CN102721261A - 一种返流膨胀制冷生产带压低纯氧和高纯氮的方法 - Google Patents

一种返流膨胀制冷生产带压低纯氧和高纯氮的方法 Download PDF

Info

Publication number
CN102721261A
CN102721261A CN2012101253037A CN201210125303A CN102721261A CN 102721261 A CN102721261 A CN 102721261A CN 2012101253037 A CN2012101253037 A CN 2012101253037A CN 201210125303 A CN201210125303 A CN 201210125303A CN 102721261 A CN102721261 A CN 102721261A
Authority
CN
China
Prior art keywords
tower
nitrogen
oxygen
liquid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101253037A
Other languages
English (en)
Other versions
CN102721261B (zh
Inventor
周大荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI QIYUAN GAS DEVELOPMENT Co.,Ltd.
Original Assignee
SHANGHAI QIYUAN AIR SEPARATION TECHNOLOGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI QIYUAN AIR SEPARATION TECHNOLOGY DEVELOPMENT Co Ltd filed Critical SHANGHAI QIYUAN AIR SEPARATION TECHNOLOGY DEVELOPMENT Co Ltd
Priority to CN201210125303.7A priority Critical patent/CN102721261B/zh
Publication of CN102721261A publication Critical patent/CN102721261A/zh
Application granted granted Critical
Publication of CN102721261B publication Critical patent/CN102721261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明提供一种返流膨胀制冷生产带压低纯氧和高纯氮的方法,采用双塔制氮制氧,低纯液氧通过液位差增压后在液氧蒸发器中汽化出冷箱,避免的氧气压缩机或液氧泵等动设备,节省了设备投资、降低了能耗、提高了产品附加值。

Description

一种返流膨胀制冷生产带压低纯氧和高纯氮的方法
技术领域
本发明涉及一种通过液化作用进行气体分离的方法,尤其涉及一种从空气中分离低纯氧和高纯氮的方法。
背景技术
随着浮法玻璃、化工等行业的快速发展,对高纯氮气、带压低纯氧需求量急剧增大,通常浮法玻璃行业在使用的高纯氮气压力为0.2~0.5MPa,氮气纯度为99.999%(O2浓度≤3ppm);由于玻璃原料的融化需要空气或氧气助燃,而且随着国家节能减排政策的实施及燃料成本的上升,氧气助燃有着更为广阔的应用前景。采用氧气助燃可以大大减少氧化亚氮、二氧化碳的排放,并可以节约燃料、提高玻璃产品等级,其中氧气助燃需要的氧气纯度大于90%,最好能够大于93%,同时压力应大于0.15MPa。
空气中的主要气体成分为氮气和氧气,氮气和氧气体积分数分别为78.12%和20.98%,而空气作为廉价资源无处不在,因此通过分离空气来生产氮气和氧气是最为传统的方法。
传统的低纯氧空分采用空气膨胀进上塔的双塔空分流程制取的93%O2低纯氧气的设备氧气提取可达99%以上,单因氧气、氮气压力低(一般氮气压力<0.05MPa,氧气<0.07MPa),其电耗一般为0.5~0.55KWh/m3,能耗较高,其副产品低压氮气不能直接输送,需增加氮气压缩机,氮气纯度也不能满足高端浮法玻璃的需求。同时生产的氧气压力小于0.1MPa,而浮法玻璃、化工行业需要大量的带压力的高纯氮气、低纯氧气,氮气及氧气压力要求大于0.15MPa。同时为了达到节能减排的要求,从空分过程中直接生产高提取率、带压力的高纯氮、低纯氧是非常具有价值的。
全氧燃烧浮法玻璃生产线,氧气需求量远远大于氮气需求量,氧氮比一般为3:1~4:1,因此空分设备如何低成本地生产带压的低纯氧气及少量带压氮气成为关键。
发明内容
本发明提供了一种以空气为原料生产带压低纯氧和高纯氮的方法,采用双塔制氮制氧,低纯液氧通过液位差增压后在液氧蒸发器中汽化出冷箱,避免的氧气压缩机或液氧泵等动设备,节省了设备投资、降低了能耗、提高了产品附加值。
为了实现上述目的,本发明提供一种返流膨胀制冷生产带压低纯氧和高纯氮的方法,包括如下步骤:
将纯化、干燥的空气冷却至饱和状态,一部分饱和空气进入下塔塔釜,另一部分饱和空气进入液氧蒸发器冷凝成液空,液空进入下塔塔釜和饱和空气分离成氮气和液态空气;将下塔分离出来的氮气送入上塔,经冷凝蒸发器氮气冷凝成为液氮,然后回流至下塔顶部;回流至下塔的液氮和下塔中分离出的液体空气分别进入上塔进行精馏,分离成带压力的污氮气和低纯液氧。
从上塔中上部抽出污氮气,经过复热、膨胀至大气压后输出;从上塔顶部抽取高纯氮,复热后输出;低纯液氧从上塔底部抽出进入液氧蒸发器;在液氧蒸发器和上塔底部之间存在压力差的作用下,液氧蒸发成气氧,经过复热后输出。
本发明提供的另外一种返流膨胀制冷生产带压低纯氧和高纯氮的方法,包括如下步骤:
将纯化、干燥的空气冷却至饱和状态,一部分饱和空气进入下塔塔釜,另一部分饱和空气进入液氧蒸发器冷凝成液空,液空进入下塔塔釜和饱和空气分离成氮气和液态空气;将下塔分离出来的氮气送入上塔,经冷凝蒸发器氮气冷凝成为液氮,然后回流至下塔顶部;回流至下塔的液氮和下塔中分离出的液体空气分别进入上塔进行精馏,分离成带压力的污氮气和低纯液氧。
从上塔顶部抽出污氮气,经过复热、胀机膨胀至大气压后输出;从下塔顶部抽取高纯氮,复热后输出;低纯液氧从上塔底部抽出,进入液氧蒸发器;在液氧蒸发器和上塔底部之间存在压力差的作用下,液氧蒸发成气氧,进入复热后输出。
在本发明中的一个优选实施例中,所述上塔的操作压力大于0.08MPa。
在本发明中的一个优选实施例中,所述气氧出主换热器后的压力大于0.15MPa。
在本发明中的一个优选实施例中,所述污氮气经透平膨胀机膨胀至大气压后离开。
在本发明中的一个优选实施例中,所述冷凝蒸发器与液氧蒸发器之间的高度差大于5m。
在本发明中的一个优选实施例中,所述冷凝蒸发器、上塔和下塔为一体式结构,冷凝蒸发器设置在下塔顶部,冷凝器顶部设有上塔。
在本发明中的一个优选实施例中,下塔的塔板数为50~100块,操作压力为0.6~1.1MPa。上塔的塔板数为40~100块,操作压力为0.08~0.25MPa。
本发明和传统技术相比具有以下优点:
1)本发明采用提高上塔压力,低纯液氧依靠重力自增压生产带压氧气,并能够同时生产带压高纯氮,装置冷量由返流污氮膨胀提供,与传统的低纯液氧自增压流程采用空气膨胀进上塔比,所有空气均进入了下塔精馏后进入上塔精馏分离,提高了氧气提取率,同时达到生产带压氮气的目的。
2)本发明生产的氮气压力可达0.06~0.25MPa,纯度达99.999%(氧气含量小于5ppm),同时生产的氧气纯度可达到90%~98%,压力达0.1~0.25MPa;并可从下塔抽取氧气产量50%以下的高压压力氮气,而氧气提取率无明显降低,同时满足浮法玻璃全氧燃烧所需氧气、氮气,不需额外的氧气、氮气压缩机或液氧泵等设备。
附图说明
图1为本发明实施例1的流程图。
图2为本发明实施例2的流程图。
其中,C1为下塔,C2为上塔,E1为主换热器,E2为过冷器,K1为上塔冷凝蒸发器,K2为液氧蒸发器,TP为透平膨胀机,V1、V2、V3、V4为节流阀。1、2、3为压缩空气,4为液态空气,5为液态空气,6为减压后的液态空气,7为液态氮气,8为高纯液氮产品,9为减压后的液态氮气,10为上塔顶带压氮气,11为带压氮气产品,12为污氮气,13为膨胀前的污氮,14为膨胀后的污氮,15为出冷箱的污氮,16为低纯液氧,17为蒸发的带压低纯氧,18为带压低纯氧,19为下塔顶带压氮气,20为出冷箱带压氮气产品。
具体实施方式
本发明提供的返流膨胀制冷生产带压低纯氧和高纯氮的装置中,采用下塔、上塔双塔设计,根据所需氮和氧的纯度和压力的不同,塔内塔板数和操作压力可分别从以下范围中选择:下塔塔板数量为50~100块,操作压力在0.6MPa~1.1MPa;上塔塔板数量为40~100块,操作压力在0.08MPa~0.25MPa。
以下通过实施例对本发明提供的生产带压低纯氧和高纯氮的方法,以便更好理解本发明创造的内容,但实施例的内容并不限制本发明创造的保护范围。
实施方式1
参照图1,上塔C2和下塔C1按照图1方式通过管道连接,其中,上塔C2内安装45块塔板,操作压力0.12MPa;下塔C1内安装50块塔板,操作压力0.65MPa。
经分子筛吸附除去二氧化碳和水的空气1经过主换热器E1进行冷却成为饱和状态,部分空气2送入下塔C1中,部分空气3送入液氧蒸发器K2中被冷凝成液空4进入下塔底部以上3块塔板的位置,进入下塔的空气和液空与塔顶回流的液氮精馏,塔顶得到氮气和塔釜得到富氧液态空气5。
下塔氮气在上塔内的冷凝蒸发器K1冷却成液氮大部分回流至下塔C1,将部分液氮7经过冷器E2过冷后通过节流阀V3送入上塔C2的顶端,进行精馏,液态空气5通过节流阀V2上塔上部第24块塔板处进入上塔进行精馏,得到带压力的氮气和低纯液氧,从塔顶抽出氮气10,经过冷器E2和主换热器E1复热,得到供用户使用的大于99.999%纯度、0.09MPa压力的高纯氮气。
从上塔底部抽出纯度为93%、压力为0.13MPa的低纯液氧16,经低纯液氧管路进入液氧蒸发器。由于上塔冷凝蒸发器顶部比液氧蒸发器顶部高超过7m,利用上塔冷凝蒸发器与液氧蒸发器的高度差,增加液氧压力0.08MPa至0.21MPa,在液氧蒸发器中蒸发后经主换热器复热后出冷箱压力≥0.17MPa。
从上塔顶部位置抽出氮气10,经过冷器E2、主换热器E1复热至常温作为带压氮气产品11输出。
从上塔上部15块塔板位置抽出污氮气12,经过冷器E2、主换热器E1下段中复热至-140℃~-160℃进入透平膨胀机TP中膨胀至大气压或接近大气压制冷,以补充装置冷量。
实施方式2
参照图2,上塔C2和下塔C1按照图2方式通过管道连接,其中,上塔C2内安装40块塔板,操作压力0.11MPa;下塔C1内安装55块塔板,操作压力0.62MPa。
经分子筛吸附除去二氧化碳和水的空气1经过主换热器E1进行冷却成为饱和状态,部分空气2送入下塔C1中,部分空气3送入液氧蒸发器K2中被冷凝成液空4进入下塔底部以上3块塔板的位置,进入下塔的空气和液空与塔顶回流的液氮精馏,塔顶得到氮气和塔釜得到富氧液态空气5。从下塔塔顶抽出压力氮气19,经主换热器E1复热出冷箱,得到供用户使用的大于99.999%纯度、0.6MPa的压力高纯氮气。
下塔氮气在上塔内的冷凝蒸发器K1冷却成液氮大部分回流至下塔C1,将部分液氮7经过冷器E2过冷后通过节流阀V3送入上塔C2的顶端,进行精馏,液态空气5通过节流阀V2上塔上部第24块塔板处进入上塔进行精馏,得到带压力的氮气和低纯液氧。
从上塔底部抽出纯度为93%、压力为0.11MPa的低纯液氧16,经低纯液氧管路进入液氧蒸发器。由于上塔冷凝蒸发器顶部比液氧蒸发器顶部高超过7m,利用上塔冷凝蒸发器与液氧蒸发器的高度差,增加液氧压力0.08MPa至0.19MPa,在液氧蒸发器中蒸发后经主换热器复热后出冷箱压力≥0.15MPa。
从上塔顶部或中上部抽出污氮气12,经过冷器E2、主换热器E1下段中复热至-140℃~-160℃进入透平膨胀机TP中膨胀至大气压或接近大气压制冷,以补充装置冷量。
在实施例1中,制得纯度大于99.999%、压力为0.09MPa的氮气,制得纯度为93%、压力为0.17MPa的氧气。在实施例2中,制得纯度大于99.999%、压力为0.6MPa的氮气,制得纯度为93%、压力为0.15MPa的氧气。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中,如实施方式1也可像实施方式2在下塔抽取压力氮气,进入主换热器复热作为产品输出。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (9)

1.一种返流膨胀制冷生产带压低纯氧和高纯氮的方法,其特征在于,包括如下步骤:
将纯化、干燥的空气冷却至饱和状态,一部分饱和空气进入下塔塔釜,另一部分饱和空气进入液氧蒸发器冷凝成液空,液空进入下塔塔釜和饱和空气分离成氮气和液态空气;将下塔分离出来的氮气送入上塔,经冷凝蒸发器氮气冷凝成为液氮,然后回流至下塔顶部;回流至下塔的液氮和下塔中分离出的液体空气分别进入上塔进行精馏,分离成带压力的污氮气和低纯液氧;
从上塔中上部抽出污氮气,经过复热、膨胀至大气压后输出;从上塔顶部抽取高纯氮,复热后输出;低纯液氧从上塔底部抽出进入液氧蒸发器;在液氧蒸发器和上塔底部之间存在压力差的作用下,液氧蒸发成气氧,经过复热后输出。
2.一种返流膨胀制冷生产带压低纯氧和高纯氮的方法,其特征在于,包括如下步骤:
将纯化、干燥的空气冷却至饱和状态,一部分饱和空气进入下塔塔釜,另一部分饱和空气进入液氧蒸发器冷凝成液空,液空进入下塔塔釜和饱和空气分离成氮气和液态空气;将下塔分离出来的氮气送入上塔,经冷凝蒸发器氮气冷凝成为液氮,然后回流至下塔顶部;回流至下塔的液氮和下塔中分离出的液体空气分别进入上塔进行精馏,分离成带压力的污氮气和低纯液氧;
从上塔顶部抽出污氮气,经过复热、胀机膨胀至大气压后输出;从下塔顶部抽取高纯氮,复热后输出;
低纯液氧从上塔底部抽出,进入液氧蒸发器;在液氧蒸发器和上塔底部之间存在压力差的作用下,液氧蒸发成气氧,进入复热后输出。
3.根据权利要求1或2所述的方法,其特征在于,所述上塔的操作压力大于0.08MPa。
4.根据权利要求1或2所述的方法,其特征在于,所述气氧出主换热器后的压力大于0.15MPa。
5.根据权利要求1或2所述的方法,其特征在于,所述污氮气经透平膨胀机膨胀至大气压后离开。
6.根据权利要求1或2所述的方法,其特征在于,所述冷凝蒸发器顶部比液氧蒸发器顶部高,冷凝蒸发器与液氧蒸发器之间的高度差大于5m。
7.根据权利要求1或2所述的方法,其特征在于,所述冷凝蒸发器、上塔和下塔为一体式结构,冷凝蒸发器设置在下塔顶部,冷凝器顶部设有上塔。
8.根据权利要求1或2所述的方法,其特征在于,所述下塔的塔板数为50~100块,操作压力为0.6~1.1MPa。
9.根据权利要求1或2所述的方法,其特征在于,所述上塔的塔板数为40~100块,操作压力为0.08~0.25MPa。
CN201210125303.7A 2012-04-26 2012-04-26 一种返流膨胀制冷生产带压低纯氧和高纯氮的方法 Active CN102721261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210125303.7A CN102721261B (zh) 2012-04-26 2012-04-26 一种返流膨胀制冷生产带压低纯氧和高纯氮的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210125303.7A CN102721261B (zh) 2012-04-26 2012-04-26 一种返流膨胀制冷生产带压低纯氧和高纯氮的方法

Publications (2)

Publication Number Publication Date
CN102721261A true CN102721261A (zh) 2012-10-10
CN102721261B CN102721261B (zh) 2014-11-05

Family

ID=46947088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210125303.7A Active CN102721261B (zh) 2012-04-26 2012-04-26 一种返流膨胀制冷生产带压低纯氧和高纯氮的方法

Country Status (1)

Country Link
CN (1) CN102721261B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759500A (zh) * 2014-01-24 2014-04-30 浙江大川空分设备有限公司 一种低能耗制高纯氮的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410885A (en) * 1993-08-09 1995-05-02 Smolarek; James Cryogenic rectification system for lower pressure operation
CN101886871A (zh) * 2010-08-04 2010-11-17 四川空分设备(集团)有限责任公司 一种空气分离制取压力氧气的方法及装置
CN102230716A (zh) * 2011-06-08 2011-11-02 杭州优埃基空分设备有限公司 空气增压返流膨胀内压缩空气分离的方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410885A (en) * 1993-08-09 1995-05-02 Smolarek; James Cryogenic rectification system for lower pressure operation
CN101886871A (zh) * 2010-08-04 2010-11-17 四川空分设备(集团)有限责任公司 一种空气分离制取压力氧气的方法及装置
CN102230716A (zh) * 2011-06-08 2011-11-02 杭州优埃基空分设备有限公司 空气增压返流膨胀内压缩空气分离的方法及其装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759500A (zh) * 2014-01-24 2014-04-30 浙江大川空分设备有限公司 一种低能耗制高纯氮的方法及装置

Also Published As

Publication number Publication date
CN102721261B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
CN101538040B (zh) 利用工业废气联产或单产食品级和工业级二氧化碳的方法
CN102003867A (zh) 一种生产高纯氮和低纯氧的方法
CN103123203B (zh) 利用含氮废气进行再低温精馏制取纯氮的方法
CN101886871B (zh) 一种空气分离制取压力氧气的方法及装置
CN105783424B (zh) 利用液化天然气冷能生产高压富氧气体的空气分离方法
CN204115392U (zh) 带补气压缩机的全液体空分设备
CN202599013U (zh) 一种返流膨胀制冷生产带压低纯氧和高纯氮的装置
CN101846436A (zh) 利用lng冷能的全液体空气分离装置
CN101886870B (zh) 一种生产带压力的高纯氮及高纯氧的方法和装置
CN105066587A (zh) 深冷分离及生产低纯度氧、高纯度氧和氮的装置及方法
CN104296500A (zh) 一种深冷分离提纯氮气及液氮的装置及方法
CN102620520A (zh) 一种由空气分离制取压力氧气和压力氮气附产液氩的工艺
CN104110940A (zh) 一种利用液化天然气冷能的高效空分装置
CN202204239U (zh) 一种生产高纯氮和带压低纯氧的装置
CN205373261U (zh) 低液体高提取率低压正流膨胀大型内压缩空分***
CN101915495B (zh) 利用液化天然气冷能的全液体空气分离装置及方法
CN103759500A (zh) 一种低能耗制高纯氮的方法及装置
CN102080921B (zh) 一种高压氮和低压氧的生产方法及装置
CN102530892A (zh) 一种生产高纯氮和带压低纯氧的方法
CN104048478B (zh) 高提取率和低能耗污氮气提纯氮气的设备及其提取方法
CN1645022A (zh) 空气分离精馏工艺及空分装置
CN102721261B (zh) 一种返流膨胀制冷生产带压低纯氧和高纯氮的方法
CN201729662U (zh) 一种生产带压力的高纯氮及高纯氧的装置
CN201876055U (zh) 利用液化天然气冷能的全液体空气分离装置
CN114440553A (zh) 一种低能耗氮气膨胀制冷的双塔纯氮制取装置及使用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210705

Address after: 201800 rooms 202 and 204, building 3, 150 Heyu Road, Jiading District, Shanghai

Patentee after: SHANGHAI QIYUAN GAS DEVELOPMENT Co.,Ltd.

Address before: No.150 Heyu Road, Jiading District, Shanghai, 201802

Patentee before: SHANGHAI QIYUAN AIR SEPARATE TECHNOLOGY DEVELOPMENT Co.,Ltd.

TR01 Transfer of patent right