CN102721411B - 一种基于水面波浪图像的浪级监测方法 - Google Patents

一种基于水面波浪图像的浪级监测方法 Download PDF

Info

Publication number
CN102721411B
CN102721411B CN201210219113.1A CN201210219113A CN102721411B CN 102721411 B CN102721411 B CN 102721411B CN 201210219113 A CN201210219113 A CN 201210219113A CN 102721411 B CN102721411 B CN 102721411B
Authority
CN
China
Prior art keywords
image
wave
power spectrum
straight
flanked ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210219113.1A
Other languages
English (en)
Other versions
CN102721411A (zh
Inventor
王建华
熊亚洲
李刚
刘康克
张晓杰
冯海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201210219113.1A priority Critical patent/CN102721411B/zh
Publication of CN102721411A publication Critical patent/CN102721411A/zh
Application granted granted Critical
Publication of CN102721411B publication Critical patent/CN102721411B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

本发明提出一种基于水面波浪图像的浪级监测方法,首先采集一定水面区域的视频图像并进行直方图均衡化处理;然后对直方图均衡化处理后的图像进行傅立叶变换,并计算矩形环内的功率谱能量比;接着采用分段线性回归的方法,提取矩形环内功率谱能量比曲线的两条特征直线斜率和截距;最后根据两条特征直线斜率和截距的关系,确定浪级的参数。由于本发明的浪级视频图像监测方法基于图像的频域特征,具有受环境光照条件变化影响小的优点。

Description

一种基于水面波浪图像的浪级监测方法
技术领域
本发明涉及一种基于水面波浪图像的浪级监测方法,具体涉及一种基于矩形环内功率谱能量比的水面浪级监测方法,适用于海洋环境预报以及海洋科学研究,也可用于无人水面艇对周围环境的监测。
背景技术
波浪的运动与产生是海洋中最常见的物理现象之一,波浪检测对于海上运输和作业、海洋环境预报以及海洋科学研究都是非常重要的。
现有的波浪测量方法有:加速度测量法、压力法、波面测量法、波面粗糙度反演法等,其中除波面测量法之外其他均为间接测量。波面测量法是利用测量波面高度变化的方法来测量波浪参数的,即利用固定高度的探头测量其至水面距离的变化来实现波浪测量,多数采用非接触式(遥测)如激光、微波、或超声波等测量方式;波面测量设备可以安装在水面以上的海洋构筑物如海洋石油平台上。这些传统波浪监测的设备采用单点测量方式,测量范围小。即使多点布设测量仪器,测量范围也是有限的,且布防难度大、易丢失、维护成本高。
随着遥感和遥测技术的发展,采用图像测量海洋波浪参数的方法得到进一步的应用。用视频图像监测波浪参数,与传统的海洋监测设备相比较,有测量范围大、整体性强的优点。目前采用多种方式获取图像包括卫星遥感图像、飞机航空拍摄图像、船舶航行时拍摄图像、岸边或平台固定摄像装置拍摄的图像等,可以用于波浪参数的测量。
应用图像不仅能记录波浪的静态信息,而且还可以记录波浪的动态信息,能够测量出波浪的运动参数。目前,国际上领先的海洋视频图像监测技术首推美国的Argus项目(Holman,R.A. and J.Stanley.The history and technicalcapabilities of Argus,Coastal En-gineering[J].2007,54(6-7),477-491.)。现有文献报导的视频图像波浪测量方法包括:通过检测波浪运动中产生的碎波白冠,在图像处理中跟踪具有较高亮度的波峰带,来获取运动参数的方法;通过傅里叶变换检测波浪运动中频谱和相关函数,获取运动参数的方法;通过小波变换分离波浪运动频谱各向异性获取方向参数的方法;基于波浪爬高的检测方法和基于波浪冲刷时空特性的波浪检测方法。
上述波浪监测技术可在一定条件下,监测一定范围和类型的波浪,各具优点和局限性,尚不能很好解决波浪的实时监测问题。为此,有必要设计一种更有效的水面浪级监测方法。
发明内容
本发明的目的是提供一种基于水面波浪图像的浪级监测方法,方便对一定水面区域的浪级进行实时监测。
本发明为解决其技术问题所采用的技术方案是,
一种基于水面波浪图像的浪级监测方法,包括以下步骤:
1)采集一定水面区域的视频图像并进行直方图均衡化处理;
2)对直方图均衡化处理后的图像进行傅立叶变换,并计算矩形环内的功率谱能量比;
3)采用分段线性回归的方法,提取矩形环内功率谱能量比曲线的两条特征直线斜率和截距;
4)根据两条特征直线斜率和截距的关系,确定浪级的参数。
在一个实施例中,图像的分辨率为640×480。
步骤2)中,傅立叶变换根据下式计算:
F ( u , v ) = Σ x = 0 M - 1 Σ y = 0 N - 1 f ( x , y ) exp [ - j 2 π ( ux M + vy N ) ]
式中f(x,y)是图像的灰度值,x、y为空间域中图像的横、纵坐标轴,u=0,1,...M-1;V=0,1,...,N-1;频率u对应于x轴,频率v对应于y轴,F(u,v)是两个实频率变量u和v的复值函数;
傅立叶变换的功率谱根据下式计算:
P(u,v)=|F(u,v)|2=R2(u,v)+I2(u,v),
式中R(u,v),I(u,v)分别表示F(u,v)的实部和虚部;
每个矩形环内的功率谱能量根据下式计算:
P e i = P i / Σ u = 0 M Σ v = 0 N P ( u , v ) , i = 0,1 , . . . , l - 1 .
P e l = 1 - Σ i = 1 l - 1 P e i ,
式中
Figure BDA00001821036000033
表示第i个矩形环内的功率谱能量,式中u,v取值为:
m·(i-1)≤|u-M/2|<m·i,n·(i-1)≤|v-N/2|<n·i。
本发明的优点在于,该方法基于图像的纹理特征,具有受环境光照条件变化影响小的优点,监测迅速准确。
附图说明
图1是本发明提出的基于水面波浪图像的浪级监测方法的原理框图;
图2a是一个实施例中采集的一帧水面图像;
图2b是图2a中图像直方图均衡化处理后的图像;
图2c是图2b中图像进行傅立叶变换后的频谱图像;
图3是一个实施例中采用的矩形环示意图;
图4a、图4b、图4c是一个实施例中三种浪级在不同光照条件下的矩形环内功率谱能量比曲线;
图5a、图5b、图5c、图5d、图5e、图5f分别是从图像库中抽取的6幅水面波浪环境图像,测试本方法的有效性。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合图示与具体实施例,进一步阐述本发明。
为了更好的监测水面波浪特征,在相同位置、以固定焦距、在没有闪光灯的自然光线下采集水面波浪图像,这样有利于波浪图像特征的研究,不会因为相机及其位置的原因导致波浪特征的变化,这样研究波浪的特征更具有科学性。在一个实施例中,所拍摄的图像为640×480的分辨率,是因为这样的分辨率对于波浪图像来说不会丢失一些细节信息,而且处理运算速度比较快,提高了运算的实时性。图2a为一个实施例中采集的一帧水面图像。
为了补偿光照条件的变化,增强图像特征,对采集的原始图像进行直方图均衡化处理,图2b为图2a中图像进行直方图均衡化处理后的结果。
对直方图均衡化处理后的图像进行快速傅里叶变换,在一个实施例中采用快速傅立叶变换(FFT),图2c为图2b中图像进行FFT变换处理后的结果。
傅立叶变换提取图像特征的常用方法是周向谱能量法,它的计算公式如式(1)所示,
P(u,v)=|F(u,v)|2=R2(u,v)+I2(u,v)          (1)
式中R(u,v),I(u,v)分别表示F(u,v)的实部和虚部。P(u,v)是傅立叶变换的功率谱,也称为能量谱。傅里叶变换具有共轭对称性,即|F(u,v)|=|F(-u,-v)|,也就是频谱分布是以图像原点对称的。
采用极坐标表示P(u,v),令
Figure BDA00001821036000041
θ=arctan(v/u),则周向谱能量为:
P ( r ) = Σ θ = 0 2 π P ( r , θ ) - - - ( 2 )
即计算一系列同心圆环内能量的和。
一般图像为长方形,由于u,v与x,y是对应的,根据傅立叶变换的共轭对称性,则图像功率谱(P(r,θ))也为相同的长方形,并且以图像形心为中心。而圆环与功率谱形状不相似,另外一系列逐渐外扩的圆环累加后不可能完全把图像功率谱覆盖,所以这种算法得到的傅立叶周向频率分布图不能真正反映图像的频率特性。而与图像相近的一系列逐渐变大矩形,如图3所示,它与图像形状相似且可以全部覆盖整个图像功率谱,所以矩形环内的功率谱能量可以反映出图像不同频率成分的能量强度,本发明以矩形环内功率谱能量比为水面波浪图像的特征。
针对图2a中的图像,在一个实施例中提取矩形环内功率谱能量比特征,即根据傅立叶频谱图中不同矩形环内能量占整个图像总能量的百分比作为提取的特征量,以此来识别水面波浪浪级。把图像功率谱分成l个矩形环,能量比分为l级,所以Pel表示总能量除去前面l-1个矩形环的能量与总能量之比,如式(3)所示。设图像大小为M×N,图像中心为(M/2,N/2),则每个矩形环内能量可以表示为:
P e i = P i / Σ u = 0 M Σ v = 0 N P ( u , v ) , i = 0,1 , . . . , l - 1 .
P e l = 1 - Σ i = 1 l - 1 P e i - - - ( 3 )
式中表示第i个矩形环内的功率谱能量。式中u,v取值为:
m·(i-1)≤|u-M/2|<m·i,n·(i-1)≤|v-N/2|<n·i,          (4)
其中m表示u方向的渐变幅度,n表示v方向的渐变幅度,m、n最大值分别为M、N,如图3所示。
接着进行图像的特征提取,在一个实施例中,选用参数l=5,m=40,n=30,提取的矩形环内功率谱能量比如图4a、图4b、图4c所示。横坐标为矩形环的序列(这里矩形环个数l=5),纵坐标为矩形环内功率谱能量比值,取值为0~1之间,且五个能量比总和为1。
图4a、图4b、图4c为本发明一个实施方案中三种浪级在不同光照条件下的矩形环内功率谱能量比曲线。由于三级矩形环后的能量非常小,几乎可以忽略不计,因此图中每条折线近似由两条直线l1、l2组成,直线l1截距大,l2的截距小。通过线性回归的方法,可求出直线l1、l2的斜率和截距。
在本实施例中,假设l1过(0,y1)和(2,y2),l2过(2,y2)和(5,0),其中y1是第一个矩形环能量比作为l1的截距,y2是第二个矩形环内的能量比。这样从图中可以看出,对于不同等级的波浪来说,等级越高直线l1的截距b1越小,直线l2的截距b2越大。对于不同等级的波浪利用直线l1和l2的截距以及其比值T作为特征值来识别水面波浪环境状况,不同浪级的特征值如表1所示。
表1.一个实施例中提取地特征参数
  参数   l1截距b1   l2截距b2  T=b1/b2
  一级   0.984   0.0255   38.6
  二级   0.948   0.0426   22.3
  三级   0.933   0.0575   16.2
从表中可以可看出,浪级越大b1越小,b2越大,T值越小,可得如下结论:
(1)当T>30时,可以判别为一级波浪环境;
(2)当20<T<30时,可以判别为二级波浪环境;
(3)当T<20时,可以判别为三级波浪环境。
利用上述特征规律,对图像库中抽取的水面波浪环境图像进行浪级识别,共6幅图像,分三个等级,如图5a~图5f所示,分别提取矩形环内功率谱能量比曲线的两条特征直线参数,如表2所示。
表2.图像库中测试图像的特征参数
  参数   l1截距b1   l2截距b2  T=b1/b2
  (a)   0.9804   0.0245   40.0
  (b)   0.9733   0.0242   40.6
  (c)   0.9504   0.041   23.3
  (d)   0.9457   0.0452   21.0
  (e)   0.9094   0.0668   13.6
  (f)   0.9103   0.0638   14.3
从表中可以看出,(a)、(b)为一级波浪环境,(c)、(d)为二级波浪环境,(e)、(f)为三级波浪环境,特征量T较好地识别出水面波浪环境。
以上仅以三级浪为例说明实时方法,该方法可推广到0至9级海况。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (2)

1.一种基于水面波浪图像的浪级监测方法,其特征在于,包括以下步骤: 
1)采集一定水面区域的视频图像并进行直方图均衡化处理; 
2)对直方图均衡化处理后的图像进行傅立叶变换,并计算矩形环内的功率谱能量比,傅立叶变换根据下式计算: 
Figure FDA0000464663960000011
式中f(x,y)是图像的灰度值,x、y为空间域中图像的横、纵坐标轴,u=0,1,…M-1;v=0,1,…,N-1;频率u对应于x轴,频率v对应于y轴,F(u,v)是两个实频率变量u和v的复值函数;图像大小为M×N,m表示u方向的渐变幅度,n表示v方向的渐变幅度,m、n最大值分别为M、N; 
傅立叶变换的功率谱根据下式计算: 
P(u,v)=|F(u,v)|2=R2(u,v)+I2(u,v), 
式中R(u,v),I(u,v)分别表示F(u,v)的实部和虚部; 
每个矩形环内的功率谱能量根据下式计算: 
Figure FDA0000464663960000012
Figure FDA0000464663960000013
把图像功率谱分成l个矩形环,能量比分为l级,Pel表示总能量除去前面l-1个矩形环的能量与总能量之比,式中
Figure FDA0000464663960000014
表示第i个矩形环内的功率谱能量,式中u,v取值为:m·(i-1)≤|u-M/2|<m,n·(i-1)≤|v-N/2|<n·i; 
3)采用分段线性回归的方法,提取矩形环内功率谱能量比曲线的两条特征直线斜率和截距; 
4)根据两条特征直线斜率和截距的关系,确定浪级的参数。 
2.根据权利要求1所述的一种基于水面波浪图像的浪级监测方法,其特征在于,步骤1)中,图像的分辨率为640×480。 
CN201210219113.1A 2012-06-28 2012-06-28 一种基于水面波浪图像的浪级监测方法 Expired - Fee Related CN102721411B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210219113.1A CN102721411B (zh) 2012-06-28 2012-06-28 一种基于水面波浪图像的浪级监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210219113.1A CN102721411B (zh) 2012-06-28 2012-06-28 一种基于水面波浪图像的浪级监测方法

Publications (2)

Publication Number Publication Date
CN102721411A CN102721411A (zh) 2012-10-10
CN102721411B true CN102721411B (zh) 2014-07-02

Family

ID=46947236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210219113.1A Expired - Fee Related CN102721411B (zh) 2012-06-28 2012-06-28 一种基于水面波浪图像的浪级监测方法

Country Status (1)

Country Link
CN (1) CN102721411B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607092B (zh) * 2017-08-22 2019-11-12 哈尔滨工程大学 一种基于无人机遥感的波浪与浮体运动预报***
CN108557030B (zh) * 2018-03-16 2020-01-24 威海海安游艇制造有限公司 一种船舶海上运行用监控方法及监控***
CN109141376B (zh) * 2018-08-06 2021-02-26 上海海事大学 一种基于单目视觉的浪向检测方法
CN117057004B (zh) * 2023-07-19 2024-04-09 广东省水利水电科学研究院 一种海堤上波浪压力计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311287A1 (fr) * 1975-05-12 1976-12-10 Bertin & Cie Procede et dispositif optique de mesure des mouvements ondulatoires d'une etendue liquide
JPH09325027A (ja) * 1996-06-04 1997-12-16 Tech Res & Dev Inst Of Japan Def Agency 波高測定法
CN101034004A (zh) * 2007-01-15 2007-09-12 国家海洋技术中心 视频波浪测量方法和测量***
CN101105399A (zh) * 2007-08-03 2008-01-16 国家海洋技术中心 海杂波图像的脊波变换域中波浪参数检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311287A1 (fr) * 1975-05-12 1976-12-10 Bertin & Cie Procede et dispositif optique de mesure des mouvements ondulatoires d'une etendue liquide
JPH09325027A (ja) * 1996-06-04 1997-12-16 Tech Res & Dev Inst Of Japan Def Agency 波高測定法
CN101034004A (zh) * 2007-01-15 2007-09-12 国家海洋技术中心 视频波浪测量方法和测量***
CN101105399A (zh) * 2007-08-03 2008-01-16 国家海洋技术中心 海杂波图像的脊波变换域中波浪参数检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
R.A. Holman, J. Stanley.The history and technical capabilities of Argus.《Coastal Engineering》.2007,(第54期),
The history and technical capabilities of Argus;R.A. Holman, J. Stanley;《Coastal Engineering》;20071231(第54期);477-491 *
自适应灰度门限法在水面图像分割中的应用;陈长风;《现代电子技术》;20110615;第34卷(第12期);121-124 *
陈长风.自适应灰度门限法在水面图像分割中的应用.《现代电子技术》.2011,第34卷(第12期),121-124.

Also Published As

Publication number Publication date
CN102721411A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
CN106990404B (zh) 一种利用导航x波段雷达反演海面波高的自动定标算法
CN102609701B (zh) 基于最佳尺度的高分辨率合成孔径雷达遥感检测方法
CN102176001B (zh) 一种基于透水波段比值因子的水深反演方法
De Vries et al. Remote sensing of surf zone waves using stereo imaging
Dong et al. An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data
CN109919123B (zh) 基于多尺度特征深度卷积神经网络的海面溢油检测方法
CN104613944B (zh) 一种基于gwr和bp神经网络的分布式水深预测方法
CN102542277B (zh) 一种海洋合成孔径雷达图像的舰船尾迹检测方法
CN103941257B (zh) 一种基于波数能量谱的导航雷达图像反演海面风向的方法
CN102819740B (zh) 一种单帧红外图像弱小目标检测和定位方法
CN102721411B (zh) 一种基于水面波浪图像的浪级监测方法
CN104156629B (zh) 一种基于相对辐射校正的导航雷达图像反演海面风向方法
CN109359787A (zh) 一种小范围海域多模态海浪预测***及其预测方法
CN106156758B (zh) 一种sar海岸图像中海岸线提取方法
CN106990402A (zh) 一种基于波浪理论的导航x波段雷达波群检测方法
CN111950438B (zh) 基于深度学习的天宫二号成像高度计有效波高反演方法
CN113643371B (zh) 一种飞行器模型表面标记点的定位方法
Huang et al. Wave height estimation from X-band nautical radar images using temporal convolutional network
CN103323817B (zh) 一种机载合成孔径雷达海面风矢量反演方法
Yang et al. Evaluation and mitigation of rain effect on wave direction and period estimation from X-band marine radar images
Chen et al. A novel scheme for extracting sea surface wind information from rain-contaminated x-band marine radar images
CN102878985B (zh) 一种基于图像纹理特征的水面浪级监测方法
CN111951204B (zh) 一种基于深度学习的天宫二号探测数据海面风速反演方法
Park et al. Estimation of significant wave heights from X-band radar using artificial neural network
CN117233762A (zh) 一种基于gb-sar的水库监测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140702

Termination date: 20170628