CN102720484B - 一种随钻声波测井仪器及测井方法 - Google Patents

一种随钻声波测井仪器及测井方法 Download PDF

Info

Publication number
CN102720484B
CN102720484B CN201210155064.XA CN201210155064A CN102720484B CN 102720484 B CN102720484 B CN 102720484B CN 201210155064 A CN201210155064 A CN 201210155064A CN 102720484 B CN102720484 B CN 102720484B
Authority
CN
China
Prior art keywords
acoustic
telecommunication
logging
stratum
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210155064.XA
Other languages
English (en)
Other versions
CN102720484A (zh
Inventor
刘西恩
仇傲
纳菲·托克索斯
朱正亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Oilfield Services Ltd
China National Offshore Oil Corp CNOOC
Original Assignee
China Oilfield Services Ltd
China National Offshore Oil Corp CNOOC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Oilfield Services Ltd, China National Offshore Oil Corp CNOOC filed Critical China Oilfield Services Ltd
Priority to CN201210155064.XA priority Critical patent/CN102720484B/zh
Publication of CN102720484A publication Critical patent/CN102720484A/zh
Application granted granted Critical
Publication of CN102720484B publication Critical patent/CN102720484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种随钻声波测井仪器及测井方法,克服目前采用在钻铤刻槽和镶嵌重金属来实现隔声要求所导致的损害钻铤强度且隔声效果有限的不足,其中该方法包括:产生声波信号;采集该声波信号在地层中传播而感应出的震电信号。本发明的实施例不需要对设备结构设计隔声体,仪器结构简单,测量精度和可靠性高,制作成本低,进而极大优化随钻声波测井仪器的结构设计,降低设备制造成本,提高随钻声波测井技术的应用水平。

Description

一种随钻声波测井仪器及测井方法
技术领域
本发明涉及随钻测井技术,尤其涉及一种随钻声波测井仪器及测井方法。
背景技术
地震波或声波在流体饱和的孔隙介质中传播时,由于固体和液体的双电层结构,两层之间产生相对运动并感应出电流,这个过程称为震电转换。
随钻声波测井是油气勘探中在钻开地层的同时实时测量地层声学特性的一种测井技术,该技术主要采用滑行波测量方式实时测量地层岩石纵横波传播速度的变化。测量数据可用于岩性识别、孔隙度计算、岩石力力学参数计算、井眼稳定性预测等。
图2、图3和图4显示的是如图1所示的随钻声波测井仪器其声源11分别工作于单极模式、偶极模式和四极子模式时,其声波接收换能器12接收的声波波形信号。图5、图6和图7显示的分别为对应的声源工作于单极模式、偶极模式和四极子模式时的时域相关图。图2、图3及图4中横坐标为时间,纵坐标为信号强度;图5、图6及图7中横坐标为时间,纵坐标为相位速度。
由于随钻声波测井仪器中声源和声波接收装置均安装在钻铤上并放置在钻井液环境中,因此发射和接收直接耦合信号很强,沿钻铤传播的直达波会影响到沿地层进行传播的声波信号的测量。
由图2、图3及图4可见,当声源工作于单极模式时,声波接收装置接收的声波速度大约为直达波声速3100米每秒(m/s),很难得到地层的纵波和横波速度。当声源工作于偶极模式,声波接收装置接收到的主要能量为偶极直达波,其声速大约为1000 m/s,无法记录到以地层横波声速传播的挠曲波。当声源工作于四极子模式时,声波接收装置接收到的信号分为两部分,包括以钻铤纵波速度传播的钻铤直达波和以地层横波速度传播的四极子地层波,时域上直达波在前,地层波在后。
在随钻声波测井仪器的设计中,最大的技术难点是沿钻铤传播的直达波的消除,通常采用钻铤刻槽并镶嵌重金属方法实现隔声要求,但是这样的设计会损害钻铤强度,因此,允许这样处理的程度十分有限,隔声效果也不佳,影响测量精度和可靠性。同时这样的机械加工难度大,加工费用高,导致仪器制造成本高,影响到技术的实际应用。
发明内容
本发明所要解决的技术问题是克服目前采用在钻铤刻槽和镶嵌重金属来实现隔声要求所导致的损害钻铤强度且隔声效果有限的不足。
为了解决上述技术问题,本发明提供了一种随钻声波测井方法,包括:
产生声波信号;
采集该声波信号在地层中传播而感应出的震电信号。
优选地,该方法包括:
对该震电信号进行处理,获得地层的声学参数。
优选地,所述对该震电信号进行处理获得地层的声学参数的步骤,包括:
采用相关法获得该震电信号的视速度;
根据该震电信号的视速度获得地层的声速度;
根据地层的声速度获得地层的声学参数。
优选地,所述产生声波信号的步骤,包括:
采用脉冲信号或正弦信号激励产生该声波信号。
优选地,所述采集该声波信号在地层中传播而感应出的震电信号的步骤,包括:
以一个接收电极或者以阵列方式分布的多个接收电极采集该震电信号。
本发明还提供了一种随钻声波测井仪器,包括声源和接收装置,其中:
声源用于产生声波信号;
接收装置用于采集该声波信号在地层中传播而感应出的震电信号。
优选地,该仪器包括:
处理装置,用于对该震电信号进行处理,获得地层的声学参数。
优选地,该处理装置包括:
第一处理模块,用于采用相关法获得该震电信号的视速度;
第二处理模块,用于根据该震电信号的视速度获得地层的声速度;
第三处理模块,用于根据地层的声速度获得地层的声学参数。
优选地,激励装置,用于采用脉冲信号或正弦信号激励该声源产生该声波信号。
优选地,该接收装置包括一个接收电极或者以阵列方式分布的多个接收电极。
与现有技术相比,本发明的实施例在随钻测井仪器上设置声源和震电接收电极,利用孔隙岩石的震电效应特性,通过测量地层震电信号实现随钻条件下地层岩石声速度测量。本发明的实施例不需要对设备结构设计隔声体,仪器结构简单,测量精度和可靠性高,制作成本低,进而极大优化随钻声波测井仪器的结构设计,降低设备制造成本,提高随钻声波测井技术的应用水平。
附图说明
图1是目前接收声波的随钻声波测井仪器在地层中的工作示意图。
图2是图1所示仪器的声源工作于单极模式时的声波波形示意图。
图3是图1所示仪器的声源工作于偶极模式时的声波波形示意图。
图4是图1所示仪器的声源工作于四极子模式时的声波波形示意图。
图5是图1所示仪器的声源工作于单极模式时的时域相关示意图。
图6是图1所示仪器的声源工作于偶极模式时的时域相关示意图。
图7是图1所示仪器的声源工作于四极子模式时的时域相关示意图。
图8是水听器和电信号接收电极沿井孔轴向移动的应用示意图。
图9是图8所示应用中水听器所采集到的声波信号的到时和到时变化斜率示意图。
图10是图8所示应用***号接收电极所采集到的震电信号的到时和到时变化斜率示意图。
图11是本发明实施例的随钻声波测井仪器的组成示意图。
图12是图11所示实施例中声源工作于单极模式时的震电信号示意图。
图13是图11所示实施例中声源工作于偶极模式时的震电信号示意图。
图14是图11所示实施例中声源工作于四极子模式时的震电信号示意图。
图15是图11所示实施例中声源工作于单极模式时的时域相关示意图。
图16是图11所示实施例中声源工作于偶极模式时的时域相关示意图。
图17是图11所示实施例中声源工作于四极子模式时的时域相关示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
对于金属,声波信号并不能感应出震电信号,在多孔介质岩石中,声波可以感应出震电信号。特别需要指出的是,对金属材质的随钻测井仪器而言,因为金属为良导体,所以设备整体都保持相同电位,并不能经由声波信号感应出震电信号。
通过在不同介质井孔中进行的震电效应测量可以发现,声源在井孔中产生声场,图8显示了在由高孔隙度高渗透率的岩层和低孔隙度低渗透率的岩层组成的模型井中的实验测量,由于声源和接收器之间没有直接连接,所以测量过程中没有沿井轴方向传播的直达波,水听器接收的信号为沿井壁传播的声波信号。水听器和电信号接收电极分别以图8所示箭头方向沿着井孔轴向移动,对比水听器所采集到的如图9所示的声波信号和接收电极所采集到的如图10所示的震电信号的到时和到时变化斜率,可以发现震电信号是由声波信号沿着井孔传播时感应产生,其视速度等于地层中的声波速度。其中图9和图10中,横坐标为时间,纵坐标为信号强度。
另外,震电信号的强度与地层的孔隙度和渗透率有关,对比高孔隙度高渗透率的岩层和低孔隙度低渗透率的岩层可以发现,即使高孔隙度高渗透率的岩层的声波信号强度低于低孔隙度低渗透率的岩层,其震电信号强度也高于低孔隙度低渗透率的岩层。
如图11所示,本发明实施例的随钻声波测井仪器主要包括设置在钻铤21上的声源22和接收装置23,其中声源22用于产生声波信号,声波信号沿地层和钻铤21进行传播;接收装置23用于采集该声波信号在地层中传播而感应出的震电信号;其中,沿钻铤21传播的声波信号无法感应出震电信号。
本发明实施例的随钻声波测井仪器可以包括如图11所示的处理装置24,该处理装置24通过电缆和接收装置23相连接,用于对该震电信号进行处理,获得地层的声学参数。该声学参数比如包括剪切模量、杨氏模量以及岩性等。
本发明实施例的随钻声波测井仪器中,该处理装置包括:
第一处理模块,用于采用相关法获得该震电信号的视速度;
第二处理模块,与第一处理模块相连,用于根据该第一处理模块获得的震电信号的视速度获得地层的声速度;
第三处理模块,与第二处理模块相连,用于根据第二处理模块获得的地层的声速度获得地层的声学参数。
本发明实施例的随钻声波测井仪器可以包括激励装置(图中未示出),该激励装置用于采用脉冲信号或正弦信号激励该声源产生该声波信号。
本发明实施例随钻声波测井仪器中的接收装置23,可以包括一个接收电极或者如图11所示的以阵列方式分布的多个接收电极。接收装置23包含多个接收电极时,可以采用多种阵列方式进行设置。
本发明实施例的随钻声波测井仪器可以采用单极子声源产生声波信号,也可以采用多极子声源产生声波信号。
图12、图13及图14所示为本发明实施例的随钻声波测井仪器中的多极子声源分别工作于单极、偶极和四极子模式时,记录的震电信号示意图。图15、图16及图17所示分别为对应的时域相关图。图12、图13及图14中横坐标为时间,纵坐标为信号强度;图15、图16及图17中横坐标为时间,纵坐标为相位速度。
从图12、图13及图14所示的震电信号可以看出,震电信号的幅度由声波信号的幅度和电极系周围的岩石特性共同决定。采用相关法(慢度-时间相关法)对震电信号进行处理,可以求取震电信号的视速度。
由图12、图13以及图14可见,在声源工作于单极模式时,可以记录到以视纵波速度(与地层纵波速度相等)和视斯通利波速度(与地层斯通利波速度相等)传播的震电信号;在声源工作于偶极和四极子模式的波形,可以记录到以视横波速度(与地层横波速度相等)传播的震电信号。根据震电信号的视速度可以获得地层的声速度。
由于沿金属钻铤传播的直达波不能感应出震电信号,因此强直达波的影响完全被排除。在图15、图16以及图17显示的相关图中,没有记录到以视直达波速度传播的信号。
目前通用的随钻声波测井仪器采用滑行波测量方式,但是其不能规避直达波影响。本发明的实施例利用震电效应实现的震电信号提取地层声速,采用的是直接测量震电信号速度的方式。由于震电信号视速度等于地层声速,这样间接测量地层声速可获得震电信号视速度,可用于岩性识别、孔隙度计算、岩石力力学参数计算、井眼稳定性预测等。
本发明的实施例利用震电效应实现多极子随钻声波测井的震电信号提取地层声速提取算法(慢度-时间相关法),通过相关分析法对阵列震电信号提取视速度,该视速度等于地层声速。
本发明的实施例利用震电效应实现多极子随钻声波测井的测井,其仪器一端安装多极子声波发射信号源,在仪器另一端安装阵列排列的震电信号接收电极,通过激发声波信号发射源在地层中形成声波信号传播并形成地层岩石震电效应产生震电信号,使用接收电极采集地层震电信号,经过对震电信号的处理分析,取得所探测地层的多种岩石声学参数。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (6)

1.一种随钻声波测井方法,包括:
产生声波信号,采集该声波信号在地层中传播而感应出的震电信号,其中,所述产生声波信号与所述采集震电信号的过程都在同一钻铤上进行;
对该震电信号进行处理,获得地层的声学参数,其中包括:采用相关法获得该震电信号的视速度,根据该震电信号的视速度获得地层的声速度,根据地层的声速度获得地层的声学参数。
2.根据权利要求1所述的随钻声波测井方法,其中,所述产生声波信号的步骤,包括:
采用脉冲信号或正弦信号激励产生该声波信号。
3.根据权利要求1所述的随钻声波测井方法,所述采集该声波信号在地层中传播而感应出的震电信号的步骤,包括:
以一个接收电极或者以阵列方式分布的多个接收电极采集该震电信号。
4.一种随钻声波测井仪器,包括声源和接收装置,及处理装置,其中:
所述声源用于产生声波信号;
所述接收装置用于采集该声波信号在地层中传播而感应出的震电信号;
所述处理装置,用于对该震电信号进行处理,获得地层的声学参数;
所述声源、接收装置、处理装置设置在同一钻铤上;
其中,该处理装置包括:
第一处理模块,用于采用相关法获得该震电信号的视速度;第二处理模块,用于根据该震电信号的视速度获得地层的声速度;
第三处理模块,用于根据地层的声速度获得地层的声学参数。
5.根据权利要求4所述的随钻声波测井仪器,还包括:
激励装置,用于采用脉冲信号或正弦信号激励该声源产生该声波信号。
6.根据权利要求4所述的随钻声波测井仪器,其中:
该接收装置包括一个接收电极或者以阵列方式分布的多个接收电极。
CN201210155064.XA 2012-05-18 2012-05-18 一种随钻声波测井仪器及测井方法 Active CN102720484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210155064.XA CN102720484B (zh) 2012-05-18 2012-05-18 一种随钻声波测井仪器及测井方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210155064.XA CN102720484B (zh) 2012-05-18 2012-05-18 一种随钻声波测井仪器及测井方法

Publications (2)

Publication Number Publication Date
CN102720484A CN102720484A (zh) 2012-10-10
CN102720484B true CN102720484B (zh) 2015-08-26

Family

ID=46946333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210155064.XA Active CN102720484B (zh) 2012-05-18 2012-05-18 一种随钻声波测井仪器及测井方法

Country Status (1)

Country Link
CN (1) CN102720484B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397878B (zh) * 2013-07-31 2015-06-24 中国石油大学(华东) 一种变径隔声结构的随钻声波测井装置
CN103352692B (zh) * 2013-07-31 2015-04-15 中国石油大学(华东) 随钻声波测井钻铤变径声系隔声体的最优化设计方法
CN105116450A (zh) * 2015-08-26 2015-12-02 电子科技大学 震电信号天线接收***
CN105758936A (zh) * 2016-02-26 2016-07-13 中国石油天然气集团公司 震电信号的实验测量方法
CN107165623B (zh) 2017-06-07 2019-03-19 南方科技大学 与底部钻具组合配合使用的单极随钻声波测井仪、测量慢地层横波速度的方法
CN111119851B (zh) * 2018-10-29 2023-03-14 中国石油化工集团有限公司 一种非对称远探测测井方法
CN113267438B (zh) * 2020-12-10 2023-02-10 中国石油天然气股份有限公司 基于全直径岩心的斯通利波渗透率测量装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043792A (zh) * 1988-12-21 1990-07-11 埃克森生产研究公司 震电勘探法
CN1143753A (zh) * 1995-08-21 1997-02-26 石油大学 井中震电探测法
CN1392420A (zh) * 2002-08-13 2003-01-22 董奇 利用振电信号结合地震波进行勘探和测试
CN1419655A (zh) * 2000-03-21 2003-05-21 埃克森美孚上游研究公司 用于震电勘探的震源波形

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907348B2 (en) * 2003-02-12 2005-06-14 Baker Hughes Incorporated Synthetic acoustic array acquisition and processing
US7301852B2 (en) * 2003-08-13 2007-11-27 Baker Hughes Incorporated Methods of generating directional low frequency acoustic signals and reflected signal detection enhancements for seismic while drilling applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043792A (zh) * 1988-12-21 1990-07-11 埃克森生产研究公司 震电勘探法
CN1143753A (zh) * 1995-08-21 1997-02-26 石油大学 井中震电探测法
CN1419655A (zh) * 2000-03-21 2003-05-21 埃克森美孚上游研究公司 用于震电勘探的震源波形
CN1392420A (zh) * 2002-08-13 2003-01-22 董奇 利用振电信号结合地震波进行勘探和测试

Also Published As

Publication number Publication date
CN102720484A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
CN102720484B (zh) 一种随钻声波测井仪器及测井方法
CN103147747B (zh) 一种随钻声波测井装置和方法
RU2454524C2 (ru) Установка и способ для электроимпульсного бурения и каротажа и устройство для электроимпульсного бурения (варианты)
USH1561H (en) Method and apparatus for detection of seismic and electromagnetic waves
CN108267778B (zh) 一种地层速度测试方法
CN107642114B (zh) 桩基浇注前桩底隐患探查方法及其探查装置
CN105531603A (zh) 勘探和开采环境内的电震勘测
CN106226810A (zh) 一种孔中地震探头及其围岩检测装置与检测方法
CN107479098B (zh) 一种水力压裂过程中同井微地震监测工艺
CN106772554A (zh) 一种用于复杂地形条件下的多道瞬态面波勘探方法
CN106324683A (zh) 用于地铁盾构隧道前方孤石探测的声波装置及方法
CN112415615A (zh) 基于分布式光纤传感的时频电磁压裂监测***及监测方法
CN103437756A (zh) 一种偶极子声波测井仪
CN203452778U (zh) 一种偶极子声波测井仪
CN108919337A (zh) 城市地下空间地震数据采集***
CN103344995B (zh) 引入人工磁场的核磁共振定向探测装置的探测方法
CN101793973A (zh) 随钻电法
CN111474592A (zh) 一种井间电磁探测***及方法
CN109991654A (zh) 一种瓦斯突出掘进工作面瓦斯包随掘超前探测装置及探测方法
CN213398937U (zh) 基于分布式光纤传感的时频电磁压裂监测***
CN114791633A (zh) 监测页岩气压裂的方法、***及介质
CN107741459A (zh) 利用孔间声波层析成像技术探测岩性异常体的方法及装置
CN210289767U (zh) 井中三分量声波远探测测井装置
CN109828317B (zh) 一种耦合接收装置、tbm掘进隧洞精细化探测***及方法
CN105866848B (zh) 一种深部矿电磁探测方法与装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Co-patentee after: China Oilfield Services Limited

Patentee after: China Offshore Oil Group Co., Ltd.

Address before: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Co-patentee before: China Oilfield Services Limited

Patentee before: China National Offshore Oil Corporation