时刻隐藏状态j的局部概率,n∈N。
后向变量算法的求取与前向变量类似,是递推的。前向变量使用初始向量作为t=1的概率取值,后向变量定义T时刻(0<t<=T),所有隐藏状态的后向变量为1,即对于任意的隐藏状态队列,最后一个状态为既成事实。反向算法是前向算法的反向推演。
发明内容
本发明的目的是克服了上述现有技术中的缺点,提供一种利用隐马尔科夫模型,引入观察状态,并将IP网络当前的媒体质量参数模型化为观察状态,通过解码获得最有可能的隐藏状态作为媒体质量分析评估结果,从而能够在保证考虑客观媒体质量参数的情况下,最大程度地体现用户对于媒体质量的主观评价,且应用方式简便,成本低廉,应用范围也较为广泛的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法。
为了实现上述的目的,本发明的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法基于接入IP网络中的媒体质量分析***,该方法包括以下步骤:
(0)所述的媒体质量分析***利用隐马尔科夫模型学习生成状态转移矩阵;
(1)所述的媒体质量分析***实时监测所述的IP网络中媒体的质量参数,获取IP网络中各层的参数队列;
(2)所述的媒体质量分析***将所获取的各层参数队列分别汇总,产生各层的观察状态队列;
(3)所述的媒体质量分析***利用所述的隐马尔科夫模型的状态转移矩阵对各层的观察状态队列进行解码,获取各层的隐藏状态队列作为该层的媒体质量评分;
(4)所述的媒体质量分析***将各层的媒体质量评分进行加权平均,获得IP网络媒体质量分析结果队列,从而完成媒体质量分析评估操作。
2、根据权利要求1所述的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法,其特征在于,所述的媒体质量分析***利用隐马尔科夫模型学习生成状态转移矩阵,具体为:
所述的媒体质量分析***利用隐马尔科夫模型后向算法学习生成状态转移矩阵。
3、根据权利要求2所述的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法,其特征在于,所述的后向算法具体包括以下步骤:
(01)所述的媒体质量分析***初始化状态转移矩阵,令t=T时刻所有状态的后向变量βT(i)为1,即βT(i)=1,1≤i≤N;
(02)所述的媒体质量分析***根据下式递归计算每个时间点t=T-1,T-2,…,1时的后向变量βt(i),
&beta; t ( i ) = &Sigma; j = 1 N a ij b j ( O t + 1 ) &beta; t + 1 ( j ) , t = T - 1 , T - 2 , . . . , 1,1 &le; i &le; N
aij为状态转移矩阵,bj(Ot+1)为混淆矩阵中隐藏状态j下观察序列等于Ot+1的概率,Ot+1为t+1时刻的观察序列。
该IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法中,所述的媒体质量分析***利用所述的隐马尔科夫模型的状态转移矩阵对各层的观察状态队列进行解码,获取各层的隐藏状态队列,具体为:
所述的媒体质量分析***利用隐马尔科夫模型维比特算法对各层的观察状态队列进行解码,获取各层的隐藏状态队列。
该IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法中,所述的利用隐马尔科夫模型维比特算法对各层的观察状态队列进行解码并获取各层的隐藏状态队列,具体为:
在所述的隐马尔科夫模型维比特算法中,利用下式通过各层的观察状态队列解码获得各层的隐藏状态队列:
&delta; t ( i ) max j ( &delta; t - 1 ( j ) a ij b ik t ) ;
其中,(aij)为状态转移矩阵,(bij)为混淆矩阵,δt(i)为t时刻到达隐藏状态i的所有序列概率中最大的概率,即局部路径概率,为混淆矩阵中隐藏状态i下观察状态等于kt的概率,max为取最大值。
该IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法中,所述的方法在所述的步骤(4)之后还包括以下步骤:
(5)所述的媒体质量分析***根据所述的各层的观察状态队列及各层的隐藏状态队列优化所述的隐马尔科夫模型中的状态转移矩阵(aij)。
该IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法中,所述的优化所述的隐马尔科夫模型中的状态转移矩阵(aij),具体为:
利用以下公式优化所述的隐马尔科夫模型中的状态转移矩阵(aij):
=(从隐藏状态Si到隐藏状态Sj进行状态切换的期望值)/(从隐藏状态Si进行状态切换的期望值),
即, a &OverBar; ij = &Sigma; t = 1 T - 1 &xi; t ( i , j ) &Sigma; t = 1 T - 1 &gamma; t ( i )
其中,t时刻位于隐藏状态Si的概率变量γt(i)为:
γt(i)=P(qt=Si|O,λ),
&gamma; t ( i ) = &alpha; t ( i ) &beta; t ( i ) P ( O | &lambda; ) = &alpha; t ( i ) &beta; t ( i ) &Sigma; i = 1 N &alpha; t ( i ) &beta; t ( i ) ,
其中O为观察序列,λ为隐马尔科夫模型,αt(i)为t时刻隐藏状态i的局部概率,βt(i)为t时刻的后向变量;
而t时刻位于隐藏状态Si及t+1时刻位于隐藏状态Sj的概率变量ξt(i,j)为:
ξt(i,j)=P(qt=Si,qt+1=Sj|O,λ),
即, &xi; t ( i , j ) = &alpha; t ( i ) a ij b j ( O t + 1 ) &beta; t + 1 ( j ) P ( O | &lambda; ) ,
&xi; t ( i , j ) = &alpha; t ( i ) a ij b j ( O t + 1 ) &beta; t + 1 ( j ) &Sigma; i = 1 N &Sigma; j = 1 N &alpha; t ( i ) a ij b j ( O t + 1 ) &beta; t + 1 ( j ) .
且所述的t时刻位于隐藏状态Si及t+1时刻位于隐藏状态Sj的概率变量ξt(i,j)与所述的t时刻位于隐藏状态Si的概率变量γt(i)满足以下方程:
&gamma; t ( i ) = &Sigma; j = 1 N &xi; t ( i , j ) .
该IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法中,所述的IP网络中的层次包括:网络层、媒体传输控制层、媒体服务层、媒体封装层、媒体编码层和媒体内容层。则所述的各层的隐藏状态队列,具体为:网络层媒体质量评分、媒体传输控制层媒体质量评分、媒体服务层媒体质量评分、媒体封装层媒体质量评分、媒体编码层媒体质量评分和媒体内容层媒体质量评分。
采用了该发明的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法,媒体质量分析***首先利用隐马尔科夫模型学***均,获得IP网络媒体质量分析结果队列,从而完成媒体质量分析评估操作。该方法将IP网络当前的媒体质量参数模型化为观察状态,进而利用隐马尔科夫模型解码获得最有可能的隐藏状态作为媒体质量分析评估结果,从而能够在保证考虑客观媒体质量参数的情况下,最大程度地体现用户对于媒体质量的主观评价,且本发明的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法应用方式简便,成本低廉,应用范围也较为广泛。
附图说明
图1为本发明的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法的步骤流程图。
图2为实际应用中利用本发明的方法实现媒体质量分析评估控制的过程示意图。
图3为本发明的方法在实际应用中表示媒体质量得分与观察状态丢包之间关系的混淆矩阵示意图。
具体实施方式
为了能够更清楚地理解本发明的技术页面,特举以下实施例详细说明。
请参阅图1所示,为本发明的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法的步骤流程图。
本发明的方法基于接入IP网络中的媒体质量分析***,在一种实施方式中,该方法包括以下步骤:
(0)所述的媒体质量分析***利用隐马尔科夫模型学习生成状态转移矩阵;
(1)所述的媒体质量分析***实时监测所述的IP网络中媒体的质量参数,获取IP网络中各层的参数队列;
(2)所述的媒体质量分析***将所获取的各层参数队列分别汇总,产生各层的观察状态队列;
(3)所述的媒体质量分析***利用所述的隐马尔科夫模型的状态转移矩阵对各层的观察状态队列进行解码,获取各层的隐藏状态队列作为该层的媒体质量评分;
(4)所述的媒体质量分析***将各层的媒体质量评分进行加权平均,获得IP网络媒体质量分析结果队列,从而完成媒体质量分析评估操作。
在一种较优选的实施方式中,所述的媒体质量分析***利用隐马尔科夫模型学习生成状态转移矩阵,具体为:所述的媒体质量分析***利用隐马尔科夫模型后向算法学习生成状态转移矩阵。该后向算法具体包括以下步骤:
(01)所述的媒体质量分析***初始化状态转移矩阵,令t=T时刻所有状态的后向变量βT(i)为1,即βT(i)=1,1≤i≤N;
(02)所述的媒体质量分析***根据下式递归计算每个时间点t=T-1,T-2,…,1时的后向变量βt(i),
&beta; t ( i ) = &Sigma; j = 1 N a ij b j ( O t + 1 ) &beta; t + 1 ( j ) , t = T - 1 , T - 2 , . . . , 1,1 &le; i &le; N
aij为状态转移矩阵,bj(Ot+1)为混淆矩阵中隐藏状态j下观察序列等于Ot+1的概率,Ot+1为t+1时刻的观察序列。
在一种较优选的实施方式中,所述的媒体质量分析***利用所述的隐马尔科夫模型的状态转移矩阵对各层的观察状态队列进行解码,获取各层的隐藏状态队列,具体为:
所述的媒体质量分析***利用隐马尔科夫模型维比特算法对各层的观察状态队列进行解码,获取各层的隐藏状态队列。
在一种进一步优选的实施方式中,所述的利用隐马尔科夫模型维比特算法对各层的观察状态队列进行解码并获取各层的隐藏状态队列,具体为:
在所述的隐马尔科夫模型维比特算法中,利用下式通过各层的观察状态队列解码获得各层的隐藏状态队列:
&delta; t ( i ) max j ( &delta; t - 1 ( j ) a ij b ik t ) ;
其中,(aij)为状态转移矩阵,(bij)为混淆矩阵,δt(i)为t时刻到达隐藏状态i的所有序列概率中最大的概率,即局部路径概率,为混淆矩阵中隐藏状态i下观察状态等于kt的概率,max为取最大值。
在另一种较优选的实施方式中,所述的方法在所述的步骤(4)之后还包括以下步骤:
(5)所述的媒体质量分析***根据所述的各层的观察状态队列及各层的隐藏状态队列优化所述的隐马尔科夫模型中的状态转移矩阵(aij)。
在一种进一步优选的实施方式中,所述的优化所述的隐马尔科夫模型中的状态转移矩阵(aij),具体为:
利用以下公式优化所述的隐马尔科夫模型中的状态转移矩阵(aij):
=(从隐藏状态Si到隐藏状态Sj进行状态切换的期望值)/(从隐藏状态Si进行状态切换的期望值),
即, a &OverBar; ij = &Sigma; t = 1 T - 1 &xi; t ( i , j ) &Sigma; t = 1 T - 1 &gamma; t ( i )
其中,t时刻位于隐藏状态Si的概率变量γt(i)为:
γt(i)=P(qt=Si|O,λ),
&gamma; t ( i ) = &alpha; t ( i ) &beta; t ( i ) P ( O | &lambda; ) = &alpha; t ( i ) &beta; t ( i ) &Sigma; i = 1 N &alpha; t ( i ) &beta; t ( i ) ,
其中O为观察序列,λ为隐马尔科夫模型,αt(i)为t时刻隐藏状态i的局部概率,βt(i)为t时刻的后向变量;
而t时刻位于隐藏状态Si及t+1时刻位于隐藏状态Sj的概率变量ξt(i,j)为:
ξt(i,j)=P(qt=Si,qt+1=Sj|O,λ),
即, &xi; t ( i , j ) = &alpha; t ( i ) a ij b j ( O t + 1 ) &beta; t + 1 ( j ) P ( O | &lambda; ) ,
&xi; t ( i , j ) = &alpha; t ( i ) a ij b j ( O t + 1 ) &beta; t + 1 ( j ) &Sigma; i = 1 N &Sigma; j = 1 N &alpha; t ( i ) a ij b j ( O t + 1 ) &beta; t + 1 ( j ) .
且所述的t时刻位于隐藏状态Si及t+1时刻位于隐藏状态Sj的概率变量ξt(i,j)与所述的t时刻位于隐藏状态Si的概率变量γt(i)满足以下方程:
&gamma; t ( i ) = &Sigma; j = 1 N &xi; t ( i , j ) .
在一种更优选的实施方式中,所述的IP网络中的层次包括:网络层、媒体传输控制层、媒体服务层、媒体封装层、媒体编码层和媒体内容层。则所述的各层的隐藏状态队列,具体为:网络层媒体质量评分、媒体传输控制层媒体质量评分、媒体服务层媒体质量评分、媒体封装层媒体质量评分、媒体编码层媒体质量评分和媒体内容层媒体质量评分。
在实际应用中,隐马尔科夫模型具有三要素:初始向量π,状态切换矩阵A和混淆矩阵B。其中初始向量π代表模型的第一个状态几率,理论上说,在一个比较长的时间跨度中,无论初始向量为何,隐马尔科夫的输出序列都会趋于稳定(与观察状态有所联系的稳定,而非绝对稳定),按照一般的模型那样,在检测某一个媒体资源质量的时候,总是会默认它是好的,因此不妨假设初始状态为向量[0,0,0,0,1],代表评分为5的概率为100%,即初始隐藏状态为确定的评分5,最佳状态。混淆矩阵B代表了在各隐藏状态下,观察状态出现几率,图3给出了一个非常简单的混淆矩阵,为媒体质量得分(1-5)与观察状态丢包之间的关系矩阵。其中第一行表示当评分为5时,丢包状态一定处于无丢包(无丢包状态几率100%)。该矩阵每一行之和必须为1,而每一列并不要求。
任何一个参数与媒体质量得分之间的关系都可以用类似的混淆矩阵表示。混淆矩阵可以使用主观评价法来获得。首先将该模型中的观察参数进行归类,生成相应的状态,比如上面的例子,可以定义丢包率=0为无丢包状态,丢包率<0.2%且处于连续丢包状态(前n个时段均处于丢包状态)定义为少量长期丢包等。接着将处于各种观察状态下的媒体资源,使用规范的方式,选择一定数量的受众进行多次体验,记录每个受众对每一种状态的媒体资源所给出的评分。然后对评估结果做汇总,统计所有体验结果中,得分为5的媒体资料的状态即可得到上述矩阵的第一行,同样的方式,可以将整个混淆矩阵完善。
混淆矩阵的生成使用了主观评价法,确保该矩阵是可信的,可以代表受众感知的(通过选用合理的受众组可以使结果无限接近正常人的评判结果)。
最后考虑下状态转移矩阵的问题,在隐马尔科夫模型中这个矩阵无法用一个容易想想的场景描述,因为它继承自马尔科夫模型,而马尔科夫模型认为符合其模型的事物状态仅与该事物前几个状态有关,这显然与视频质量分析这个过程不符。
事实上,隐马尔科夫模型通过引入观察变量,已经使得状态切换矩阵在客观存在且可测量的观察变量影响下改变,可以把它理解为经过客观变量影响后的一种统计概率集合而加以应用。
在本发明的具体实现过程中,隐马尔科夫模型中的隐藏状态很明显,即1-5五个状态,分别代表对媒体质量的评分,同时需要将观察向量的模型化。
使用一组观察向量状态集显然有不足之处,在媒体播放的过程中,得到的参数大部分是定量的比如:丢包率单位为%,网络抖动单位为毫秒等。定量的参数离散化后,每一个变量都会生成一个状态集合,比如前面提到的丢包可以分为5个状态。而将这么多参数的状态组合将是一个十分庞大的集合,比如每个参数有4个状态,10个参数组合就有4的十次方种状态,这显然会导致观察状态的指数膨胀,是算法在效率上变得不可行。
解决的方法是将参数归类,合并,形成几个重要的状态。
分析IP网络中媒体资源传输过程,可以利用现有的网络分层模型将参数分层划分:
一、网络层,参数包括:
□1、IP报文丢失率
□2、IP报文传输时延
□3、IP报文到达抖动
□4、TCP重传次数
□5、TCP连接重置次数
二、媒体传输控制层,参数包括:
□1、RTP报文丢失率
□2、RTP报文到达时延
□3、RTP报文到达抖动
□4、RTP报文乱序率
□5、RTP报文重传率
□6、RTSP会话次数
□7、RTSP心跳间隔
三、媒体服务层,参数包括:
□1、MDI-df(延时因子)
□2、MDI-MLR(MDI丢包率)
□3、MLT-15(过去15分钟MLR统计)
□4、MLT-24(过去24小时MLR统计)
□5、音视频不同步计数
四、媒体封装层,参数包括:
□1、音视频同步初步率
□2、视频I帧损害率
□3、视频B帧损害率
□4、视频P帧损害率
□5、音频帧损害率
□6、GOP结构
□7、容器缓存(或播放缓存)上溢次数
□8、容器缓存(或播放缓存)下溢次数
五、媒体编码层,参数包括:
□1、视频分辨率
□2、视频帧率/场率
□3、PSNR(信道峰值信噪比)
□4、DCT变换矩阵大小
□5、编码量化步长
□6、宏块大小
□7、语法分析错误
六、媒体内容层,参数包括:
□1、静态比率
□2、模糊指数
□3、块效应指数
□4、平滑指数
以上从下至上将媒体资源的IP网络传输中能够进行检测的具体参数做了一个划分,然后需要对每一层的参数进行汇总,显示出一个状态集,可以设计为每一层划分为10个状态(5的两倍,保证在观察状态划分精度达到要求)。比如网络层的3个参数,每个都量化分为10个等级,丢包0为等级1,丢包0.1%以下为等级2等等,将每一个参数获得的状态等级取最大值(最糟糕的等级)作为该层状态等级输出。由此得到了6个观察状态集合,每个观察状态集合中有10个状态。
随后根据6组观察状态集合分别建立6个隐式马尔科夫模型。在进行媒体质量分析的时候,在每个检测时间粒度上都将测得的媒体质量客观参数汇总成6个瞬间状态值,这里再定义一个时间值,称为检测周期时间,在测试环境下,最小检测粒度被设定成1秒,检测周期被设定为5秒,显然每个检测周期的输入是6个观察状态队列,每个队列长度为5。将每个观察队列输入到对应层的马尔科夫模型中计算得到在每一层客观参数影响下的最大概率隐藏状态队列,之后对这些输出状态队列进行加权平均操作,得到符合真实用户体验的媒体分析结果。
根据图2所示的本发明的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法的过程,其中的每个隐马尔科夫模型都是独立的,分为了6个单独模型,如果对其中某一个层次的参数监控困难,或是确认某一层的媒体质量肯定是完好的,可以去掉某一层的马尔科夫模型运算,所得结果无法体现出去掉的某层参数对媒体质量结果的影响。
当然,同样的,也可以自定义新参数,通过上面的算法进行马尔科夫模型的建立,同时给定新加参数集的加权权重,来扩展该媒体质量分析***。
本发明的方法进行媒体质量分析评估控制的优点在于:
1、质量分析时将媒体播放客观指标和主观分析结果相结合,充分考虑了两者的特点。
2、一次性的利用主观分析结果进行建模,可高效地重复利用。
3、模型具有学习能力,只需丰富学习用观察序列样本即可将模型进化为一个更合理的状态。
4、***本身可以扩展和裁剪,适应各种应用需要。
采用了该发明的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法,媒体质量分析***首先利用隐马尔科夫模型学***均,获得IP网络媒体质量分析结果队列,从而完成媒体质量分析评估操作。该方法将IP网络当前的媒体质量参数模型化为观察状态,进而利用隐马尔科夫模型解码获得最有可能的隐藏状态作为媒体质量分析评估结果,从而能够在保证考虑客观媒体质量参数的情况下,最大程度地体现用户对于媒体质量的主观评价,且本发明的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法应用方式简便,成本低廉,应用范围也较为广泛。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (5)

1.一种IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法,该方法基于接入IP网络中的媒体质量分析***,其特征在于,所述的方法包括以下步骤:
(0)所述的媒体质量分析***利用隐马尔科夫模型学习生成状态转移矩阵;
所述的媒体质量分析***利用隐马尔科夫模型学习生成状态转移矩阵,具体为:
所述的媒体质量分析***利用隐马尔科夫模型后向算法学习生成状态转移矩阵;
所述的后向算法具体包括以下步骤:
(01)所述的媒体质量分析***初始化状态转移矩阵,令t=T时刻所有状态的后向变量βT(i)为1,即βT(i)=1,1≤i≤N;
(02)所述的媒体质量分析***根据下式递归计算每个时间点t=T-1,T-2,…,1时的后向变量βt(i),
&beta; t ( i ) = &Sigma; j = 1 N a ij b j ( O t + 1 ) &beta; t + 1 ( j ) , t = T - 1 , T - 2 , . . . , 1,1 &le; i &le; N
aij为状态转移矩阵,bj(Ot+1)为混淆矩阵中隐藏状态j下观察序列等于Ot+1的概率,Ot+1为t+1时刻的观察序列;
(1)所述的媒体质量分析***实时监测所述的IP网络中媒体的质量参数,获取IP网络中各层的参数队列,所述的IP网络中的层次包括:网络层、媒体传输控制层、媒体服务层、媒体封装层、媒体编码层和媒体内容层;
(2)所述的媒体质量分析***将所获取的各层参数队列分别汇总,产生各层的观察状态队列;
(3)所述的媒体质量分析***利用所述的隐马尔科夫模型的状态转移矩阵对各层的观察状态队列进行解码,获取各层的隐藏状态队列作为该层的媒体质量评分;
所述的媒体质量分析***利用隐马尔科夫模型的状态转移矩阵对各层的观察状态队列进行解码,获取各层的隐藏状态队列,具体为:
所述的媒体质量分析***利用隐马尔科夫模型维比特算法对各层的观察状态队列进行解码,获取各层的隐藏状态队列;
所述的利用隐马尔科夫模型维比特算法对各层的观察状态队列进行解码并获取各层的隐藏状态队列,具体为:
在所述的隐马尔科夫模型维比特算法中,利用下式通过各层的观察状态队列解码获得各层的隐藏状态队列:
&delta; t ( i ) max j ( &delta; t - 1 ( j ) a ij b ik t ) ;
其中,(aij)为状态转移矩阵,(bij)为混淆矩阵,δt(i)为t时刻到达隐藏状态i的所有序列概率中最大的概率,即局部路径概率,为混淆矩阵中隐藏状态i下观察状态等于kt的概率,max为取最大值;
(4)所述的媒体质量分析***将各层的媒体质量评分进行加权平均,获得IP网络媒体质量分析结果队列,从而完成媒体质量分析评估操作。
2.根据权利要求1所述的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法,其特征在于,所述的方法在所述的步骤(4)之后还包括以下步骤:
(5)所述的媒体质量分析***根据所述的各层的观察状态队列及各层的隐藏状态队列优化所述的隐马尔科夫模型中的状态转移矩阵(aij)。
3.根据权利要求2所述的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法,其特征在于,所述的优化所述的隐马尔科夫模型中的状态转移矩阵(aij),具体为:
利用以下公式优化所述的隐马尔科夫模型中的状态转移矩阵(aij):
=(从隐藏状态Si到隐藏状态Sj进行状态切换的期望值)/(从隐藏状态Si进行状态切换的期望值),
即, a &OverBar; ij = &Sigma; t = 1 T - 1 &xi; t ( i , j ) &Sigma; t = 1 T - 1 &gamma; t ( i )
其中,t时刻位于隐藏状态Si的概率变量γt(i)为:
γt(i)=P(qt=Si|O,λ),
&gamma; t ( i ) = &alpha; t ( i ) &beta; t ( i ) P ( O | &lambda; ) = &alpha; t ( i ) &beta; t ( i ) &Sigma; i = 1 N &alpha; t ( i ) &beta; t ( i ) ,
其中O为观察序列,λ为隐马尔科夫模型,αt(i)为t时刻隐藏状态i的局部概率,βt(i)为t时刻的后向变量;
而t时刻位于隐藏状态Si及t+1时刻位于隐藏状态Sj的概率变量ξt(i,j)为:
ξt(i,j)=P(qt=Si,qt+1=Sj|O,λ),
即, &xi; t ( i , j ) = &alpha; t ( i ) a ij b j ( O t + 1 ) &beta; t + 1 ( j ) P ( O | &lambda; ) ,
&xi; t ( i , j ) = &alpha; t ( i ) a ij b j ( O t + 1 ) &beta; t + 1 ( j ) &Sigma; i = 1 N &Sigma; j = 1 N &alpha; t ( i ) a ij b j ( O t + 1 ) &beta; t + 1 ( j ) .
4.根据权利要求3所述的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法,其特征在于,所述的t时刻位于隐藏状态Si及t+1时刻位于隐藏状态Sj的概率变量ξt(i,j)与所述的t时刻位于隐藏状态Si的概率变量γt(i)满足以下方程:
&gamma; t ( i ) = &Sigma; j = 1 N &xi; t ( i , j ) .
5.根据权利要求1所述的IP网络中基于隐马尔科夫模型实现媒体质量分析评估控制的方法,其特征在于,所述的各层的隐藏状态队列,具体为:
网络层媒体质量评分、媒体传输控制层媒体质量评分、媒体服务层媒体质量评分、媒体封装层媒体质量评分、媒体编码层媒体质量评分和媒体内容层媒体质量评分。
CN201210234904.1A 2012-07-06 2012-07-06 Ip网络中基于hmm实现媒体质量分析评估控制的方法 Active CN102724543B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210234904.1A CN102724543B (zh) 2012-07-06 2012-07-06 Ip网络中基于hmm实现媒体质量分析评估控制的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210234904.1A CN102724543B (zh) 2012-07-06 2012-07-06 Ip网络中基于hmm实现媒体质量分析评估控制的方法

Publications (2)

Publication Number Publication Date
CN102724543A CN102724543A (zh) 2012-10-10
CN102724543B true CN102724543B (zh) 2014-07-30

Family

ID=46950185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210234904.1A Active CN102724543B (zh) 2012-07-06 2012-07-06 Ip网络中基于hmm实现媒体质量分析评估控制的方法

Country Status (1)

Country Link
CN (1) CN102724543B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024156B (zh) * 2017-12-14 2020-04-14 四川大学 一种基于隐马尔可夫模型的部分可靠视频传输方法
CN109284921B (zh) * 2018-09-17 2021-08-24 北京工商大学 基于隐马尔科夫模型的农业灌溉水质动态评价方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3022488B2 (ja) * 1997-06-04 2000-03-21 社団法人高等技術研究院研究組合 抵抗スポット溶接品質制御装置
CN101018164A (zh) * 2007-02-28 2007-08-15 西南科技大学 一种tcp/ip网络性能评估预测方法
CN101808244A (zh) * 2010-03-24 2010-08-18 北京邮电大学 一种视频传输控制方法及***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014934A1 (en) * 1996-10-02 1998-04-09 Sri International Method and system for automatic text-independent grading of pronunciation for language instruction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3022488B2 (ja) * 1997-06-04 2000-03-21 社団法人高等技術研究院研究組合 抵抗スポット溶接品質制御装置
CN101018164A (zh) * 2007-02-28 2007-08-15 西南科技大学 一种tcp/ip网络性能评估预测方法
CN101808244A (zh) * 2010-03-24 2010-08-18 北京邮电大学 一种视频传输控制方法及***

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JP特许3022488B2 2000.03.21
基于图像质量评价量和隐马尔科夫模型的图像拼接检测;张震等;《武汉大学学报·信息科学版》;20081031;第33卷(第10期);1030-1033 *
基于隐含马尔可夫模型网络的视频识别方法;杨显锋等;《电视技术》;20071031;第31卷(第10期);74,75,80 *
张震等.基于图像质量评价量和隐马尔科夫模型的图像拼接检测.《武汉大学学报·信息科学版》.2008,第33卷(第10期),
杨显锋等.基于隐含马尔可夫模型网络的视频识别方法.《电视技术》.2007,第31卷(第10期),

Also Published As

Publication number Publication date
CN102724543A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
Duanmu et al. A quality-of-experience database for adaptive video streaming
CN101123737A (zh) 基于分组度量和图像度量两者测量视频质量的***和方法
KR20140070668A (ko) 프레임 손실에 의해 야기된 실시간 비디오 아티팩트를 은폐하는 메커니즘
CN107454446A (zh) 基于体验质量分析的视频帧管理方法及其装置
Cherif et al. A_PSQA: Efficient real-time video streaming QoE tool in a future media internet context
Demirbilek et al. Machine learning--based parametric audiovisual quality prediction models for real-time communications
JP4308227B2 (ja) 映像品質推定装置、映像品質管理装置、映像品質推定方法、映像品質管理方法、およびプログラム
CN103458155A (zh) 视频场景变换检测方法和***及体验质量检测方法和***
US20210409820A1 (en) Predicting multimedia session mos
JP4460506B2 (ja) ユーザ体感品質推定装置、方法、およびプログラム
Demirbilek et al. Towards reduced reference parametric models for estimating audiovisual quality in multimedia services
CN102724543B (zh) Ip网络中基于hmm实现媒体质量分析评估控制的方法
CN113660488B (zh) 对多媒体数据进行流控及流控模型训练方法、以及装置
CN106789209A (zh) 异常处理方法和装置
Danish et al. A hybrid prediction model for video quality by QoS/QoE mapping in wireless streaming
Kaiyu et al. A new three-layer QoE modeling method for HTTP video streaming over wireless networks
Ghalut et al. Content-based video quality prediction using random neural networks for video streaming over LTE networks
Yuan et al. IPTV video quality assessment model based on neural network
CN114071232B (zh) 音视频质量可视化方法及其装置、设备、介质、产品
De Pessemier et al. Exploring the acceptability of the audiovisual quality for a mobile video session based on objectively measured parameters
Alreshoodi Prediction of quality of experience for video streaming using raw QoS parameters
Yeganeh et al. Joint effect of stalling and presentation quality on the quality-of-experience of streaming videos
JP2007329774A (ja) ユーザ体感品質推定装置、方法、およびプログラム
JP2019008554A (ja) 情報処理装置、情報処理システム、情報処理プログラム、及び情報処理方法
CN103339951B (zh) 根据丢帧图案测量视频质量的方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Address after: 210042 Xuanwu District, Xuanwu District, Jiangsu, Nanjing, No. 699-22, building 18

Applicant after: CERTUSNET CORP.

Address before: 210042 Xuanwu District, Xuanwu District, Jiangsu, Nanjing, No. 699-22, building 18

Applicant before: Certus Network Technology(Nanjing) Co., Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: CERTUS NETWORK TECHNOLOGY(NANJING) CO., LTD. TO: CERTUS INFORMATION TECHNOLOGY CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant