CN102709940A - Design method of energy storage quasi-Z source single-phase photovoltaic power generation system - Google Patents

Design method of energy storage quasi-Z source single-phase photovoltaic power generation system Download PDF

Info

Publication number
CN102709940A
CN102709940A CN2012101607135A CN201210160713A CN102709940A CN 102709940 A CN102709940 A CN 102709940A CN 2012101607135 A CN2012101607135 A CN 2012101607135A CN 201210160713 A CN201210160713 A CN 201210160713A CN 102709940 A CN102709940 A CN 102709940A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
voltage
quasi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101607135A
Other languages
Chinese (zh)
Other versions
CN102709940B (en
Inventor
葛宝明
孙东森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201210160713.5A priority Critical patent/CN102709940B/en
Publication of CN102709940A publication Critical patent/CN102709940A/en
Application granted granted Critical
Publication of CN102709940B publication Critical patent/CN102709940B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Inverter Devices (AREA)

Abstract

The invention discloses a design method of an energy storage quasi-Z source single-phase photovoltaic power generation system. The method comprises the steps of design of the voltage and the capacity of an energy storage battery, which are required by the system, selection of a photovoltaic battery module, design of inductance and capacitor parameters of a quasi-Z source network, design of voltage and current grades of an H-bridge inverter, design of a Z-source network diode, calculation of loss of a quasi-Z source inverter and the like. The design method is based on the voltage and power requirements of a user, application of the photovoltaic power generation system and the local climatic characteristics. According to the designed energy storage quasi-Z source single-phase photovoltaic power generation system, the requirement on the 1:2 wide range variation of the voltage of a photovoltaic battery can be met; no matter how the voltage of the photovoltaic battery changes, the system can output a voltage required by a load; and the energy storage quasi-Z source single-phase photovoltaic power generation system is suitable for the requirement for completing voltage rising/reduction, inversion and energy storage by the single-stage power conversion. The invention provides a simple, convenient, effective and rapid method for designing and implementing the energy storage quasi-Z source single-phase photovoltaic power generation system.

Description

Design method of energy storage type quasi-Z source single-phase photovoltaic power generation system
Technical Field
The invention relates to the technical field of photovoltaic power generation, in particular to a design method of an energy storage type quasi-Z source single-phase photovoltaic power generation system.
Background
Photovoltaic power generation is an ideal sustainable energy source, and a power converter/inverter is indispensable in the development and utilization process of the photovoltaic power generation. However, in general, the output voltage of the photovoltaic cell can vary by a factor of 2, and the use of a conventional single-stage inverter structure will result in doubling the design capacity of the inverter. If a double-stage structure is adopted, the introduced DC/DC converter increases the cost and reduces the efficiency. To this end, researchers have begun to develop new technologies that overcome these problems with Z-source and quasi-Z-source inverters because they implement a conventional two-stage conversion function consisting of DC/DC and inverter in the form of a single-stage power conversion, do not increase inverter capacity, and are compatible with conventional systems in the photovoltaic power generation field.
On the other hand, the photovoltaic power generation has strong dependence on illumination and temperature, and because the illumination and temperature change is abnormal, the voltage and power output by the photovoltaic cell change in a wide range, and the direct grid connection or independent power supply can cause negative effects on a power grid or a load. Therefore, in addition to the scheme that the traditional independent photovoltaic power generation system applies the energy storage battery, the energy storage battery technology is also adopted in the grid-connected solar power generation system in recent years to buffer energy and stabilize grid-connected power. In a common method, an energy storage battery is connected to a direct current side through a bidirectional DC/DC converter to achieve a grid-connected power stabilizing function, but a set of DC/DC converter is additionally added to increase the cost of a system. In order to overcome the problem, an energy storage battery is connected with a direct capacitor in parallel in an invention patent [ application number 201010234868.X, a single-stage buck-boost energy storage type photovoltaic grid-connected power generation control system ], so that single-stage power conversion is realized to finish buck-boost, inversion and energy storage. In the system, the energy storage battery is directly connected in parallel to the capacitor, additional equipment is not needed, and the system is economical and practical. However, no literature has been provided so far on how to design parameters in the system, such as energy storage battery voltage, capacity, photovoltaic battery voltage level, modulation index, loss analysis of capacitors, inductors, power switching devices, and the like. For an energy storage type photovoltaic grid-connected power generation control system, the determination of the parameters is important.
Disclosure of Invention
In order to solve the above problems, the present invention discloses a design method of an energy storage type quasi-Z source single-phase photovoltaic power generation system, which includes: the power supply comprises an energy storage battery, an H-bridge inverter, a quasi-Z source network diode, a first electrolytic capacitor, a second electrolytic capacitor, a first inductor, a second inductor, an LC filter, a photovoltaic battery, a power grid and a local load; the LC filter comprises an output filter inductor and an output filter capacitor; the negative electrode of the second electrolytic capacitor is connected with the anode of the quasi-Z source network diode, and the positive electrode of the second electrolytic capacitor is connected with the positive electrode of the H-bridge inverter; the cathode of the quasi-Z source network diode is simultaneously connected with the anode of the first electrolytic capacitor and the second inductor; the other end of the second inductor is connected to the positive electrode of the H-bridge inverter; the negative electrode of the first electrolytic capacitor is connected with the negative electrode of the H-bridge inverter; one end of the first inductor is connected with the anode of the photovoltaic cell; the other end of the first inductor is connected with the cathode of the second electrolytic capacitor; the output of the H-bridge inverter is merged into a power grid or supplies power to a local load after passing through an LC filter; the energy storage battery is bridged at two ends of the first electrolytic capacitor, and the anode of the energy storage battery is connected with the anode of the first electrolytic capacitor; based on the requirements of user voltage and power, the application of a photovoltaic power generation system and the local climate characteristics, the method comprises the steps of energy storage battery voltage and capacity parameter design required by the system, photovoltaic battery module selection, quasi-Z source network inductance and capacitance parameter design, H bridge inverter voltage and current grade design, Z-source network diode design, quasi-Z source inverter loss calculation and the like.
Further, as a preferred option, the H-bridge inverter voltage and current class design includes the following steps:
step 1, calculating the voltage amplitude v output by the single-phase inverter according to the load voltage or the grid voltage at the grid-connected positional;
Step 2, setting the working voltage variation range of the photovoltaic cell as 1: 2 and the maximum photovoltaic cell voltage is Vin=valMinimum is Vin=valAnd/2, correspondingly, when the photovoltaic cell voltage is maximum, the inverter modulation index M =1, the through duty ratio D =0, and the peak value of the direct-current bus voltage is VPN=valWhen the photovoltaic cell voltage is minimum, the direct-through duty ratio D =1/3, the inverter modulation index M =2/3 and the peak value of the direct-current bus voltage is VPN=1.5*val
Further, as a preferred option, the designing of the capacitance and inductance parameters includes:
step 3, calculating the capacitance C1Voltage and parallel battery voltage VC1=VB=val
Step 4, calculating the maximum voltage peak value V of the direct current busPN=1.5×val
Step 5, calculating the capacitance C2Maximum value of voltage VC2=0.5×val
Step 6, maximum through duty cycle D = 1/3.
Further, as a preferred option, the photovoltaic cell module includes:
step 7, depending on the load orGrid-connected power PoConsidering that the maximum power occurs at the maximum voltage, the photovoltaic cell current is
Figure BDA00001669227700031
Step 8, when the energy storage battery discharges and the photovoltaic power is insufficient, according to the design, the minimum working voltage of the photovoltaic battery is valSetting the supplied current to be one k times of the maximum power when the minimum power of the photovoltaic cell is the minimum power when the minimum illumination intensity of the photovoltaic cell is allowed to work; then P is to be outputoWhen power is supplied, the battery needs to supply power PB=Po-0.5×val×iL1K, the battery current is IB=PB/VB(ii) a Then inductance L2Has a current of iL2=iL1+iB
Further, as a preferable option, the energy storage battery voltage and capacity parameter design includes:
step 9, determining the capacity of the storage battery, applying statistical data, and determining the capacity of the storage battery according to local climate characteristics and the application of a designed system; if the designed photovoltaic system is required to be under the sunshine condition at a certain place, the photovoltaic system is also supplied with power to a local load/power grid and is also supplied with the power P on average every dayxThe power of the battery is charged for x hours for use at night without sunshine, and the discharge depth of the battery is y percent each time, the required battery capacity is [ P ]x×x/val]/(1-y%)(Ah)。
Further, as a preferred option, the photovoltaic cell module includes:
step 10, determining photovoltaic cell modules and the number of the photovoltaic cell modules, selecting the photovoltaic cell modules, and determining the maximum working voltage v in the maximum power point of the photovoltaic cell modules according to the local climate characteristicspvAnd a maximum operating current ipvThen the number of photovoltaic cells can be calculated asTaking the integer to obtain n, and obtaining the integer,
Figure BDA00001669227700042
and taking an integer to obtain m, wherein the number of the photovoltaic cell modules is m x n.
Further, as a preferred option, the designing of the capacitance and inductance parameters includes:
step 11, capacitor C2The design is that the system adopts a constant straight-through zero vector modulation method, and the ripple frequency of the capacitor voltage on the Quasi-Z network is 2fs(ii) a In a steady state, the initial value and the final value of the capacitor voltage in one period are equal; taking a through case as an example, the Quasi-Z network capacitor C2Ripple Δ V of voltageC2Is composed of
Figure BDA00001669227700043
Wherein,
Figure BDA00001669227700044
-iL1=iC2,fsis a carrier frequency, and thenIf the ripple of the given capacitor voltage is DeltaVC2≤αVC2Then there is
Figure BDA00001669227700051
To suppress the double frequency voltage ripple, a capacitor is required
Figure BDA00001669227700052
In the formula, epsilon is the voltage ripple of two times frequencyPNF is the load or grid voltage frequency, then since the capacitance C is greater thanAnd a capacitor C1In parallel with the battery, so that the capacitor C2Is designed as <math> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>o</mi> </msub> <mrow> <mn>4</mn> <mi>&pi;f</mi> <msubsup> <mi>V</mi> <mi>PN</mi> <mn>2</mn> </msubsup> <mi>&epsiv;</mi> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
Step 12, capacitor C1The design is that the system adopts a constant straight-through zero vector modulation method, and the ripple frequency of the capacitor voltage on the Quasi-Z network is 2fs(ii) a In steady state, the initial value and the final value of the capacitor voltage in one period are equal, taking the direct connection as an example, the Quasi-Z network capacitor C1Ripple Δ V of voltageC1Is composed of
Figure BDA00001669227700055
Wherein,
Figure BDA00001669227700056
iC1=iB-iL2,fsis a carrier frequency, and then
Figure BDA00001669227700057
If the ripple of the given capacitor voltage is DeltaVC1≤αVC1Then there is <math> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>B</mi> </msub> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mfrac> <mi>D</mi> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> <mi>&alpha;</mi> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
Step 13, inductor L2In the design of (1), in a steady state, the initial value and the final value of the inductive current in a period are equal. Taking the case of a through connection as an example, the ripple Δ i of the inductor current of the Quasi-Z networkL2Is composed of
Figure BDA00001669227700059
Wherein,
Figure BDA000016692277000510
vL2=VC1is then provided with
Figure BDA000016692277000511
If the ripple of the given inductive current is Δ iL2≤biL2Then there is
Figure BDA000016692277000512
Step 14, designing an inductor L1, wherein in a steady state, the initial value and the final value of the inductor current in one period are equal, and taking the direct connection as an example, the ripple wave delta i of the inductor current of the Quasi-Z networkL1Is composed of
Figure BDA000016692277000513
Wherein,
Figure BDA000016692277000514
Vin+VC2=vL1is then provided with
Figure BDA000016692277000515
If the ripple of the given inductive current is Δ iL1≤biL1Then there is
Figure BDA00001669227700061
Step 15, parameters of a diode in the Quasi-Z network, wherein the diode in the Quasi-Z network bears back voltage and is turned off in a direct-connection state, and is turned on in a non-direct-connection state, so that the diode can be designed according to voltage at two ends of the diode in the direct-connection state and current flowing through the diode in the non-direct-connection state; diode bearing in straight-through stateIs subjected to back pressure of VPNThe current through the diode in the non-through state is iD≤iL1+iC2=iL1+iL2-idIn the conventional zero vector time, idWhen =0, the maximum current flowing through the diode is iD=iL1+iL2
Step 16, parameters of the inverter power device are determined according to load or grid-connected power PoCalculating the effective value of the load current according to the grid voltage at the load or grid connection
Figure BDA00001669227700062
Calculating the peak value V of the DC bus voltage according to the step 4PNAnd the calculated load current effective value is used as the selected voltage and current parameters of the inverter power device.
Further, as a preference, the quasi-Z source inverter loss calculation includes:
step 17, estimating the loss of the energy storage type quasi-Z source single-phase photovoltaic inverter, wherein the loss can be calculated according to devices by 4 IGBTs, anti-parallel diodes of the IGBTs and a Z-source network diode;
1) the loss estimation of 4 IGBTs and anti-parallel diodes thereof can be divided into loss in the traditional sense and loss caused by direct connection, the loss in the traditional sense comprises switching loss and conduction loss, and the switching loss is
<math> <mrow> <msub> <mi>P</mi> <mi>SW</mi> </msub> <mo>=</mo> <mfrac> <mn>4</mn> <mi>&pi;</mi> </mfrac> <msub> <mi>f</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>ON</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow> <mi>OFF</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow> <mi>OFF</mi> <mo>,</mo> <mi>D</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>V</mi> <mi>PN</mi> </msub> <msub> <mi>V</mi> <mi>ref</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>i</mi> <mi>L</mi> </msub> <msub> <mi>i</mi> <mi>ref</mi> </msub> </mfrac> <mo>,</mo> </mrow> </math> In the formula, EON,I、Eoff,I、EOFF,DRespectively at voltage V for power devicesrefAnd current irefThe turn-on loss, turn-off loss and diode reverse recovery loss energy of the time can be obtained from a device manual; i.e. iLIs the peak value of the load current iL=1.414*ia,fsIs the switching frequency; for the conduction loss of each IGBT in the conventional sense, the conduction loss is calculated according to the following formula
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>CV</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>CE</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <msub> <mi>i</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mi>&pi;M</mi> <mn>4</mn> </mfrac> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>r</mi> <mi>CE</mi> </msub> <msubsup> <mi>i</mi> <mi>L</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>&pi;</mi> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mn>3</mn> </mfrac> <mo>-</mo> <mfrac> <mi>&pi;D</mi> <mn>4</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>CV</mi> <mo>,</mo> <mi>D</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>F</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mi>&pi;M</mi> <mn>4</mn> </mfrac> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>r</mi> <mi>F</mi> </msub> <mo>&CenterDot;</mo> <msubsup> <mi>i</mi> <mi>L</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>&pi;</mi> <mn>4</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mn>3</mn> </mfrac> <mo>-</mo> <mfrac> <mi>&pi;D</mi> <mn>4</mn> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> In the formula, VCE0、VF,0The saturation voltage drop and the conduction voltage drop of the IGBT and the diode are obtained; r isCE、rFThe on-resistance of the IGBT and the diode; m and D are respectively a modulation index and a through duty ratio, and the conduction loss of the 4 IGBTs and the diodes thereof is PCV=4*(PCV,I+PCV,D) For the losses caused by shoot-through, only the switching losses and conduction losses from the IGBT need to be calculated, i.e. the switching losses are <math> <mrow> <msub> <mi>P</mi> <mrow> <mi>SW</mi> <mo>,</mo> <mi>SH</mi> </mrow> </msub> <mo>=</mo> <mn>4</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>ON</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow> <mi>OFF</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>V</mi> <mi>PN</mi> </msub> <msub> <mi>V</mi> <mi>ref</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mi>ref</mi> </msub> </mfrac> <mo>,</mo> </mrow> </math> Conduction loss of P CV , SH = 4 * ( V CE , 0 i L 1 D + r CE i L 1 2 D + r CE i L 2 D 8 )
2) The loss of the Z-Source network diode and the conduction loss of the Z-Source network diode of each module are <math> <mrow> <msub> <mi>P</mi> <mrow> <mi>CV</mi> <mo>,</mo> <mi>D</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>DF</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>[</mo> <msub> <mrow> <mn>2</mn> <mi>i</mi> </mrow> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>Mi</mi> <mi>L</mi> </msub> <mn>2</mn> </mfrac> <mo>)</mo> <mo>+</mo> <msub> <mi>r</mi> <mi>DF</mi> </msub> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mi>D</mi> </mrow> <mn>2</mn> </mfrac> <mo>[</mo> <msubsup> <mrow> <mn>8</mn> <mi>i</mi> </mrow> <mrow> <mi>L</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>i</mi> <mi>L</mi> <mn>2</mn> </msubsup> <mo>]</mo> <mo>-</mo> <msub> <mi>r</mi> <mi>DF</mi> </msub> <mfrac> <mrow> <mn>8</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> </mrow> <mi>&pi;</mi> </mfrac> <msub> <mi>i</mi> <mi>L</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mrow> </math> In the formula, VDF,0Is the conduction voltage drop of the Z-source network diode, rDFIs the on-resistance of a Z-source network diode with reverse recovery losses of
Figure BDA00001669227700076
In the formula, ErecFor Z-source network diodes in IFMAnd VRReverse recovery of time losses energy; total loss of PSW+PCV+PSW,SH+PCV,SH+PCV,D+PCV,DRBy estimating the losses, alternative devices can be compared as conditions for optimizing device selection.
By the method, the energy storage type quasi-Z source single-phase photovoltaic power generation system can be designed simply, conveniently, effectively and quickly.
Drawings
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein the accompanying drawings are included to provide a further understanding of the invention and form a part of this specification, and wherein the illustrated embodiments and descriptions thereof are intended to illustrate and not limit the invention, wherein:
FIG. 1 is a schematic structural diagram of an energy storage quasi-Z source single-phase photovoltaic power generation inverter;
fig. 2 is a design method of the energy storage type quasi-Z source single-phase photovoltaic power generation system.
Detailed Description
Embodiments of the present invention are described below with reference to fig. 1-2.
In order to make the aforementioned objects, features and advantages more comprehensible, the present invention is described in detail below with reference to the accompanying drawings and the detailed description.
The embodiment of the design method of the energy storage type quasi-Z source single-phase photovoltaic power generation control system.
As shown in fig. 1, the energy storage quasi-Z source single-phase photovoltaic power generation inverter according to the present invention includes: the system comprises an energy storage battery, an H-bridge inverter, a quasi-Z source network diode, a first electrolytic capacitor C1, a second electrolytic capacitor C2, a first inductor L1, a second inductor L2, an LC filter, a photovoltaic battery, a power grid and a local load; the LC filter comprises an output filter inductor LfAnd an output filter capacitor CfComposition is carried out; the cathode of the second electrolytic capacitor C2 is connected with the anode of the quasi-Z source network diode, and the anode of the second electrolytic capacitor C2 is connected with the anode of the H-bridge inverter; the cathode of the quasi-Z source network diode is simultaneously connected with the anode of the first electrolytic capacitor C1 and the second inductor L2; the other end of the second inductor L2 is connected to the positive electrode of the H-bridge inverter; the negative electrode of the first electrolytic capacitor C1 is connected with the negative electrode of the H-bridge inverter; one end of the first inductor L1 is connected with the anode of the photovoltaic cell; the other end of the first inductor L1 is connected with the negative electrode of the second electrolytic capacitor C2; the output of the H-bridge inverter is merged into a power grid or supplies power to a local load after passing through an LC filter; the energy storage battery is connected across two ends of the first electrolytic capacitor C1, and the anode of the energy storage battery is connected to the anode of the first electrolytic capacitor C1.
As shown in fig. 2, a method for designing an energy storage type quasi-Z source single-phase photovoltaic power generation system includes:
s1, acquiring the voltage and power requirements of users, the application of the photovoltaic power generation system and the local climate characteristics;
s2, designing voltage and capacity parameters of the energy storage battery;
s3, selecting a photovoltaic cell module;
s4, designing inductance and capacitance parameters of the quasi-Z source network;
s5, designing voltage and current grades of the H-bridge inverter;
s6, designing a Z-source network diode;
and S7, calculating loss of the quasi-Z source inverter.
Examples
The aim is to design an energy storage type quasi-Z source single-phase photovoltaic power generation control system, wherein the phase voltage of a load/power grid is 120V, and the power is 1700W. Then it can be determined in the following steps:
step 1, calculating single-phase voltage amplitude val=120×1.414=170V;
Step 2, setting the photovoltaic cell working voltage variation range 1: 2, and the maximum photovoltaic cell voltage is 170V and the minimum is 85V. Correspondingly, when the photovoltaic cell voltage is maximum, the inverter modulation index M =1, the through duty ratio D =0, and the peak value of the direct current bus voltage is
VPN=170
V when the photovoltaic cell voltage is minimumin=85V, through duty ratio D =1/3, inverter modulation index M =2/3, and dc bus voltage peak value is
VPN=85*3=255V
Step 3, designing a capacitor C1Voltage ofAnd parallel battery voltage
VC1=VB=val=170 V
Step 4, calculating the maximum voltage peak value of the direct current bus
VPN=170+85=255 V
Step 5, calculating the capacitance C2A maximum value of voltage of
VC2=85 V
Step 6, maximum through duty cycle D = 1/3;
step 7, according to the load or the grid-connected power POThe photovoltaic cell assembly current is, considering that the maximum power occurs at the maximum voltage
i L 1 = P o V in = P o v al = 1700 170 = 10 A
Step 8, when the energy storage battery discharges and the photovoltaic power is insufficient, according to the design, the lowest working voltage of the photovoltaic battery is 85V, and the current provided when the lowest photovoltaic power is set is one third of the current provided when the maximum power is provided (for example, the maximum illumination is 1000W/m)2Minimum 200W/m2). Then the battery needs to provide power of 1700W to be output
PB=1700-85×10/3=1416.7W
The battery current is
iB=PB/VB=8.3A
Then inductance L2Current of
iL2=iL1+iB=8.3+3.3=11.6 A
Step 9, determining the capacity of the storage battery
And (4) determining the capacity of the storage battery by applying statistical data and combining the use of the designed system according to the local climate characteristics. For example, the photovoltaic system is required to be designed to charge the battery with 1000W of power for 4 hours per day under the sunshine condition of a certain place, besides supplying power to a local load/power grid, so as to be used when the sunshine is absent at night, and the discharging depth of the battery is y% each time. The battery capacity is required to be
[1000*4/170]/(1-y%)=23.5/(1-y%)Ah
Step 10, determining photovoltaic cell modules and the number thereof
Suppose a photovoltaic panel is at S =1000W/m2T =25 °, maximum power point voltage vpv42.4V, maximum power point current ipvAnd = 5A. As the temperature of the panel rises, its maximum power point voltage drops, considering 1: 2, the minimum is vpv=21.2V。
Then, the number of photovoltaic cells can be calculated as
n = v al v pv = 170 42.4 = 4 , m = 10 5 = 2
The number of photovoltaic cell modules is m × n = 8.
Step 11, capacitor C2Design of
The system adopts a constant direct-through zero vector modulation method, so that the ripple frequency of the capacitor voltage on the Quasi-Z network is 2fs
In steady state, the initial and final values of the capacitor voltage are equal during a cycle. Taking a through case as an example, the Quasi-Z network capacitor C2Ripple Δ V of voltageC2Is composed of
<math> <mrow> <msub> <mi>&Delta;V</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <mfrac> <mi>&Delta;t</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </mfrac> </mrow> </math>
Wherein,-iL1=iC2,fsis a carrier frequency, and then
<math> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mfrac> <mi>D</mi> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> <mi>&Delta;</mi> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </math>
If the ripple of the given capacitor voltage is
ΔVC2≤αVC2
Then there is
<math> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mfrac> <mi>D</mi> <mrow> <msub> <mrow> <mn>2</mn> <mi>f</mi> </mrow> <mi>s</mi> </msub> <mi>&alpha;</mi> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </math>
If α =1% is set, carrier frequency fs=10kHz, then
<math> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>&GreaterEqual;</mo> <mn>10</mn> <mo>&times;</mo> <mfrac> <mrow> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> <mrow> <mn>2</mn> <mo>&times;</mo> <mn>10000</mn> <mo>&times;</mo> <mn>0.01</mn> <mo>&times;</mo> <mn>85</mn> </mrow> </mfrac> <mo>=</mo> <mn>196</mn> <mi>&mu;F</mi> </mrow> </math>
For a single phase system, there is a double frequency ripple. To pairIn the system of FIG. 1, capacitor C1Connected in parallel with the energy storage battery and then connected with the capacitor C2Are connected in series. To suppress double frequency ripple, the total capacitance required is
<math> <mrow> <mi>C</mi> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>o</mi> </msub> <mrow> <mn>4</mn> <mi>&pi;f</mi> <msub> <mi>V</mi> <mi>PN</mi> </msub> <mi>&Delta;</mi> <msub> <mi>V</mi> <mi>PN</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mn>0</mn> </msub> <mrow> <mn>4</mn> <mi>&pi;f</mi> <msubsup> <mi>V</mi> <mi>PN</mi> <mn>2</mn> </msubsup> <mi>&epsiv;</mi> </mrow> </mfrac> </mrow> </math>
In the formula, epsilon is the voltage ripple of two times frequencyPNRatio of (1), Δ VPN=εVPNAnd f is the load or grid voltage frequency. Setting the pulse ratio of double frequency voltage to be epsilon =1%, f is 50Hz, VPN=255V,PPV=1700W, then
<math> <mrow> <mi>C</mi> <mo>=</mo> <mfrac> <mn>1700</mn> <mrow> <mn>4</mn> <mi>&pi;</mi> <mo>&times;</mo> <mn>50</mn> <mo>&times;</mo> <msup> <mn>255</mn> <mn>2</mn> </msup> <mo>&times;</mo> <mn>1</mn> <mo>%</mo> </mrow> </mfrac> <mo>=</mo> <mn>4.16</mn> <mi>mF</mi> </mrow> </math>
Due to the capacitance C1The energy storage battery is connected in parallel and can be regarded as infinite capacitance during design. Therefore, the capacitanceC2It was 4.16 mF.
Step 12, capacitor C1Design of
The system adopts a constant direct-through zero vector modulation method, so that the ripple frequency of the capacitor voltage on the Quasi-Z network is 2fs
In steady state, the initial and final values of the capacitor voltage are equal during a cycle. Taking a through case as an example, the Quasi-Z network capacitor C1Ripple Δ V of voltageC1Is composed of
<math> <mrow> <mi>&Delta;</mi> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <mfrac> <mi>&Delta;t</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </mfrac> </mrow> </math>
Wherein,
Figure BDA00001669227700141
iC1=iB-iL2,fsis a carrier frequency, and then
<math> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>B</mi> </msub> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mfrac> <mi>D</mi> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> <mi>&Delta;</mi> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </math>
If the ripple of the given capacitor voltage is
ΔVC1≤αVC1
Then there is
<math> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>B</mi> </msub> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mfrac> <mi>D</mi> <mrow> <msub> <mrow> <mn>2</mn> <mi>f</mi> </mrow> <mi>s</mi> </msub> <mi>&alpha;</mi> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </math>
Setting other parameters as above, and IB-IL2=-IL1=10A, then
<math> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>&times;</mo> <mn>10</mn> <mo>&times;</mo> <mfrac> <mrow> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> <mrow> <mn>2</mn> <mo>&times;</mo> <mn>10000</mn> <mo>&times;</mo> <mn>0.01</mn> <mo>&times;</mo> <mn>170</mn> </mrow> </mfrac> <mo>=</mo> <mn>98</mn> <mi>&mu;F</mi> </mrow> </math>
Step 13, inductor L2Design (2) of
In a steady state, the initial value and the final value of the inductive current in one period are equal. Taking the case of a through connection as an example, the ripple Δ i of the inductor current of the Quasi-Z networkL2Is composed of
<math> <mrow> <mi>&Delta;</mi> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>v</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mfrac> <mi>&Delta;t</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </mfrac> </mrow> </math>
Wherein,vL2=VC1is then provided with
<math> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <mfrac> <mi>D</mi> <mrow> <msub> <mrow> <mn>2</mn> <mi>f</mi> </mrow> <mi>s</mi> </msub> <mi>&Delta;</mi> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </math>
If the ripple of the given inductor current is
ΔiL2≤biL2
Then there is
<math> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <mfrac> <mi>D</mi> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> <mi>b</mi> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </math>
Set b =20%, iL2Then =11.6A
<math> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <mn>170</mn> <mo>&times;</mo> <mfrac> <mrow> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> <mrow> <mn>2</mn> <mo>&times;</mo> <mn>10000</mn> <mo>&times;</mo> <mn>0.2</mn> <mo>&times;</mo> <mn>11.6</mn> </mrow> </mfrac> <mo>=</mo> <mn>1.22</mn> <mi>mH</mi> </mrow> </math>
Step 14, inductor L1Design (2) of
In a steady state, the initial value and the final value of the inductive current in one period are equal. Taking the case of a through connection as an example, the ripple Δ i of the inductor current of the Quasi-Z networkL1Is composed of
<math> <mrow> <msub> <mi>&Delta;i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>v</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mfrac> <mi>&Delta;t</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </mfrac> </mrow> </math>
Wherein,
Figure BDA00001669227700154
Vin+VC2=vL1is then provided with
<math> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>in</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mfrac> <mi>D</mi> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> <mi>&Delta;</mi> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </math>
If the ripple of the given inductor current is
ΔiL1≤biL1
Then there is
<math> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>in</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mfrac> <mi>D</mi> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> <mi>b</mi> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </math>
Vin=85V, current iL1=10A, then
<math> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <mn>85</mn> <mo>+</mo> <mn>85</mn> <mo>)</mo> </mrow> <mo>&times;</mo> <mfrac> <mrow> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> <mrow> <mn>2</mn> <mo>&times;</mo> <mn>10000</mn> <mo>&times;</mo> <mn>0.2</mn> <mo>&times;</mo> <mn>10</mn> </mrow> </mfrac> <mo>=</mo> <mn>1.42</mn> <mi>mH</mi> </mrow> </math>
Step 15, parameters of diodes in the Quasi-Z network
The diodes in the Quasi-Z network are turned off under reverse voltage in a through state and turned on in a non-through state. The diode can therefore be designed according to the voltage across it in the through state and the current it flows in the non-through state.
Maximum V of reverse voltage borne by the diode in the direct-through statePN=255V。
The current through the diode in the non-shoot-through state is
iD≤iL1+iC2=iL1+iL2-id
In the conventional zero vector time, idWhen the current is not less than 0, the maximum current flowing through the diode is
iD=iL1+iL2=20 A
Step 16, parameters of inverter power device
According to load or grid-connected power PoCalculating the effective value of the load current according to the grid voltage at the load or grid connection
<math> <mrow> <msub> <mi>i</mi> <mi>a</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <msub> <mi>P</mi> <mi>o</mi> </msub> </mrow> <msub> <mi>v</mi> <mi>al</mi> </msub> </mfrac> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <mo>&times;</mo> <mn>1700</mn> </mrow> <mn>170</mn> </mfrac> <mo>=</mo> <mn>14.1</mn> <mi>A</mi> </mrow> </math>
Calculating the peak value V of the DC bus voltage according to the step 4PNAnd the calculated load current effective value is used as the selected voltage and current parameters of the inverter power device.
Step 17, estimating loss of the energy storage type quasi-Z source photovoltaic inverter
For the circuit shown in fig. 1, there are 4 IGBTs (and their anti-parallel diodes), one Z-source network diode, whose losses can be calculated separately from device to device.
1) Loss estimation of 4 IGBTs (and their anti-parallel diodes)
This loss can be classified into loss in the conventional sense and loss due to shoot-through. Losses in the conventional sense include switching losses and conduction losses, and switching losses are
<math> <mrow> <msub> <mi>P</mi> <mi>SW</mi> </msub> <mo>=</mo> <mfrac> <mn>4</mn> <mi>&pi;</mi> </mfrac> <msub> <mi>f</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>ON</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow> <mi>OFF</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow> <mi>OFF</mi> <mo>,</mo> <mi>D</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>V</mi> <mi>PN</mi> </msub> <msub> <mi>V</mi> <mi>ref</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>i</mi> <mi>L</mi> </msub> <msub> <mi>i</mi> <mi>ref</mi> </msub> </mfrac> </mrow> </math>
In the formula, EON,I、Eoff,I、EOFF,DRespectively at voltage V for power devicesrefAnd current irefTurn-on loss, turn-off loss and diode reverse recovery loss energy in time; i.e. iLIs the peak value of the load current iL=ia*1.414A,fsIs the switching frequency. And (4) selecting the IGBT module SGH30N60RUFD as an inverter power switch according to the voltage and current parameters calculated in the steps 4 and 16, and calculating the loss of the inverter power switch. Providing data according to the device, at Vref=300V,irefWhen the voltage is 30A, the switching loss energy at the time of conduction is EON,IWhen the voltage is 0.919mJ/P, the switching loss energy is Eoff,I0.814mJ/P, reverse recovery switching loss energy EOFF,D=0.067mJ/P。iL=14.1*1.414=19.94A,VPN=255V,fsIf =10kHz, P is calculatedSW=12.9W。
For the conduction loss of each IGBT in the conventional sense, the conduction loss is calculated according to the following formula
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>CV</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>CE</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <msub> <mi>i</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mo>&CenterDot;</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mi>&pi;</mi> </msubsup> <mi>sin</mi> <mi>&omega;t</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>M</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <mi>D</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>d&omega;t</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>r</mi> <mi>CE</mi> </msub> <msubsup> <mi>i</mi> <mi>L</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mo>&CenterDot;</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mi>&pi;</mi> </msubsup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mi>&omega;t</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>M</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <mi>D</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>d&omega;t</mi> </mrow> </math>
<math> <mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>CE</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <msub> <mi>i</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mi>&pi;M</mi> <mn>4</mn> </mfrac> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>r</mi> <mi>CE</mi> </msub> <msubsup> <mi>i</mi> <mi>L</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>&pi;</mi> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mn>3</mn> </mfrac> <mo>-</mo> <mfrac> <mi>&pi;D</mi> <mn>4</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>CV</mi> <mo>,</mo> <mi>D</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>F</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <msub> <mrow> <mo>&CenterDot;</mo> <mi>i</mi> </mrow> <mi>L</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mo>&CenterDot;</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mi>&pi;</mi> </msubsup> <mi>sin</mi> <mi>&omega;t</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mi>M</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <mi>D</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>d&omega;t</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>r</mi> <mi>F</mi> </msub> <msubsup> <mrow> <mo>&CenterDot;</mo> <mi>i</mi> </mrow> <mi>L</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mo>&CenterDot;</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mi>&pi;</mi> </msubsup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mi>&omega;t</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mi>M</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <mi>D</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>d&omega;t</mi> </mrow> </math>
<math> <mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>F</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mi>&pi;M</mi> <mn>4</mn> </mfrac> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>r</mi> <mi>F</mi> </msub> <mo>&CenterDot;</mo> <msubsup> <mi>i</mi> <mi>L</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>&pi;</mi> <mn>4</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mn>3</mn> </mfrac> <mo>-</mo> <mfrac> <mi>&pi;D</mi> <mn>4</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
In the formula, VCE0、VF,0The saturation voltage drop and the conduction voltage drop of the IGBT and the diode are obtained; r isCE、rFThe on-resistances of the IGBT and the diode respectively; m and D are modulation index and through duty, respectivelyAnd (4) the ratio. Due to VCE0=2.2V,VF,0=1.3V,rCE=0.02Ω,rF=0.01 Ω, M =2/3, D =1/3, the conduction loss of 4 IGBTs and diodes thereof is
PCV=4*(PCV,I+PCV,D)=45.8W
For the losses caused by shoot-through, only the switching losses and conduction losses from the IGBT need to be calculated, i.e. the switching losses are
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>SW</mi> <mo>,</mo> <mi>SH</mi> </mrow> </msub> <mo>=</mo> <mn>4</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>ON</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow> <mi>OFF</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>V</mi> <mi>PN</mi> </msub> <msub> <mi>V</mi> <mi>ref</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mi>ref</mi> </msub> </mfrac> <mo>=</mo> <mn>19.6</mn> <mi>W</mi> </mrow> </math>
Conduction loss of
P CV , SH = 4 * ( V CE , 0 i L 1 D + r CE i L 1 2 D + r CE i L 2 D 8 ) = 6.2 W
2) Losses in Z-source network diodes
The conduction loss of the Z-Source network diode of each module is
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>CV</mi> <mo>,</mo> <mi>D</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>DF</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>[</mo> <msub> <mrow> <mn>2</mn> <mi>i</mi> </mrow> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>Mi</mi> <mi>L</mi> </msub> <mn>2</mn> </mfrac> <mo>)</mo> <mo>+</mo> <msub> <mi>r</mi> <mi>DF</mi> </msub> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mi>D</mi> </mrow> <mn>2</mn> </mfrac> <mo>[</mo> <msubsup> <mrow> <mn>8</mn> <mi>i</mi> </mrow> <mrow> <mi>L</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>i</mi> <mi>L</mi> <mn>2</mn> </msubsup> <mo>]</mo> <mo>-</mo> <msub> <mi>r</mi> <mi>DF</mi> </msub> <mfrac> <mrow> <mn>8</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> </mrow> <mi>&pi;</mi> </mfrac> <msub> <mi>i</mi> <mi>L</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> </mrow> </math>
Having a reverse recovery loss of
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>CV</mi> <mo>,</mo> <mi>DR</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>E</mi> <mi>rec</mi> </msub> <msub> <mi>V</mi> <mi>PN</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&pi;i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&pi;</mi> <msub> <mi>I</mi> <mi>FM</mi> </msub> <msub> <mi>V</mi> <mi>R</mi> </msub> </mrow> </mfrac> <mn>2</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> </mrow> </math>
Selecting APT40DQ60B as a Z-source network diode according to the diode parameters calculated in the step 15, and calculating the current value of the diode in the IFM=30A,VRReverse recovery loss energy E in case of =600Vrec=0.06mJ/P,VPN=255V,VDF0= 1.7V. Then P isCV,D=14.7W,PCV,DR=0.124W。
Total loss of PSW+PCV+PSW,SH+PCV,SH+PCV,D+PCV,DR=118.2W。
By estimating the losses, alternative devices can be compared as one of the conditions for optimizing device selection.
From the above embodiments, it can be seen that the main parameters of the energy storage type quasi-Z source photovoltaic power generation system can be effectively designed according to the invention. When the voltage of the photovoltaic cell is low, the designed system boosts the voltage of the circuit to meet the load requirement; when the voltage of the photovoltaic cell is higher, the requirement can be met without boosting; at night, the energy storage battery may provide energy directly to the load. The whole system is realized by a single-stage power circuit, has the simplest structure and is low in cost. And the system is suitable for independent photovoltaic power generation and is also suitable for grid-connected photovoltaic power generation.
As described above, although the embodiments of the present invention have been described in detail, it will be apparent to those skilled in the art that many modifications are possible without substantially departing from the spirit and scope of the present invention. Therefore, such modifications are also all included in the scope of protection of the present invention.

Claims (8)

1. A design method of an energy storage type quasi-Z source single-phase photovoltaic power generation system comprises the following steps: the power supply comprises an energy storage battery, an H-bridge inverter, a quasi-Z source network diode, a first electrolytic capacitor, a second electrolytic capacitor, a first inductor, a second inductor, an LC filter, a photovoltaic battery, a power grid and a local load; the LC filter comprises an output filter inductor and an output filter capacitor; the negative electrode of the second electrolytic capacitor is connected with the anode of the quasi-Z source network diode, and the positive electrode of the second electrolytic capacitor is connected with the positive electrode of the H-bridge inverter; the cathode of the quasi-Z source network diode is simultaneously connected with the anode of the first electrolytic capacitor and the second inductor; the other end of the second inductor is connected to the positive electrode of the H-bridge inverter; the negative electrode of the first electrolytic capacitor is connected with the negative electrode of the H-bridge inverter; one end of the first inductor is connected with the anode of the photovoltaic cell; the other end of the first inductor is connected with the cathode of the second electrolytic capacitor; the output of the H-bridge inverter is merged into a power grid or supplies power to a local load after passing through an LC filter; the energy storage battery is bridged at two ends of the first electrolytic capacitor, and the anode of the energy storage battery is connected with the anode of the first electrolytic capacitor;
the method is characterized by comprising the steps of designing energy storage battery voltage and capacity parameters required by the system, selecting a photovoltaic battery module, designing quasi-Z source network inductance and capacitance parameters, designing the voltage and current grade of an H bridge inverter, designing a Z-source network diode and calculating the loss of the quasi-Z source inverter based on user voltage and power requirements, the application of a photovoltaic power generation system and local climate characteristics.
2. The design method of the energy storage type quasi-Z source single-phase photovoltaic power generation system according to claim 1, wherein the design of the voltage and current levels of the H-bridge inverter comprises the following steps:
step 1, calculating the voltage amplitude v output by the single-phase inverter according to the load voltage or the grid voltage at the grid-connected positional;
Step 2, setting the working voltage variation range of the photovoltaic cell to be 1: 2, and setting the maximum photovoltaic cell voltage to be Vin=valMinimum is Vin=valAnd/2, correspondingly, when the photovoltaic cell voltage is maximum, the inverter modulation index M =1, the through duty ratio D =0, and the peak value of the direct-current bus voltage is VPN=valWhen the photovoltaic cell voltage is minimum, the direct-through duty ratio D =1/3, the inverter modulation index M =2/3 and the peak value of the direct-current bus voltage is VPN=1.5*val。
3. The design method of the energy storage type quasi-Z source single-phase photovoltaic power generation system according to claim 1, wherein the capacitance and inductance parameter design comprises the following steps:
step 3, calculating the capacitance C1Voltage and parallel battery voltage VC1=VB=val
Step 4, calculating the maximum voltage peak value V of the direct current busPN=1.5×val
Step 5, calculating the capacitance C2Maximum value of voltage VC2=0.5×val
Step 6, maximum through duty cycle D = 1/3.
4. The design method of an energy storage type quasi-Z source single-phase photovoltaic power generation system according to claim 1, wherein the photovoltaic cell module selection comprises:
step 7, according to the load or the grid-connected power PoConsidering that the maximum power occurs at the maximum voltage, the photovoltaic cell current is
Figure FDA00001669227600021
Step 8, when the energy storage battery discharges and the photovoltaic power is insufficient, according to the design, the minimum working voltage of the photovoltaic battery is valSetting the supplied current to be one k times of the maximum power when the minimum power of the photovoltaic cell is the minimum power when the minimum illumination intensity of the photovoltaic cell is allowed to work; then P is to be outputoWhen power is supplied, the battery needs to supply power PB=Po-0.5×val×iL1K, the battery current is IB=PB/VB(ii) a Then inductance L2Has a current of iL2=iL1+iB
5. The method for designing an energy storage type quasi-Z source single-phase photovoltaic power generation system according to claim 1, wherein the energy storage battery voltage and capacity parameter design comprises:
step 9, determining the capacity of the storage battery, applying statistical data, and determining the use of the designed system according to the local climate characteristicsThe capacity of the battery; if the designed photovoltaic system is required to be under the sunshine condition at a certain place, the photovoltaic system is also supplied with power to a local load/power grid and is also supplied with the power P on average every dayxThe power of the battery is charged for x hours for use at night without sunshine, and the discharge depth of the battery is y percent each time, the required battery capacity is [ P ]x×x/val]/(1-y%)(Ah)。
6. The design method of an energy storage type quasi-Z source single-phase photovoltaic power generation system according to claim 1, wherein the photovoltaic cell module selection comprises:
step 10, determining photovoltaic cell modules and the number of the photovoltaic cell modules, selecting the photovoltaic cell modules, and determining the maximum working voltage v in the maximum power point of the photovoltaic cell modules according to the local climate characteristicspvAnd a maximum operating current ipvThen the number of photovoltaic cells can be calculated as
Figure FDA00001669227600031
Taking the integer to obtain n, and obtaining the integer,
Figure FDA00001669227600032
get the whole
And counting to obtain m, wherein the number of the photovoltaic cell modules is m x n.
7. The design method of the energy storage type quasi-Z source single-phase photovoltaic power generation system according to claim 1, wherein the capacitance and inductance parameter design comprises the following steps:
step 11, capacitor C2The design is that the system adopts a constant straight-through zero vector modulation method, and the ripple frequency of the capacitor voltage on the Quasi-Z network is 2fs(ii) a In a steady state, the initial value and the final value of the capacitor voltage in one period are equal; taking a through case as an example, the Quasi-Z network capacitor C2Ripple Δ V of voltageC2Is composed of
Figure FDA00001669227600033
Wherein,-iL1=iC2,fsis a carrier frequency, and thenIf the ripple of the given capacitor voltage is DeltaVC2≤αVC2Then there is
Figure FDA00001669227600036
To suppress the double frequency voltage ripple, a capacitor is requiredIn the formula, epsilon is the voltage ripple of two times frequencyPNF is the load or grid voltage frequency, then since the capacitance C is greater than
Figure FDA00001669227600038
And a capacitor C1In parallel with the battery, so that the capacitor C2Is designed as
Step 12, capacitor C1The design is that the system adopts a constant straight-through zero vector modulation method, and the ripple frequency of the capacitor voltage on the Quasi-Z network is 2fs(ii) a In steady state, the initial value and the final value of the capacitor voltage in one period are equal, taking the direct connection as an example, the Quasi-Z network capacitor C1Ripple Δ V of voltageC1Is composed of
Figure FDA00001669227600041
Wherein,
Figure FDA00001669227600042
iC1=iB-iL2fsis a carrier frequency, and then
Figure FDA00001669227600043
If the ripple of the given capacitor voltage is DeltaVC1≤αVC1Then there is <math> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>B</mi> </msub> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mfrac> <mi>D</mi> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> <mi>&alpha;</mi> <msub> <mi>V</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
Step 13, inductor L2In the design of (1), in a steady state, the initial value and the final value of the inductive current in a period are equal. Taking the case of a through connection as an example, the ripple Δ i of the inductor current of the Quasi-Z networkL2Is composed of
Figure FDA00001669227600045
Wherein,
Figure FDA00001669227600046
vL2=VC1is then provided with
Figure FDA00001669227600047
If the ripple of the given inductive current is Δ iL2≤biL2Then there is
Figure FDA00001669227600048
Step 14, inductor L1In steady state, the initial value and the final value of the inductive current in one period are equal, taking the straight-through time as an example, the ripple wave delta i of the inductive current of the Quasi-Z networkL1Is composed of
Figure FDA00001669227600049
Wherein,
Figure FDA000016692276000410
Vin+VC2=vL1is then provided with
Figure FDA000016692276000411
If the ripple of the given inductive current is Δ iL1≤biL1Then there is
Figure FDA000016692276000412
Step 15, parameters of a diode in the Quasi-Z network, wherein the diode in the Quasi-Z network bears back voltage and is turned off in a direct-connection state, and is turned on in a non-direct-connection state, so that the diode can be designed according to voltage at two ends of the diode in the direct-connection state and current flowing through the diode in the non-direct-connection state; the diode bears reverse voltage V in the direct-through statePNThe current through the diode in the non-through state is iD≤iL1+iC2=iL1+iL2-idIn the conventional zero vector time, idWhen =0, the maximum current flowing through the diode is iD=iL1+iL2
Step 16, parameters of the inverter power device are determined according to load or grid-connected power PoCalculating the effective value of the load current according to the grid voltage at the load or grid connectionCalculating the peak value V of the DC bus voltage according to the step 4PNAnd the calculated load current effective value is used as the selected voltage and current parameters of the inverter power device.
8. The method for designing an energy storage type quasi-Z source single-phase photovoltaic power generation system according to claim 1, wherein the quasi-Z source inverter loss calculation comprises:
step 17, estimating the loss of the energy storage type quasi-Z source single-phase photovoltaic inverter, wherein the loss can be calculated according to devices by 4 IGBTs, anti-parallel diodes of the IGBTs and a Z-source network diode;
1) the loss estimation of 4 IGBTs and anti-parallel diodes thereof can be divided into loss in the traditional sense and loss caused by direct connection, the loss in the traditional sense comprises switching loss and conduction loss, and the switching loss is <math> <mrow> <msub> <mi>P</mi> <mi>SW</mi> </msub> <mo>=</mo> <mfrac> <mn>4</mn> <mi>&pi;</mi> </mfrac> <msub> <mi>f</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>ON</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow> <mi>OFF</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow> <mi>OFF</mi> <mo>,</mo> <mi>D</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>V</mi> <mi>PN</mi> </msub> <msub> <mi>V</mi> <mi>ref</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>i</mi> <mi>L</mi> </msub> <msub> <mi>i</mi> <mi>ref</mi> </msub> </mfrac> <mo>,</mo> </mrow> </math> In the formula, EON,I、Eoff,I、EOFF,DRespectively at voltage V for power devicesrefAnd current irefThe turn-on loss, turn-off loss and diode reverse recovery loss energy of the time can be obtained from a device manual; i.e. iLIs the peak value of the load current iL=1.414*ia,fsIs the switching frequency; for the conduction loss of each IGBT in the traditional sense, the conduction loss is calculated according to the following formulaCalculating out
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>CV</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>CE</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <msub> <mi>i</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mi>&pi;M</mi> <mn>4</mn> </mfrac> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>r</mi> <mi>CE</mi> </msub> <msup> <mi>i</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>&pi;</mi> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mn>3</mn> </mfrac> <mo>-</mo> <mfrac> <mi>&pi;D</mi> <mn>4</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>CV</mi> <mo>,</mo> <mi>D</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>F</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mi>&pi;M</mi> <mn>4</mn> </mfrac> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>r</mi> <mi>F</mi> </msub> <mo>&CenterDot;</mo> <msubsup> <mi>i</mi> <mi>L</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>&pi;</mi> <mn>4</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mn>3</mn> </mfrac> <mo>-</mo> <mfrac> <mi>&pi;D</mi> <mn>4</mn> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> In the formula, VCE0、VF,0The saturation voltage drop and the conduction voltage drop of the IGBT and the diode are obtained; r isCE、rFThe on-resistance of the IGBT and the diode; m and D are respectively a modulation index and a through duty ratio, and the conduction loss of the 4 IGBTs and the diodes thereof is PCV=4*(PCV,I+PCV,D) For the losses caused by shoot-through, only the switching losses and conduction losses from the IGBT need to be calculated, i.e. the switching losses are <math> <mrow> <msub> <mi>P</mi> <mrow> <mi>SW</mi> <mo>,</mo> <mi>SH</mi> </mrow> </msub> <mo>=</mo> <mn>4</mn> <msub> <mi>f</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>ON</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow> <mi>OFF</mi> <mo>,</mo> <mi>I</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>V</mi> <mi>PN</mi> </msub> <msub> <mi>V</mi> <mi>ref</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mi>ref</mi> </msub> </mfrac> <mo>,</mo> </mrow> </math> Conduction loss of P CV , SH = 4 * ( V CE , 0 i L 1 D + r CE i L 1 2 D + r CE i L 2 D 8 )
2) The loss of the Z-Source network diode and the conduction loss of the Z-Source network diode of each module are <math> <mrow> <msub> <mi>P</mi> <mrow> <mi>CV</mi> <mo>,</mo> <mi>D</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>DF</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>[</mo> <msub> <mrow> <mn>2</mn> <mi>i</mi> </mrow> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>Mi</mi> <mi>L</mi> </msub> <mn>2</mn> </mfrac> <mo>)</mo> <mo>+</mo> <msub> <mi>r</mi> <mi>DF</mi> </msub> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mi>D</mi> </mrow> <mn>2</mn> </mfrac> <mo>[</mo> <msubsup> <mrow> <mn>8</mn> <mi>i</mi> </mrow> <mrow> <mi>L</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>i</mi> <mi>L</mi> <mn>2</mn> </msubsup> <mo>]</mo> <mo>-</mo> <msub> <mi>r</mi> <mi>DF</mi> </msub> <mfrac> <mrow> <mn>8</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> </mrow> <mi>&pi;</mi> </mfrac> <msub> <mi>i</mi> <mi>L</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>L</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mrow> </math> In the formula, VDF,0Is the conduction voltage drop of the Z-source network diode, rDFIs the on-resistance of a Z-source network diode with reverse recovery losses of
Figure FDA00001669227600062
In the formula, ErecFor Z-source network diodes in IFMAnd VRReverse recovery of time losses energy; total loss of PSW+PCV+PSW,SH+PCV,SH+PCV,D+PCV,DRBy estimating the losses, alternative devices can be compared as conditions for optimizing device selection.
CN201210160713.5A 2012-05-22 2012-05-22 Design method of energy storage quasi-Z source single-phase photovoltaic power generation system Expired - Fee Related CN102709940B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210160713.5A CN102709940B (en) 2012-05-22 2012-05-22 Design method of energy storage quasi-Z source single-phase photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210160713.5A CN102709940B (en) 2012-05-22 2012-05-22 Design method of energy storage quasi-Z source single-phase photovoltaic power generation system

Publications (2)

Publication Number Publication Date
CN102709940A true CN102709940A (en) 2012-10-03
CN102709940B CN102709940B (en) 2014-07-30

Family

ID=46902556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210160713.5A Expired - Fee Related CN102709940B (en) 2012-05-22 2012-05-22 Design method of energy storage quasi-Z source single-phase photovoltaic power generation system

Country Status (1)

Country Link
CN (1) CN102709940B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218611A (en) * 2014-09-26 2014-12-17 苏州同虞新能源科技有限公司 Control method of distributed photo-voltaic grid-connected generation and energy storage device
CN108832184A (en) * 2018-06-22 2018-11-16 宿迁杉杉运通新能源***有限公司 Design method based on ferric phosphate lithium cell under different power energy storage demands
CN111007405A (en) * 2019-11-29 2020-04-14 广东电网有限责任公司 Method and device for detecting online running number of batteries
CN108418205B (en) * 2018-02-24 2021-04-02 大工(青岛)新能源材料技术研究院有限公司 Optical storage off-network system model selection configuration method
CN114498743A (en) * 2022-01-27 2022-05-13 北京航空航天大学 Dual-mode operation prediction control method and system for energy storage type Quasi-Z source inverter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271207A (en) * 1999-04-20 2000-10-25 三洋电机株式会社 Operation method for power supply system with parallel connected invertor and power change-over system
CN1658465A (en) * 2005-03-15 2005-08-24 清华大学 Photovoltaic parallel network device having reactive and harmonic compensation function
CN101083399A (en) * 2007-05-30 2007-12-05 东南大学 Z source power transformation based photovoltaic network inverter
CN101917017A (en) * 2010-07-21 2010-12-15 北京交通大学 Single-stage boosting/reducing energy storage type photovoltaic grid-connected power generation control system
CN102185533A (en) * 2011-05-23 2011-09-14 北京交通大学 Stored energy type standard-Z source photovoltaic power generation control system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271207A (en) * 1999-04-20 2000-10-25 三洋电机株式会社 Operation method for power supply system with parallel connected invertor and power change-over system
CN1658465A (en) * 2005-03-15 2005-08-24 清华大学 Photovoltaic parallel network device having reactive and harmonic compensation function
CN101083399A (en) * 2007-05-30 2007-12-05 东南大学 Z source power transformation based photovoltaic network inverter
CN101917017A (en) * 2010-07-21 2010-12-15 北京交通大学 Single-stage boosting/reducing energy storage type photovoltaic grid-connected power generation control system
CN102185533A (en) * 2011-05-23 2011-09-14 北京交通大学 Stored energy type standard-Z source photovoltaic power generation control system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218611A (en) * 2014-09-26 2014-12-17 苏州同虞新能源科技有限公司 Control method of distributed photo-voltaic grid-connected generation and energy storage device
CN108418205B (en) * 2018-02-24 2021-04-02 大工(青岛)新能源材料技术研究院有限公司 Optical storage off-network system model selection configuration method
CN108832184A (en) * 2018-06-22 2018-11-16 宿迁杉杉运通新能源***有限公司 Design method based on ferric phosphate lithium cell under different power energy storage demands
CN111007405A (en) * 2019-11-29 2020-04-14 广东电网有限责任公司 Method and device for detecting online running number of batteries
CN111007405B (en) * 2019-11-29 2022-01-21 广东电网有限责任公司 Method and device for detecting online running number of batteries
CN114498743A (en) * 2022-01-27 2022-05-13 北京航空航天大学 Dual-mode operation prediction control method and system for energy storage type Quasi-Z source inverter
CN114498743B (en) * 2022-01-27 2024-06-14 北京航空航天大学 Energy storage type quick-Z source inverter dual-mode operation prediction control method and system

Also Published As

Publication number Publication date
CN102709940B (en) 2014-07-30

Similar Documents

Publication Publication Date Title
CN107070215B (en) Three-level boost common-ground system and control method thereof
Zhang et al. High efficiency current mode control for three-phase micro-inverters
CN102510218A (en) Direct current to direct current (DC-DC) power converter with high boost ratio
CN104092243A (en) Power conditioning system and method based on public bus
CN106130352A (en) The micro-inverter of intermediate current type double tube positive exciting and numerical control device thereof
CN102709940A (en) Design method of energy storage quasi-Z source single-phase photovoltaic power generation system
CN105490523A (en) Switching quasi-Z-source boost converter
McHugh et al. A high power density single-phase inverter using stacked switched capacitor energy buffer
Alatai et al. Phase-Shifted LLC Resonant DC-DC Converter for Battery Charging Application
Wang et al. A high step-up voltage gain DC/DC converter for the micro-inverter
Mahalakshmi et al. Implementation of grid connected PV array using quadratic DC-DC converter and single phase multi level inverter
Raj et al. Comparative Analysis of Incremental Conductance and Perturb & Observe Mppt Methods For Single-Switch Dc/Dc Converter
Zhao et al. A novel high step-up quasi-Z-source DC-DC converter with coupled-inductor and switched-capacitor techniques
Dineshkumar et al. Design of Boost Inverter for Solar Power Based Stand Alone Systems
CN210518137U (en) Switch capacitor type high-frequency power pulse generating circuit
Grbović et al. Interface converters for ultra-capacitor applications in power conversion systems
Zengin et al. Evaluation of two-stage soft-switched flyback micro-inverter for photovoltaic applications
CN102629823A (en) DC/DC (direct-current/direct-current) converter with high step-up ratio and low switch voltage press
Chorishiya et al. A review: Multilevel hybrid ultra-boost converter topologies for pv solar applications
Alatai et al. Cascaded Multi-Level Inverter for Battery Charging-Discharging using Buck-Boost Switch
CN112054707A (en) Micro inverter applied to high-voltage thin-film photovoltaic module based on switch inductor
Swarnkar et al. Comparative analysis of isolated and non-isolated Bi-directional DC-DC converters for DC microgrid
CN105490529A (en) Hybrid Z-source converter
Lopez et al. Evaluation of photovoltaic microinverter configurations based on different converter stages and step-up voltage ratios
Bilandžić et al. Simulation model for power electronic conversion in stationary battery storage system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140730

Termination date: 20150522

EXPY Termination of patent right or utility model