CN102721942A - 楼宇环境下目标的声学定位***及其方法 - Google Patents

楼宇环境下目标的声学定位***及其方法 Download PDF

Info

Publication number
CN102721942A
CN102721942A CN2012102257105A CN201210225710A CN102721942A CN 102721942 A CN102721942 A CN 102721942A CN 2012102257105 A CN2012102257105 A CN 2012102257105A CN 201210225710 A CN201210225710 A CN 201210225710A CN 102721942 A CN102721942 A CN 102721942A
Authority
CN
China
Prior art keywords
ultrasonic pulse
target
pulse
ultrasonic
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012102257105A
Other languages
English (en)
Inventor
王磊
丁健
陈新桥
李冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN2012102257105A priority Critical patent/CN102721942A/zh
Publication of CN102721942A publication Critical patent/CN102721942A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明涉及一种楼宇环境下目标的声学定位***及其方法,该方法包括:通过全局广播方式发射对目标的定位查询指令;目标根据定位查询指令定时发射超声脉冲;与之同步从多个采集点对超声脉冲的音频信号进行采集;对采集到的多通道音频信号进行匹配滤波和检波,筛选出有效音频信号;根据有效音频信号的第一峰值位置确定对应通道的超声脉冲的传播时延;以及根据超声脉冲的传播时延及其相对应的采集点坐标解算出目标的位置坐标。本发明通过将声学定位技术与无线物联网技术相结合,对声脉冲进行匹配并筛选出有效脉冲,克服了多径干扰和高频杂散噪声干扰,提高了测量精度和***稳健性,揭示了一种定位精度高、***扩展性好且成本低廉的超声定位***。

Description

楼宇环境下目标的声学定位***及其方法
技术领域
本发明涉及一种空间定位技术,尤其涉及一种楼宇环境下移动目标的声学定位***及其方法。
背景技术
[1]声学定位和增强,200710087941.3,国家发明专利
[2]基于网络环境下的超声波定位控制***,201010609587.8,国家发明专利
[3]有源远距离射频电子标签的超声波定位方法,200610024717.5,国家发明专利
声学定位技术是为了避免对可听音的影响,通常采用超声频段进行定位的一种技术。这种技术的基本原理是利用声波传播速度慢、音频信号处理容易实现的特点,通过测定传播时延(或到不同接收点的时延差)实现测距和声源空间位置解算。声学定位技术的特点是精度高(室内环境可以达到厘米量级),不受电磁环境的干扰;不足之处在于超声频段传播吸收衰减大,对障碍物的穿透能力弱;因此,该技术通常用于较近距离定位(传播距离<50m)。
在楼宇环境下,空间结构十分复杂,声脉冲多途干扰严重,严重制约了声学定位***的工程应用。如何建立一种既能实现高精度定位要求,同时***体系结构简单、工程适用性好的定位***,这是复杂环境声学定位方法的技术实现关键。
在所查阅的相关文献中,专利[1]通过分布的麦克风接收声源信号,通过网络同步方式对采集音频信号加入时间标记,从而实现接收信号的相关时延测量和定位。这种方式主要用于自然声定位,例如枪声和说话人定位。由于是非合作目标定位,定位精度低、易受环境干扰,因此不适用于复杂环境及需要精确目标定位的场合。
专利[2]中采用待定位目标(标签)同时发射超声脉冲和无线同步脉冲方式实现目标测距和定位,采用数据输出起始码的无线同步方式不仅时间上有延迟,而且定时精度不高(在良好环境下约100微秒量级,复杂空间环境误差可以达到毫秒量级),制约了定位解算精度。与此同时,采用标签启动的无线同步方式,其作用距离通常要远大于超声传播距离,因此在楼宇环境下使用时,定位标签不能同时/并行工作,严重制约了复杂环境下目标定位更新率。因此,该发明的应用环境是单个立体空间(单个房间)环境下定位,***可扩展性差。
专利[3]采用阅读器(参考点)广播的方式实现定位,其难点在于待定位标签需要接收和处理声学脉冲,这样声学标签的复杂度较高,难以满足标签便携式要求。同时,在复杂楼宇环境下需要许多阅读器发射超声脉冲进行广播,测量时间长且***扩展性不好。
英国“Active-Bat”***是一套工程实用的超声定位***,在基站同步下,通过接收标签发射的超声脉冲实现测距和定位,与本发明方法有最大的相似度。不同点在于,没有采用声脉冲匹配技术及对有效定位脉冲进行筛选,因此需要在房间天花板上密布超声探头单元,***成本高且难以适用于楼梯、大堂等复杂区域。
来自于无线定位领域的超宽带定位技术可以提供比较好的室内定位方案,如英国的Ubisense定位***采用1G-2G带宽的无线脉冲发射方式,通过AOA(到达角估计)和TDOA(到达时差估计)两种方式将室内定位精度做到15厘米(良好环境条件)。这种定位方法由于电磁波的速度很高,***需要复杂的精确同步***和超高速采样及处理技术,***实现难度大,成本高昂。同时,***定位精度很难得到进一步提升(无线带宽资源受限和时间同步技术限制),这在某些具有特定要求的定位需求中难以满足精度指标。
为此,面对楼宇复杂环境条件下对目标定位的需求,需要一种定位精度高、***扩展能力强且成本低廉的超声定位***。
发明内容
本发明的目的是针对现有定位技术不能在复杂的楼宇环境下提供高精度、低成本的移动目标定位方式,将声学定位技术与无线物联网技术相结合,提供一种高精度、高可靠性并且具备性价比优势的分布式声学定位***。
为实现上述目的:
在本发明的第一方面,提供了一种楼宇环境下目标的声学定位方法,包括:通过全局广播方式发射对目标的定位查询指令;所述目标接收所述定位查询指令,并且根据所述定位查询指令定时发射超声脉冲;与所述定时发射超声脉冲同步,从多个采集点对所述超声脉冲的音频信号进行采集,得到多通道音频信号;对所述多通道音频信号进行匹配滤波,并且通过预定阈值对匹配滤波后的多通道音频信号进行检波,筛选出有效音频信号;根据所述有效音频信号的第一峰值位置确定对应通道的超声脉冲的传播时延;以及根据所述超声脉冲的传播时延及其相对应的采集点坐标解算出所述目标的位置坐标。
在本发明的第二方面,提供了一种楼宇环境下目标的声学定位***,包括:无线查询-同步控制器,用于通过全局广播方式发射对目标的定位查询指令;定位标签,其安置在所述目标上,用于接收所述定位查询指令,并且根据所述定位查询指令定时发射超声脉冲;定位传感单元,其安置在楼宇内的单位空间中并且通过以太网与所述无线查询-同步控制器相连,用于与所述定时发射超声脉冲同步,从多个采集点对所述超声脉冲的音频信号进行采集,得到多通道音频信号,对所述多通道音频信号进行匹配滤波,并且通过预定阈值对匹配滤波后的多通道音频信号进行检波,筛选出有效音频信号,根据所述有效音频信号的第一峰值位置确定对应通道的超声脉冲的传播时延,根据所述超声脉冲的传播时延及其相对应的采集点坐标解算出所述目标的位置。
本发明通过将声学定位技术与无线物联网技术相结合,在方案中对声脉冲进行匹配并筛选出有效脉冲,克服了多径干扰和高频杂散噪声干扰,提高了测量精度和***稳健性,揭示了一种定位精度高、***扩展能力强且成本低廉的超声定位***。
附图说明
图1为根据本发明实施例的楼宇环境下目标的声学定位***的示意图;
图2为根据本发明实施例的楼宇环境下目标的声学定位方法的流程图;
图3为根据本发明实施例的无线查询指令帧格式的示意图;
图4为根据本发明实施例的定位标签位置解算方法的流程图;
图5为根据本发明实施例的仿真的接收波形及匹配滤波后波形图;以及
图6为根据本发明实施例的三点定位方法的示意图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
图1为根据本发明实施例的楼宇环境下目标的声学定位***的结构示意图。
如图1所示,该***包括无线查询-同步控制器(WISC),多个定位传感器(图中只示出单位空间中的一个),每个定位传感器引出的多个超声探头(图中只示出一个定位传感器引出的3个超声探头,分别为超声探头1、超声探头2和超声探头3),以及定位标签。一个定位传感器与其引出的超声探头可并称为定位传感单元,其通过以太网连接到WISC。
在具有定位要求的楼宇空间区域中建立的WISC由高性能工控机和无线发射模块组成,可以采用标准的物联网发射***,例如常用无线频率433MHz或470MHz,也可以选择其他开放频段。如同本专业技术人员所能理解的,WISC也可以采用具有百兆及更高速度以太网接口的嵌入式模块,这样对于小规模应用可以带来***成本上的优势。WISC的操作***需要采用实时操作***,例如VxWorks 6.0及以上版本。根据需覆盖的区域范围,可以适当调整发射功率,保证该区域内的定位标签和定位传感单元能够可靠的接收定位查询指令。WISC采用全局广播方式,通过发射定位标签的ID码及控制码实现指定标签的定位测量和控制。在多目标定位下,由WISC对各目标实现巡检定位。在这种方法下,无线同步的精度小于10微秒(***波特率选择112500bps及以上)。第一,采用查询定位的方式,有利于***服务器根据任务需求灵活调整各定位标签的定位频度。特别是在较大规模***应用时,可以控制分布的定位单元和标签并行工作,提高全***定位数据更新率。第二,在无线同步方式的选择上:接收端(包括定位标签和定位传感单元)不以无线发射的前端码作为定时基准,而以码字发射结束时状态信号(上跳沿)触发中断来完成同步。
定位标签根据WISC广播的定位查询指令,完成***同步并按规定时刻发射超声脉冲。定位标签是小型化的有源声学标签,其安装在待定位目标上(比如特警战士),推荐安装于头盔顶端,也可以置于肩上或身体的其他位置。定位标签由低功耗单片机、无线接收模块和超声发射模块三个部分组成,定位标签可采用锂电池或以其他方式供电。定位标签的工作过程是无线接收模块接收WISC***发出的定位查询指令,如果指令中的标签ID码字匹配,则启动超声发射模块待机。无线同步的方法是在码字匹配条件下,定位查询指令码结束时通过状态电平中断方式启动定时器完成同步。在定时器产生中断时,声学发射模块发射超声脉冲,优选地发射双曲调频脉冲。采用双曲调频脉冲原因是利用双曲调频脉冲的大多普勒容限实现高速移动目标的可靠匹配检测。
定位传感单元布设在楼宇中诸如房间之类的单位空间中,原则上一个房间布设一个定位传感单元,部分特殊环境,如楼梯、走廊和礼堂,可以考虑增加定位传感单元。定位传感单元包括定位传感器和从其引出的多个超声探头,优选地包括8~16个超声探头。超声探头被分别安装于房间顶部及墙壁上端固定位置,一般采用均匀分布。根据现场实测定位性能,在建筑拐角和狭小空间需要增加超声探头的密度。定位传感单元可以采用符合I EEE802.3af标准的以太网供电方式供电(PoE)。定位传感单元的主要功能是在WISC定位查询指令的控制下,接收定位标签发射的超声脉冲,测定各超声探头与待定位目标之间的距离,实现区域范围内标签位置的定位解算,最后通过以太网将定位解算结果传输给WISC。定位传感单元通过分布的传声器采集超声脉冲数据,直接解算标签位置,而无需将超声脉冲数据传送给中心服务器进行解算。这种以空间分布的、以定位传感单元为中心的定位方式可以大大降低***通讯要求和实现复杂度。特别是在较大规模工程应用时,大大降低了***调试的工作量,只需对每一房间区域的定位单元进行调整即可,无需频繁调整控制***服务器参数设置。
定位传感单元还包括微控制器(MCU)、DSP信号处理器、无线接收单元、等部件,其工作过程为:无线接收模块接收WISC发出的定位查询脉冲;在收到同步脉冲后启动定时电路,同时对多个超声探头输出的多通道声音信号进行同步采集;对多通道数据进行匹配滤波处理;根据定位测量同步时间对接收信号进行时间增益控制(TGC),设定阈值门限进行检波,每一通道只取检波后第1个脉冲作为直达声脉冲,并根据其匹配峰值估计其到达时刻,然后取最先到达的3个脉冲的传播时间及相应通道的超声探头位置参数解算标签的3D坐标。匹配滤波的方式可以克服多径干扰造成的脉冲时延测定的困难,提高时延测量精度,同时还可以降低高频杂散噪声的干扰,提高***的稳健性。声脉冲时延测量精度优于20微秒,对应距离为7毫米。然后,通过3组距离值及相应的超声探头在该单位空间中的坐标值解算出标签位置。最后,通过以太网将定位传感器ID号、定位标签ID号以及相对定位值(即相对单位空间的定位基准点)传送给WISC。
WISC在收到各定位传感单元测得的目标位置后,根据内置的楼宇空间几何模型求解待定位目标位置,完成一次目标巡检测量过程。完成一次单独定位测量的时间约为50毫秒。
图2为根据本发明实施例的楼宇环境下目标的声学定位方法的流程图。
在步骤210中,“无线查询-同步”控制***(WISC)无线发射定位查询指令,启动定位标签和定位传感单元的定位测量过程。
转到图3,图3为根据本发明实施例的无线查询指令帧格式的示意图。
如图3所示,首先是4个字节的前端引导码,然后用1个字节给出指令字节数,接着是1个字节的控制字、2个字节的标签ID、1个字节的传感单元ID、1个保留字节以及1个字节的结束字节。查询指令帧长度为11个字节。这样,在112500bps波特率条件下定位查询指令的长度小于1毫秒。
回到图2。
在步骤220中,被指定的定位标签在查询指令同步下定时发射超声定位脉冲。在WISC进行全局广播时,所有的定位标签的无线模块接收WISC***发出的定位查询指令,如果对应的标签ID的码字匹配,则启动声学发射模块待机。请注意,本发明中的定位标签采用查询指令结束状态进行同步的方法,它采用的无线模块可以为TI的CC1101,其给出的片选CSn信号在接收查询指令结束时电平会从低到高跳变。因此,具体的同步方法是在定位标签ID码字匹配条件下,在定位查询指令码结束时通过中断方式启动定时器(定时器时延0.5毫秒)完成同步。在定时器产生中断时,声学发射模块发射超声脉冲,优选地发射双曲调频脉冲(HFM)。这种无线同步方式的精度与通讯波特率是有关的,在***推荐的112500bps条件下,同步精度小于10us。双曲调频脉冲的频率区间为23.5kHz-26.5kHz(中心频率25kHz),波形数据存储在单片机的数据存储器内,通过单片机内部DA转换、放大电路后,驱动超声探头(可以采用“TCT25-16T”或类似型号)完成脉冲发射。
在步骤230中,指定或非指定的定位传感单元在该定位查询指令同步下定时启动数据采集,接收声脉冲信号。指定或非指定的定位传感单元由查询码的控制字决定,这对应着两种工作方式:一种是已知目标所在的区域,根据查表方式选择对应的定位传感单元(即指定定位传感单元方式);另一种是未知目标所在区域,换用全局搜索方式,所有的定位传感单元都进行定位测量(即非指定定位传感单元方式)。定位传感单元启动定位过程及无线同步的方法与定位标签工作流程基本相同,因此不再赘述。不同之处在于,在标签发射超声脉冲的时刻,传感单元启动多通道音频信号的采集和处理。多通道音频信号由超声探头采集,经过前级放大(增益10dB),模拟带通滤波(20kHz–30kHz)后传输给定位传感单元的数据采集模块。数据采样率推荐采用120kHz和16bit量化,每通道采集4096点后停止采样过程。对于模拟电路工程师而言,该过程是能够清晰理解的。
在步骤240中,指定或非指定的定位传感单元对接收到的脉冲信号进行匹配滤波、阈值检测及到达时延排序后选择前3个到达脉冲时刻进行目标位置解算。
转到图4,图4为根据本发明实施例的定位标签位置解算方法的流程图。
步骤405和410已经在步骤230中进行了描述,因此不再赘述。
在步骤415中,对采集到的音频数据进行正交解调处理,然后对基带信号进行匹配滤波,匹配滤波器可以选择FIR滤波器等实现方式。
在步骤420中,对匹配滤波后的音频信号进行时间增益控制(TGC)。首先,根据超声脉冲传播的扩展损失建立TGC调整序列,其中,所述扩展损失采用球面波扩展公式得到。然后,将步骤415输出的匹配滤波结果与该TGC调整序列相乘实现对匹配滤波后的音频信号的时间增益控制。
在步骤425中,通过预先设定的阈值对TGC调整后的输出进行检波。如果某通道信号幅度没有超过预定阈值,则将其定义为无效通道(意味着没有接收到有效脉冲),参见图5。
转到图5,图5为根据本发明实施例的仿真的接收波形及匹配滤波后的波形图。如图5所示,纵坐标为幅度、横坐标为时间(毫秒),其中,上半图是接收到的超声脉冲;下半图是匹配滤波后的超声脉冲压缩结果,并可见虚线所示的阈值门限。
回到图4。
在步骤430中,分别针对每一通道的音频信号提取波达时刻。简言之,根据检波后序列的匹配脉冲的第一峰值位置来确定脉冲传播时延。注意,第一峰值位置之后检测到的脉冲是多途干扰。时延测定的精度由接收信噪比决定,因此提高发射脉冲的声源级是有利的。
至此,对于步骤415至430的说明对于本领域技术人员来说可以充分理解的,具体的技术细节及参数可以根据实际情况进行适应性改进。
在步骤435中,对检测到的有效脉冲数(有效通道数)进行计数并检测计数值。如果计数值检测结果小于3,则流程转到步骤440;如果计数值检测结果大于或等于3,则流程转到步骤445。
很容易理解,步骤430和步骤435的顺序可以互换,即在计数值检测结果大于或等于3的情况下,流程进行到原步骤430,即分别针对每一通道的音频信号提取波达时刻,流程的其他步骤顺序关系不做变化。
在步骤440中,定位传感单元向WISC发出“定位无效”的信息,WISC***服务器在接收到该信息的一定时隙后,重新对该标签进行查询定位。
在步骤445中,取前3个到达脉冲的时延值进行定位解算,具体过程为:
首先,对每一房间建立局部坐标系(即该房间对应定位传感单元的计算参考坐标),选择坐标系原点为房间地面中心点处,以水平面内正东方向为x轴,正北方向为y轴,竖直向上方向为z轴。每一定位单元解算的标签坐标数值均相对于对应的局部坐标系。参见图6,图6为根据本发明实施例的三点定位方法的示意图,为简洁起见,图6用平面图的形式示出了定位标签和超声探头的三维坐标关系。如图6中所示,已知最先收到脉冲的三个超声探头的位置分别为(a1,a2,a3)、(b1,b2,b3)和(c1,c2,c3),通过所述3个时延值可计算出定位标签到三个超声探头的距离分别为ra,rb,rc,假设标签位置为(x,y,z)。则可以得到方程组:
( x - a 1 ) 2 + ( y - b 1 ) 2 + ( z - c 1 ) 2 = r a 2 ; ( x - a 2 ) 2 + ( y - b 2 ) 2 + ( z - c 2 ) 2 = r b 2 ; ( x - a 3 ) 2 + ( y - b 3 ) 2 + ( z - c 3 ) 2 = r c 2 ; - - - ( 1 )
消去二次项,可得线性方程组:
( a 1 - a 2 ) x + ( b 1 - b 2 ) y + ( c 1 - c 2 ) z = M 1 ; ; ( a 2 - a 3 ) x + ( b 2 - b 3 ) y + ( c 2 - c 3 ) z = M 2 ; ( a 1 - a 3 ) x + ( b 1 - b 3 ) y + ( c 1 - c 3 ) z = M 3 ; - - - ( 2 )
其中符号M1,M2,M3分别表示:
M 1 = 1 2 ( r b 2 - r a 2 + a 1 2 - a 2 2 + b 1 2 - b 2 2 + c 1 2 - c 2 2 ) ; M 2 = 1 2 ( r c 2 - r b 2 + a 2 2 - a 3 2 + b 2 2 - b 3 2 + c 2 2 - c 3 2 ) ; M 3 = 1 2 ( r c 2 - r a 2 + a 1 2 - a 3 2 + b 1 2 - b 3 2 + c 1 2 - c 3 2 ) ; - - - ( 3 )
公式(3)为标准的线性方程组,如同本专业技术人员可以理解的,采用高斯消去法或者克莱姆法则(Cramer)直接得到方程的解。在出现病态问题时,即方程(2)的特征行列式接近零,需要增加第4个到达脉冲对应的方程,并采用最小均方误差或最小二乘方法等计算机科学家已知的许多其他方法进行求解。如果没有收到第4个有效脉冲,则停止计算过程,直接将定位坐标值(-1,-1,-1)作为无效结果输出。
在步骤445中,将计算结果输出,完成指定的定位标签的定位解算。
回到图2。
在步骤250中,在得到标签定位结果后将指定标签的ID号、定位传感单元ID号以及定位结果通过以太网传输给WISC***服务器,完成一次标签查询定位过程。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

1.一种楼宇环境下目标的声学定位方法,包括:
通过全局广播方式发射对目标的定位查询指令;
所述目标接收所述定位查询指令,并且根据所述定位查询指令定时发射超声脉冲;
与所述定时发射超声脉冲同步,从多个采集点对所述超声脉冲的音频信号进行采集,得到多通道音频信号;
对所述多通道音频信号进行匹配滤波,并且通过预定阈值对匹配滤波后的多通道音频信号进行检波,筛选出有效音频信号;
根据所述有效音频信号的第一峰值位置确定对应通道的超声脉冲的传播时延;以及
根据所述超声脉冲的传播时延及其相对应的采集点坐标解算出所述目标的位置坐标。
2.根据权利要求1所述的方法,其中,所述超声脉冲是双曲调频脉冲。
3.根据权利要求1所述的方法,其中,所述同步是根据所述定位查询指令的码字发射结束时的状态信号触发中断启动定时器,在定时器中断时发射超声脉冲并且同时从所述多个采集点对所述超声脉冲的音频信号进行采集。
4.根据权利要求1所述的方法,还包括:
在所述检波之前,根据超声脉冲传播的扩展损失建立时间增益控制调整序列,其中,所述扩展损失采用球面波扩展公式得到;
根据所述时间增益控制调整序列对所述匹配滤波之后的音频信号进行时间增益控制。
5.根据权利要求1所述的方法,还包括:
对筛选得出的有效音频信号进行计数,检测计数值,以及对所述脉冲传播时延进行时间排序;
如果计数值检测结果大于或等于3,则选择排序后的前3个脉冲传播时延以用于随后的目标位置解算;
如果计数值检测结果小于3,则在一定时隙后重新发射对所述目标的定位查询指令。
6.根据权利要求1所述的方法,其中,根据所述超声脉冲的传播时延及其相对应的采集点坐标解算出所述目标的位置的步骤包括:
根据所述超声脉冲的传播时延计算出对应采集点与所述目标之间的距离;
根据所述距离与采集点坐标计算出所述目标的位置坐标。
7.根据权利要求1所述的方法,还包括:
在所述匹配滤波之前,对所述多通道音频信号进行前级放大和模拟带通滤波。
8.一种楼宇环境下目标的声学定位***,包括:
无线查询-同步控制器,用于通过全局广播方式发射对目标的定位查询指令;
定位标签,其安置在所述目标上,用于接收所述定位查询指令,并且根据所述定位查询指令定时发射超声脉冲;
定位传感单元,其安置在楼宇内的单位空间中并且通过以太网与所述无线查询-同步控制器相连,用于与所述定时发射超声脉冲同步,从多个采集点对所述超声脉冲的音频信号进行采集,得到多通道音频信号,对所述多通道音频信号进行匹配滤波,并且通过预定阈值对匹配滤波后的多通道音频信号进行检波,筛选出有效音频信号,根据所述有效音频信号的第一峰值位置确定对应通道的超声脉冲的传播时延,根据所述超声脉冲的传播时延及其相对应的采集点坐标解算出所述目标的位置。
9.根据权利要求8所述的***,其中,所述定位传感单元包括多个超声探头,所述超声探头从所述定位传感单元有线引出,分别安置在各个采集点的位置,用于执行所述采集处理。
10.根据权利要求8所述的***,其中,所述定位传感单元还用于:
将所述位置坐标通过以太网发送回所述无线查询-同步控制器。
11.根据权利要求8所述的***,其中,所述定位标签根据所述定位查询指令定时发射的超声脉冲是双曲调频脉冲。
12.根据权利要求8或9所述的***,其中,所述同步是所述定位标签和所述传感器单元根据所述定位查询指令的码字发射结束时的状态信号触发中断启动定时器,在定时器中断时,所述定位标签发射超声脉冲,同时所述定位传感单元启动所述超声探头从所述多个采集点对所述超声脉冲的音频信号进行采集。
13.根据权利要求8所述的***,其中,所述无线查询-同步控制器还包括用于在所述检波之前,根据超声脉冲传播的扩展损失建立时间增益控制调整序列的模块,其中,所述扩展损失采用球面波扩展公式得到;所述定位传感单元还包括用于根据所述时间增益控制序列对所述匹配滤波之后的音频信号进行时间增益控制的模块。
14.根据权利要求8所述的***,其中,所述定位传感单元还包括:
用于对筛选得出的有效音频信号进行计数,检测计数值,以及对所述脉冲传播时延进行时间排序的模块;
如果计数值检测结果大于或等于3,则选择排序后的前3个脉冲传播时延以用于随后的目标位置解算;
如果计数值检测结果小于3,则在一定时隙后重新发射对所述目标的定位查询指令。
15.根据权利要求8所述的***,其中,所述超声探头还包括:
用于在所述匹配滤波之前,对所述多通道音频信号进行前级放大和模拟带通滤波的模块。
CN2012102257105A 2012-06-29 2012-06-29 楼宇环境下目标的声学定位***及其方法 Pending CN102721942A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012102257105A CN102721942A (zh) 2012-06-29 2012-06-29 楼宇环境下目标的声学定位***及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012102257105A CN102721942A (zh) 2012-06-29 2012-06-29 楼宇环境下目标的声学定位***及其方法

Publications (1)

Publication Number Publication Date
CN102721942A true CN102721942A (zh) 2012-10-10

Family

ID=46947758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102257105A Pending CN102721942A (zh) 2012-06-29 2012-06-29 楼宇环境下目标的声学定位***及其方法

Country Status (1)

Country Link
CN (1) CN102721942A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981164A (zh) * 2012-12-06 2013-03-20 北京凯思昊鹏软件工程技术有限公司 一种支持有限不规则空间定位的方法
CN105093229A (zh) * 2014-05-19 2015-11-25 日本电气株式会社 多个目标的定位方法及装置
CN105785319A (zh) * 2016-05-20 2016-07-20 中国民用航空总局第二研究所 机场场面目标声学定位方法、装置及***
CN105848835A (zh) * 2013-12-23 2016-08-10 空中客车集团简化股份公司 利用超声方法在参考系内对工具中心点位置和声学探头取向测定的方法
CN106646377A (zh) * 2016-12-29 2017-05-10 西安科技大学 基于时间序列相似搜索的震动目标定位方法
CN106772325A (zh) * 2016-11-24 2017-05-31 北京睿思奥图智能科技有限公司 一种基于rf的跨区域超声定位方法及***
CN106931973A (zh) * 2017-03-14 2017-07-07 杭州电子科技大学 基于非线性调频脉冲信号的高精度室内定位***及方法
CN106990390A (zh) * 2016-01-20 2017-07-28 华北电力大学 传感器待测位置定位方法及装置
CN108254739A (zh) * 2017-12-22 2018-07-06 北京凌宇智控科技有限公司 用于超声波接收装置的控制方法及装置
CN108495365A (zh) * 2018-03-14 2018-09-04 重庆邮电大学 基于窄带物联网时延估计的终端定位方法
CN108802685A (zh) * 2018-04-23 2018-11-13 长江大学 一种基于约束反演的管道异常碰撞二维定位方法及***
CN110568408A (zh) * 2019-08-31 2019-12-13 苏州普息导航技术有限公司 基于单一信号源的音频定位***及方法
CN110806755A (zh) * 2018-08-06 2020-02-18 中兴通讯股份有限公司 一种无人机跟踪拍摄方法、终端及计算机可读存储介质
CN113126026A (zh) * 2019-12-31 2021-07-16 中移(成都)信息通信科技有限公司 定位***、方法及存储介质
US11500089B2 (en) 2017-12-22 2022-11-15 Nolo Co., Ltd. Control method and device for ultrasonic receiving device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493649B1 (en) * 1996-12-04 2002-12-10 At&T Laboratories - Cambridge Limited Detection system for determining positional and other information about objects
CN1864050A (zh) * 2003-10-01 2006-11-15 流线公司 深度确定***
CN101726740A (zh) * 2009-11-12 2010-06-09 中国水产科学研究院渔业机械仪器研究所 网箱养鱼生物量评估超声波监测装置
US20100156660A1 (en) * 2008-12-23 2010-06-24 Lee In Ock Apparatus and method for estimating position of mobile unit
CN201654224U (zh) * 2010-03-26 2010-11-24 北京物资学院 基于声波的空间定位***
CN102139160A (zh) * 2010-12-27 2011-08-03 天津信息港智能社区科技有限公司 基于网络环境下的超声波定位控制***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493649B1 (en) * 1996-12-04 2002-12-10 At&T Laboratories - Cambridge Limited Detection system for determining positional and other information about objects
CN1864050A (zh) * 2003-10-01 2006-11-15 流线公司 深度确定***
US20100156660A1 (en) * 2008-12-23 2010-06-24 Lee In Ock Apparatus and method for estimating position of mobile unit
CN101726740A (zh) * 2009-11-12 2010-06-09 中国水产科学研究院渔业机械仪器研究所 网箱养鱼生物量评估超声波监测装置
CN201654224U (zh) * 2010-03-26 2010-11-24 北京物资学院 基于声波的空间定位***
CN102139160A (zh) * 2010-12-27 2011-08-03 天津信息港智能社区科技有限公司 基于网络环境下的超声波定位控制***

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
杨长生 等: "一种改进的宽带双曲调频信号检测方法", 《计算机仿真》 *
章潋 等: "伪随机码超声测距电路的设计", 《电子与封装》 *
解立洋: "水下弹载超声波探测发射信号的直接数字频率合成与实现", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
隋卫平 等: "一种新型的超声换能器驱动与回波检测电路设计", 《国防科技大学学报》 *
顾峰: "空气中超声波测距***技术参数的设计和预报", 《声学技术》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981164A (zh) * 2012-12-06 2013-03-20 北京凯思昊鹏软件工程技术有限公司 一种支持有限不规则空间定位的方法
CN105848835A (zh) * 2013-12-23 2016-08-10 空中客车集团简化股份公司 利用超声方法在参考系内对工具中心点位置和声学探头取向测定的方法
CN105093229A (zh) * 2014-05-19 2015-11-25 日本电气株式会社 多个目标的定位方法及装置
CN105093229B (zh) * 2014-05-19 2018-03-27 日本电气株式会社 多个目标的定位方法及装置
CN106990390A (zh) * 2016-01-20 2017-07-28 华北电力大学 传感器待测位置定位方法及装置
CN105785319B (zh) * 2016-05-20 2018-03-20 中国民用航空总局第二研究所 机场场面目标声学定位方法、装置及***
CN105785319A (zh) * 2016-05-20 2016-07-20 中国民用航空总局第二研究所 机场场面目标声学定位方法、装置及***
CN106772325A (zh) * 2016-11-24 2017-05-31 北京睿思奥图智能科技有限公司 一种基于rf的跨区域超声定位方法及***
CN106646377A (zh) * 2016-12-29 2017-05-10 西安科技大学 基于时间序列相似搜索的震动目标定位方法
CN106931973A (zh) * 2017-03-14 2017-07-07 杭州电子科技大学 基于非线性调频脉冲信号的高精度室内定位***及方法
CN108254739A (zh) * 2017-12-22 2018-07-06 北京凌宇智控科技有限公司 用于超声波接收装置的控制方法及装置
US11500089B2 (en) 2017-12-22 2022-11-15 Nolo Co., Ltd. Control method and device for ultrasonic receiving device
CN108495365A (zh) * 2018-03-14 2018-09-04 重庆邮电大学 基于窄带物联网时延估计的终端定位方法
CN108802685A (zh) * 2018-04-23 2018-11-13 长江大学 一种基于约束反演的管道异常碰撞二维定位方法及***
CN108802685B (zh) * 2018-04-23 2022-07-05 长江大学 一种基于约束反演的管道异常碰撞二维定位方法及***
CN110806755A (zh) * 2018-08-06 2020-02-18 中兴通讯股份有限公司 一种无人机跟踪拍摄方法、终端及计算机可读存储介质
CN110568408A (zh) * 2019-08-31 2019-12-13 苏州普息导航技术有限公司 基于单一信号源的音频定位***及方法
CN113126026A (zh) * 2019-12-31 2021-07-16 中移(成都)信息通信科技有限公司 定位***、方法及存储介质
CN113126026B (zh) * 2019-12-31 2024-04-19 中移(成都)信息通信科技有限公司 定位***、方法及存储介质

Similar Documents

Publication Publication Date Title
CN102721942A (zh) 楼宇环境下目标的声学定位***及其方法
KR100756827B1 (ko) 초음파를 이용한 위치인식 시스템 및 그의 제어방법
US7916577B2 (en) Method and system for recognizing location by using sound sources with different frequencies
US8718674B2 (en) Method for locating a source by multi-channel estimation of the TDOA and FDOA of its multipath components with or without AOA
CN103076592B (zh) 一种面向智能空间中服务机器人的精确无线定位方法
CN106291468B (zh) 一种可远程监控的超声波室内快速定位***及其定位方法
JP2003501664A (ja) 狭帯域ベースのナビゲーション方法および装置
CN104849740A (zh) 集成卫星导航与蓝牙技术的室内外无缝定位***及其方法
CN108449953B (zh) 用于登记装置位置的方法和装置
CN104010361A (zh) 定位***和方法
CN103229071A (zh) 用于基于超声反射信号的对象位置估计的***和方法
CN101872020A (zh) 基于频谱变换的水下运动目标定位导航方法和装置
CN102901949B (zh) 一种二维空间分布式声音相对定位方法及装置
Famili et al. ROLATIN: Robust localization and tracking for indoor navigation of drones
CN104062633A (zh) 一种基于超声波的室内定位***及方法
CN105323772A (zh) 一种基于智能手机的传感器网络节点自定位方法
CN109782215B (zh) 一种基于声表面波技术的室内定位与识别***及其定位与识别方法
CN110988799A (zh) 一种基于超声波的隧道内移动物体高精度定位***及方法
KR20060111167A (ko) 위치 추정 방법
Hammer et al. An acoustic position estimation prototype system for underground mining safety
Piontek et al. Improving the accuracy of ultrasound-based localisation systems
Klogo et al. Energy constraints of localization techniques in wireless sensor networks (WSN): A survey
Elfadil et al. Indoor navigation algorithm for mobile robot using wireless sensor networks
CN206892335U (zh) 一种基于相位检测的高精度收发分体式超声波测距***
CN112954591B (zh) 一种协同分布式定位方法及***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20121010