CN102709675B - 一种动中通天线 - Google Patents

一种动中通天线 Download PDF

Info

Publication number
CN102709675B
CN102709675B CN201210132973.1A CN201210132973A CN102709675B CN 102709675 B CN102709675 B CN 102709675B CN 201210132973 A CN201210132973 A CN 201210132973A CN 102709675 B CN102709675 B CN 102709675B
Authority
CN
China
Prior art keywords
impedance matching
core layer
matching layer
antenna
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210132973.1A
Other languages
English (en)
Other versions
CN102709675A (zh
Inventor
刘若鹏
季春霖
李星昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang Chi Institute of Advanced Technology
Original Assignee
Kuang Chi Innovative Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Innovative Technology Ltd filed Critical Kuang Chi Innovative Technology Ltd
Priority to CN201210132973.1A priority Critical patent/CN102709675B/zh
Publication of CN102709675A publication Critical patent/CN102709675A/zh
Application granted granted Critical
Publication of CN102709675B publication Critical patent/CN102709675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种动中通天线,包括两个相同的方形超材料平板及设置在两个超材料平板之间的馈源,两个超材料平板的上边缘固定连接,馈源等效点在两个超材料平板上的投影与两个超材料平板的表面中心点重合,每一超材料平板包括核心层,核心层包括一个核心层片层或多个相同的核心层片层,每一核心层片层包括片状的第一基材及设置在第一基材上的多个第一人造微结构,通过精确设计核心层片层的折射率分布,使得由馈源发出的电磁波经超材料平板后能以平面波的形式出射,或者是从卫星上发来的垂直入射的平面波经超材料平板后能够在馈源处汇聚。本发明的动中通天线,由两个片状的超材料平板组合代替传统的抛物面天线,制造加工容易,成本低廉。

Description

一种动中通天线
技术领域
本发明涉及通信领域,更具体地说,涉及一种动中通天线。
背景技术
动中通是“移动中的卫星地面站通信***”的简称。通过动中通***,车辆、轮船、飞机等移动的载体在运动过程中可实时跟踪卫星等平台,不间断地传递语音、数据、图像等多媒体信息,可满足各种军民用应急通信和移动条件下的多媒体通信的需要。动中通***很好地解决了各种车辆、轮船等移动载体在运动中通过地球同步卫星,实时不断地传递语音、数据、高清晰的动态视频图像、传真等多媒体信息的难关,是通信领域的一次重大的突破,是当前卫星通信领域需求旺盛、发展迅速的应用领域,在军民两个领域都有极为广泛的发展前景。
作为动中通***的一个重要组成部分,动中通天线负责通信信号的接收和/或发送,传统的动中通天线一般采用抛物面天线。
但是由于抛物面天线的反射面的曲面加工难度大,精度要求也高,因此,制造麻烦,且成本较高。
发明内容
本发明所要解决的技术问题是,针对现有的动中通天线加工不易、成本高的缺陷,提供一种加工简单、制造成本低的动中通天线。
本发明解决其技术问题所采用的技术方案是:一种动中通天线,所述动中通天线包括两个相同的方形超材料平板及设置在两个超材料平板之间的馈源,所述两个超材料平板的上边缘固定连接,馈源等效点在两个超材料平板上的投影与两个超材料平板的表面中心点重合,在伺服***的控制下,所述馈源的开口始终正对更靠近通信卫星的那个超材料平板,所述两个超材料平板具有相同的折射率分布规律,每一超材料平板包括核心层,所述核心层包括一个核心层片层或多个相同的核心层片层,每一个核心层片层包括片状的第一基材以及设置在第一基材上的多个第一人造微结构,任一核心层片层的折射率分布满足如下公式:
n ( r ) = n max - r 2 + s 2 - Vseg D ;
Vseg=s+λ×NUMseg;
NUMseg = floor { r 2 + s 2 - s λ } ;
D = λ n max - n min ;
其中,n(r)表示该核心层片层上半径为r处的折射率值,核心层片层的折射率分布圆心即为馈源等效点在该核心层片层表面的投影;
s为馈源等效点到超材料平板的垂直距离;
nmax表示核心层片层的折射率的最大值;
nmin表示核心层片层的折射率的最小值;
D为超材料平板的整体厚度;
λ表示频率为天线中心频率的电磁波的波长;
floor表示向下取整;
其中,两个超材料平板之间的夹角为θ,
tg θ 2 = 2 s L ;
L表示方形超材料平板构成θ夹角的两个边的长度。
进一步地,所述第一基材包括片状的第一前基板及第一后基板,所述多个第一人造微结构夹设在第一前基板与第一后基板之间,所述核心层片层的厚度为0.21-2.5mm,其中,第一前基板的厚度为0.1-1mm,第一后基板的厚度为0.1-1mm,多个第一人造微结构的厚度为0.01-0.5mm。
进一步地,所述核心层片层的厚度为0.543mm,其中,第一前基板及第一后基板的厚度均为0.254mm,多个第一人造微结构的厚度为0.035mm。
进一步地,每一超材料平板还包括设置在核心层两侧表面的阻抗匹配层,所述阻抗匹配层包括一个阻抗匹配层片层或多个厚度相同的阻抗匹配层片层,所述阻抗匹配层片层包括片状的第二基材以及设置在第二基材上的多个第二人造微结构,所述一个或多个阻抗匹配层片层的折射率分布满足如下公式:
n i ( r ) = n min i m × n ( r ) m - i m ;
其中,ni(r)表示阻抗匹配层片层上半径为r处的折射率值,阻抗匹配层片层的折射率分布圆心即为馈源等效点在相应的阻抗匹配层片层外侧表面所在平面的投影;
其中,i表示阻抗匹配层片层的编号,靠近核心层的阻抗匹配层片层的编号为1,两边最外侧的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次减小;
上述的nmax、nmin分别与核心层片层的折射率的最大值、最小值相同。
进一步地,每一超材料平板还包括设置在核心层两侧表面的阻抗匹配层,所述阻抗匹配层包括一个阻抗匹配层片层或多个厚度相同的阻抗匹配层片层,所述阻抗匹配层片层包括片状的第二基材以及设置在第二基材上的多个第二人造微结构,所述每一阻抗匹配层片层具有单一的折射率,所述一个或多个阻抗匹配层片层的折射率满足以下公式:
n ( i ) = ( ( n max + n min ) / 2 ) i m ;
其中,m表示阻抗匹配层的总层数,i表示阻抗匹配层片层的编号,其中,靠近核心层的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次减小,两边最外侧的阻抗匹配层片层的编号为1。
进一步地,所述第二基材包括片状的第二前基板及第二后基板,所述多个第二人造微结构夹设在第二前基板与第二后基板之间,所述阻抗匹配层片层的厚度为0.21-2.5mm,其中,第二前基板的厚度为0.1-1mm,第二后基板的厚度为0.1-1mm,多个第二人造微结构的厚度为0.01-0.5mm。
进一步地,所述第一人造微结构及第二人造微结构均为由铜线或银线构成的金属微结构,所述金属微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法分别附着在第一基材及第二基材上。
进一步地,所述金属微结构呈平面雪花状,所述金属微结构具有相互垂直平分的第一金属线及第二金属线,所述第一金属线与第二金属线的长度相同,所述第一金属线两端连接有相同长度的两个第一金属分支,所述第一金属线两端连接在两个第一金属分支的中点上,所述第二金属线两端连接有相同长度的两个第二金属分支,所述第二金属线两端连接在两个第二金属分支的中点上,所述第一金属分支与第二金属分支的长度相等。
进一步地,所述平面雪花状的金属微结构的每个第一金属分支及每个第二金属分支的两端还连接有完全相同的第三金属分支,相应的第三金属分支的中点分别与第一金属分支及第二金属分支的端点相连。
进一步地,所述平面雪花状的金属微结构的第一金属线与第二金属线均设置有两个弯折部,所述平面雪花状的金属微结构绕第一金属线与第二金属线的交点在金属微结构所处平面内向任意方向旋转90度的图形都与原图重合。
根据本发明的动中通天线,通过精确设计每一块超材料平板的折射率分布,使得特定角度的平面波经超材料平板中空结构后能够在馈源处汇聚,因此可以由五个片状的超材料平板组合代替了传统的抛物面天线,制造加工更加容易,成本更加低廉,另外依此设计的超材料平板整体厚度在毫米级别,该动中通天线整体较轻。
附图说明
图1是本发明一种实施例中超材料平板与其对应的馈源的相对位置示意图;
图2是本发明的核心层片层其中一个超材料单元的透视示意图;
图3是本发明的核心层片层的结构示意图;
图4是本发明的阻抗匹配层片层的结构示意图;
图5是本发明的平面雪花状的金属微结构的示意图;
图6是图5所示的平面雪花状的金属微结构的一种衍生结构;
图7是图5所示的平面雪花状的金属微结构的一种变形结构。
图8是平面雪花状的金属微结构的拓扑形状的演变的第一阶段;
图9是平面雪花状的金属微结构的拓扑形状的演变的第二阶段;
图10是本发明另一种实施例中超材料平板与其对应的馈源的相对位置示意图;
图11是本发明动中通天线的结构示意图;
图12是本发明动中通天线在车辆上的安装结构示意图;
图13表示图12所示的动中通天线其过馈源中轴线的截面示意图。
具体实施方式
如图1、图11及图12所示,本发明的所述动中通天线DZT装载在移动载体YDT(例如车辆、船舶、飞机)的顶部位置,其包括两个相同的方形超材料平板100及设置在两个超材料平板100之间的馈源1,所述两个超材料平板100的上边缘固定连接,馈源等效点X在两个超材料平板上的投影与两个超材料平板的表面中心点重合,如图11所示,即馈源等效点X在超材料平板101上的投影与超材料平板101的表面中心点O1重合,馈源等效点X在超材料平板102上的投影与超材料平板102的表面中心点O2重合,在伺服***CF的控制下,所述馈源1的开口始终正对更靠近通信卫星的那个超材料平板。本发明中,所述馈源1为传统的波纹喇叭,例如同洲电子的CL11R一体化高频头。
伺服***CF的功用如下:
(1)调节两个超材料平板的在三维空间中的旋转,即调节动中通天线的仰角与方位角,使得所要通信的卫星天线发出的电磁波到达动中通天线处时总是与其中一个超材料平板垂直;
(2)实现馈源三维扫描,使得所述馈源的开口始终正对更靠近通信卫星的那个超材料平板,即馈源中轴线Z1经过超材料平板101的表面中心点O1或超材料平板102的表面中心点O2。
相对于只有一块超材料板的设计,设计两个超材料板可以使得动中通的反应更加灵敏,即动中通天线的方位角的调节不需要旋转太大的角度,只需要将靠近通信卫星的超材料平板对准卫星即可。
具有上述功能的伺服***现有技术中已经存在很多,其不是本发明的核心,并且本领域的技术人员根据上述文字描述可以很容易地制作出具有类似功能的伺服***,此处不再详述。
另外,如图12所示,为了对动中通天线DZT进行保护(防水、防晒等),动中通天线的外部还可以罩一个天线罩TXZ,例如半球形的天线罩。
如图1至图4所示,本发明的一个实施例中,所述超材料平板100包括核心层10、设置在核心层两侧表面的阻抗匹配层20,优选地,所述两侧表面的阻抗匹配层20在核心层的两侧呈对称分布,所述核心层10包括一个核心层片层11或多个厚度相同且折射率分布相同的核心层片层11,所述核心层片层包括片状的第一基材13以及设置在第一基材13上的多个第一人造微结构12,所述阻抗匹配层20包括一个阻抗匹配层片层21或厚度相同的多个阻抗匹配层片层21,所述阻抗匹配层片层21包括片状的第二基材23以及设置在第二基材上的多个第二人造微结构。阻抗匹配层的作用是实现从空气到核心层10的阻抗匹配,以减少空气与超材料相接处的电磁波反射,降低电磁波能量的损失,提高***信号强度。
本发明中,任一核心层片层的折射率分布满足如下公式:
n ( r ) = n max - r 2 + s 2 - Vseg D - - - ( 1 ) ;
Vseg=s+λ×NUMseg  (2);
NUMseg = floor { r 2 + s 2 - s λ } - - - ( 3 ) ;
D = λ n max - n min - - - ( 4 ) ;
其中,n(r)表示该核心层片层上半径为r处的折射率值,核心层片层的折射率分布圆心O即为馈源等效点X在该核心层片层表面的投影;同时,折射率分布圆心O也是该核心层片层的表面中心点。
s为馈源等效点X到超材料平板的垂直距离;此处馈源的等效点X实际上就是天线的馈点(电磁波在馈源中发生聚焦的点);馈源等效点X在馈源的中轴线上,且馈源等效点X在距离馈源开口中心一定距离的位置上,此距离可以通过仿真或实测得到。
nmax表示核心层片层的折射率的最大值;
nmin表示核心层片层的折射率的最小值;
λ表示频率为天线中心频率的电磁波的波长;
D为超材料平板的整体厚度,本实施例中,即指核心层与阻抗匹配层的总厚度,核心层片层与阻抗匹配层片层的数量可以根据不同需要设定,例如,可以是四个核心层片层,两边各三个阻抗匹配层片层,也可是三个核心层片层,两边各两个阻抗匹配层片层;
floor表示向下取整,例如,当(r处于某一数值范围)大于等于0小于1时,NUMseg取0,当(r处于某一数值范围)大于等于1小于2时,NUMseg取1,依此类推。
其中,如图13所示,表示图12所示的动中通天线其过馈源中轴线的截面示意图(当馈源开口正对超材料平板102时)。
从图中可以看出,两个超材料平板之间的夹角为θ,半角即为由三角函数关系可得到:
tg θ 2 = 2 s L - - - ( 5 ) ;
L表示方形超材料平板构成θ夹角的两个边的长度。
综上,可以看出,夹角θ由馈源等效点X到超材料平板的距离s以及方形超材料平板构成θ夹角的两个边的长度L共同决定。
由公式(1)至公式(4)所确定的超材料平板,能够使得馈源发出的电磁波经超材料平板后能够以平面波的形式出射;同样,如图1所示,由公式(1)至公式(4)所确定的超材料平板,能够使得卫星发出的电磁波(到达地面时可认为是平面波)经超材料平板后能够在馈源的等效点X处发生汇聚;当然,在接收卫星天线信号时,超材料平板的法线方向是朝向所要接收的卫星的,至于如何使得超材料平板的法线方向朝向所要接收信号的卫星,则涉及到传统的卫星天线调试的问题,即关于天线方位角与俯仰角的调节,其通过伺服***均可以实现,其均为公知常识,此处不再述说。
本实施例中,如图3所示,所述第一基材13包括片状的第一前基板131及第一后基板132,所述多个第一人造微结构12夹设在第一前基板131与第一后基板132之间。所述核心层片层的厚度为0.5-2mm,其中,第一前基板的厚度为0.5-1mm,第一后基板的厚度为0.5-1mm,多个第一人造微结构的厚度为0.01-0.5mm。优选地,所述核心层片层的厚度为0.543mm,其中,第一前基板及第一后基板的厚度均为0.254mm,多个第一人造微结构的厚度为0.035mm。
本实施例中,所述一个或多个阻抗匹配层片层的折射率分布满足如下公式:
n i ( r ) = n min i m × n ( r ) m - i m - - - ( 5 ) ;
其中,ni(r)表示阻抗匹配层片层上半径为r处的折射率值,阻抗匹配层片层的折射率分布圆心即为馈源等效点在相应的阻抗匹配层片层外侧表面所在平面的投影,优选地,阻抗匹配层片层的折射率分布圆心与核心层片层的折射率分布圆心的连线垂直超材料平板;
其中,i表示阻抗匹配层片层的编号,靠近核心层的阻抗匹配层片层的编号为1,两边最外侧的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次减小;
此处的n(r)表示核心层片层上半径为r处的折射率值;
上述的nmax、nmin分别与核心层片层的折射率的最大值、最小值相同;
具体地,例如m=2,则由公式(5)所限定的阻抗匹配层,靠近核心层的阻抗匹配层片层的折射率分布为:
n 1 ( r ) = n min 1 2 × n ( r ) 1 2 ;
靠近馈源的阻抗匹配层其折射率分布为:
n2(r)=nmin
当然,阻抗匹配层并不限于此,所述每一阻抗匹配层片层也可以具有单一的折射率,所述一个或多个阻抗匹配层片层的折射率满足以下公式:
n ( i ) = ( ( n max + n min ) / 2 ) i m - - - ( 6 ) ;
其中,m表示阻抗匹配层的总层数,i表示阻抗匹配层片层的编号,其中,靠近核心层的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次减小,两边最外侧的阻抗匹配层片层的编号为1,此处的n(r)表示核心层片层上半径为r处的折射率值。
具体地,例如m=2,则由公式(6)所限定的阻抗匹配层,靠近核心层的阻抗匹配层片层的折射率分布为:
n(2)=(nmax+nmin)/2;
靠近馈源的阻抗匹配层其折射率分布为:
n ( 1 ) = ( ( n max + n min ) / 2 ) 1 2 ;
本实施例中,所述第二基材23包括片状的第二前基板231及第二后基板232,所述多个第二人造微结构夹设在第二前基板231与第二后基板232之间。所述阻抗匹配层片层的厚度为0.21-2.5mm,其中,第一前基板的厚度为0.1-1mm,第一后基板的厚度为0.1-1mm,多个第一人造微结构的厚度为0.01-0.5mm。优选地,所述阻抗匹配层片层的厚度为0.543mm,其中,第二前基板及第二后基板的厚度均为0.254mm,多个第二人造微结构的厚度为0.035mm。
本实施例中,所述第一人造微结构、第二人造微结构均为由铜线或银线构成的金属微结构,所述金属微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法分别附着在第一基材、第二基材。优选地,所述第一人造微结构、第二人造微结构均为图5所示的平面雪花状的金属微结构通过拓扑形状演变得到的多个不同的拓扑形状的金属微结构。
本实施例中,核心层片层可以通过如下方法得到,即在第一前基板与第一后基板的任意一个的表面上覆铜,再通过蚀刻的方法得到多个第一金属微结构(多个第一金属微结构的形状与排布事先通过计算机仿真获得),最后将第一前基板与第一后基板分别压合在一起,即得到本发明的核心层片层,压合的方法可以是直接热压,也可以是利用热熔胶连接,当然也可是其它机械式的连接,例如螺栓连接。
同理,阻抗匹配层片层也可以利用相同的方法得到。然后分别将多个核心层片层压合一体,即形成了本发明的核心层;同样,将多个阻抗匹配层片层压合一体,即形成了本发明的阻抗匹配层;将核心层、阻抗匹配层压合一体即得到本发明的超材料平板。
本实施例中,所述第一基材、第二基材由陶瓷材料、高分子材料、铁电材料、铁氧材料或铁磁材料等制得。高分子材料可选用的有F4B复合材料、FR-4复合材料等。
图5所示为平面雪花状的金属微结构的示意图,所述的雪花状的金属微结构具有相互垂直平分的第一金属线J1及第二金属线J2,所述第一金属线J1与第二金属线J2的长度相同,所述第一金属线J1两端连接有相同长度的两个第一金属分支F1,所述第一金属线J1两端连接在两个第一金属分支F1的中点上,所述第二金属线J2两端连接有相同长度的两个第二金属分支F2,所述第二金属线J2两端连接在两个第二金属分支F2的中点上,所述第一金属分支F1与第二金属分支F2的长度相等。
图6是图5所示的平面雪花状的金属微结构的一种衍生结构。其在每个第一金属分支F1及每个第二金属分支F2的两端均连接有完全相同的第三金属分支F3,并且相应的第三金属分支F3的中点分别与第一金属分支F1及第二金属分支F2的端点相连。依此类推,本发明还可以衍生出其它形式的金属微结构。
图7是图5所示的平面雪花状的金属微结构的一种变形结构,此种结构的金属微结构,第一金属线J1与第二金属线J2不是直线,而是弯折线,第一金属线J1与第二金属线J2均设置有两个弯折部WZ,但是第一金属线J1与第二金属线J2仍然是垂直平分,通过设置弯折部的朝向与弯折部在第一金属线与第二金属线上的相对位置,使得图7所示的金属微结构绕垂直于第一金属线与第二金属线交点的轴线向任意方向旋转90度的图形都与原图重合。另外,还可以有其它变形,例如,第一金属线J1与第二金属线J2均设置多个弯折部WZ。
本实施例中,所述核心层片层11可以划分为阵列排布的多个如图2所示的超材料单元D,每个超材料单元D包括前基板单元U、后基板单元V及设置在基板单元U、后基板单元V之间的第一人造微结构12,通常超材料单元D的长宽高均不大于五分之一波长,优选为十分之一波长,因此,根据天线的工作频率可以确定超材料单元D的尺寸。图2为透视的画法,以表示第一人造微结构的超材料单元D中的位置,如图2所示,所述第一人造微结构夹于基板单元U、后基板单元V之间,其所在表面用SR表示。
已知折射率其中μ为相对磁导率,ε为相对介电常数,μ与ε合称为电磁参数。实验证明,电磁波通过折射率非均匀的介质材料时,会向折射率大的方向偏折。在相对磁导率一定的情况下(通常接近1),折射率只与介电常数有关,在第一基材选定的情况下,利用只对电场响应的第一人造微结构可以实现超材料单元折射率的任意值(在一定范围内),在该天线中心频率下,利用仿真软件,如CST、MATLAB、COMSOL等,通过仿真获得某一特定形状的人造微结构(如图5所示的平面雪花状的金属微结构)的介电常数随着拓扑形状的变化折射率变化的情况,即可列出一一对应的数据,即可设计出我们需要的特定折射率分布的核心层片层11,同理可以得到阻抗匹配层片层的折射率分布。
本实施例中,核心层片层的结构设计可通过计算机仿真(CST仿真)得到,具体如下:
(1)确定第一金属微结构的附着基材(第一基材)。例如介电常数为2.25的介质基板,介质基板的材料可以是FR-4、F4b或PS。
(2)确定超材料单元的尺寸。超材料单元的尺寸的尺寸由天线的中心频率得到,利用频率得到其波长,再取小于波长的五分之一的一个数值做为超材料单元D的长度CD与宽度KD。例如对应于11.95G的天线中心频率,所述超材料单元D为如图2所示的长CD与宽KD均为2.8mm、厚度HD为0.543mm的方形小板。
(3)确定金属微结构的材料及拓扑结构。本发明中,金属微结构的材料为铜,金属微结构的拓扑结构为图5所示的平面雪花状的金属微结构,其线宽W各处一致;此处的拓扑结构,是指拓扑形状演变的基本形状。
(4)确定金属微结构的拓扑形状参数。如图5所示,本发明中,平面雪花状的金属微结构的拓扑形状参数包括金属微结构的线宽W,第一金属线J1的长度a,第一金属分支F1的长度b。
(5)确定金属微结构的拓扑形状的演变限制条件。本发明中,金属微结构的拓扑形状的演变限制条件有,金属微结构之间的最小间距WL(即如图5所示,金属微结构与超材料单元的长边或宽边的距离为WL/2),金属微结构的线宽W,超材料单元的尺寸;由于加工工艺限制,WL大于等于0.1mm,同样,线宽W也是要大于等于0.1mm。第一次仿真时,WL可以取0.1mm,W可以取0.3mm,超材料单元的尺寸为长与宽为2.8mm,厚度为0.543mm,此时金属微结构的拓扑形状参数只有a和b两个变量。金属微结构的拓扑形状通过如图7至图8所示的演变方式,对应于某一特定频率(例如11.95GHZ),可以得到一个连续的折射率变化范围。
具体地,所述金属微结构的拓扑形状的演变包括两个阶段(拓扑形状演变的基本形状为图5所示的金属微结构):
第一阶段:根据演变限制条件,在b值保持不变的情况下,将a值从最小值变化到最大值,此演变过程中的金属微结构均为“十”字形(a取最小值时除外)。本实施例中,a的最小值即为0.3mm(线宽W),a的最大值为(CD-WL)。因此,在第一阶段中,金属微结构的拓扑形状的演变如图8所示,即从边长为W的正方形JX1,逐渐演变成最大的“十”字形拓扑形状JD1。在第一阶段中,随着金属微结构的拓扑形状的演变,与其对应的超材料单元的折射率连续增大(对应天线一特定频率)。
第二阶段:根据演变限制条件,当a增加到最大值时,a保持不变;此时,将b从最小值连续增加到最大值,此演变过程中的金属微结构均为平面雪花状。本实施例中,b的最小值即为0.3mm,b的最大值为(CD-WL-2W)。因此,在第二阶段中,金属微结构的拓扑形状的演变如图9所示,即从最大的“十”字形拓扑形状JD1,逐渐演变成最大的平面雪花状的拓扑形状JD2,此处的最大的平面雪花状的拓扑形状JD2是指,第一金属分支J1与第二金属分支J2的长度b已经不能再伸长,否则第一金属分支与第二金属分支将发生相交。在第二阶段中,随着金属微结构的拓扑形状的演变,与其对应的超材料单元的折射率连续增大(对应天线一特定频率)。
通过上述演变得到超材料单元的折射率变化范围如果包含了nmin至nmax的连续变化范围,则满足设计需要。如果上述演变得到超材料单元的折射率变化范围不满足设计需要,例如最大值太小或最小值过大,则变动WL与W,重新仿真,直到得到我们需要的折射率变化范围。
根据公式(1)至(4),将仿真得到的一系列的超材料单元按照其对应的折射率排布以后(实际上就是不同拓扑形状的多个第一人造微结构在第一基材上的排布),即能得到本发明的核心层片层。
同理,根据公式(5)-(6)可以得到本发明的阻抗匹配层片层。
如图10所示,本发明的另一种实施例中,所述超材料平板100及超材料平板200不具有阻抗匹配层,其等效厚度D等于核心层厚度的两倍,其它的与上述的实施例相同。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (11)

1.一种动中通天线,其特征在于,所述动中通天线包括两个相同的方形超材料平板及设置在两个超材料平板之间的馈源,所述两个超材料平板的上边缘固定连接,馈源等效点在两个超材料平板上的投影与两个超材料平板的表面中心点重合,在伺服***的控制下,所述馈源的开口始终正对更靠近通信卫星的那个超材料平板,所述两个超材料平板具有相同的折射率分布规律,每一超材料平板包括核心层,所述核心层包括一个核心层片层或多个相同的核心层片层,每一个核心层片层包括片状的第一基材以及设置在第一基材上的多个第一人造微结构,任一核心层片层的折射率分布满足如下公式:
n ( r ) = n max - r 2 + s 2 - Vseg D ;
Vseg=s+λ×NUMseg;
NUMseg = floor { r 2 + s 2 - s λ } ;
D = λ n max - n min ;
其中,n(r)表示该核心层片层上半径为r处的折射率值,核心层片层的折射率分布圆心即为馈源等效点在该核心层片层表面的投影;
s为馈源等效点到超材料平板的垂直距离;
nmax表示核心层片层的折射率的最大值;
nmin表示核心层片层的折射率的最小值;
D为超材料平板的整体厚度;
λ表示频率为天线中心频率的电磁波的波长;
floor表示向下取整;
其中,两个超材料平板之间的夹角为θ,
tg θ 2 = 2 s L ;
L表示方形超材料平板构成θ夹角的两个边的长度。
2.根据权利要求1所述的动中通天线,其特征在于,所述第一基材包括片状的第一前基板及第一后基板,所述多个第一人造微结构夹设在第一前基板与第一后基板之间,所述核心层片层的厚度为0.21-2.5mm,其中,第一前基板的厚度为0.1-1mm,第一后基板的厚度为0.1-1mm,多个第一人造微结构的厚度为0.01-0.5mm。
3.根据权利要求2所述的动中通天线,其特征在于,所述核心层片层的厚度为0.543mm,其中,第一前基板及第一后基板的厚度均为0.254mm,多个第一人造微结构的厚度为0.035mm。
4.根据权利要求1所述的动中通天线,其特征在于,每一超材料平板还包括设置在核心层两侧表面的阻抗匹配层,所述阻抗匹配层包括一个阻抗匹配层片层或多个厚度相同的阻抗匹配层片层,所述阻抗匹配层片层包括片状的第二基材以及设置在第二基材上的多个第二人造微结构,所述一个或多个阻抗匹配层片层的折射率分布满足如下公式:
n i ( r ) = n min i m × n ( r ) m - i m ;
其中,ni(r)表示阻抗匹配层片层上半径为r处的折射率值,阻抗匹配层片层的折射率分布圆心即为馈源等效点在相应的阻抗匹配层片层外侧表面所在平面的投影;
其中,i表示阻抗匹配层片层的编号,靠近核心层的阻抗匹配层片层的编号为1,两边最外侧的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次增大;
上述的nmin与核心层片层的折射率的最小值相同。
5.根据权利要求1所述的动中通天线,其特征在于,每一超材料平板还包括设置在核心层两侧表面的阻抗匹配层,所述阻抗匹配层包括一个阻抗匹配层片层或多个厚度相同的阻抗匹配层片层,所述阻抗匹配层片层包括片状的第二基材以及设置在第二基材上的多个第二人造微结构,每一所述阻抗匹配层片层具有单一的折射率,所述一个或多个阻抗匹配层片层的折射率满足以下公式:
n ( i ) = ( ( n max + n min ) / 2 ) i m ;
其中,m表示阻抗匹配层的总层数,i表示阻抗匹配层片层的编号,其中,靠近核心层的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次减小,两边最外侧的阻抗匹配层片层的编号为1。
6.根据权利要求4或5所述的动中通天线,其特征在于,所述第二基材包括片状的第二前基板及第二后基板,所述多个第二人造微结构夹设在第二前基板与第二后基板之间,所述阻抗匹配层片层的厚度为0.21-2.5mm,其中,第二前基板的厚度为0.1-1mm,第二后基板的厚度为0.1-1mm,多个第二人造微结构的厚度为0.01-0.5mm。
7.根据权利要求1所述的动中通天线,其特征在于,所述第一人造微结构为由铜线或银线构成的金属微结构,所述金属微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法附着在第一基材上。
8.根据权利要求4所述的动中通天线,其特征在于,所述第二人造微结构为由铜线或银线构成的金属微结构,所述金属微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法附着在第二基材上。
9.根据权利要求7或8所述的动中通天线,其特征在于,所述金属微结构呈平面雪花状,所述金属微结构具有相互垂直平分的第一金属线及第二金属线,所述第一金属线与第二金属线的长度相同,所述第一金属线两端连接有相同长度的两个第一金属分支,所述第一金属线两端连接在两个第一金属分支的中点上,所述第二金属线两端连接有相同长度的两个第二金属分支,所述第二金属线两端连接在两个第二金属分支的中点上,所述第一金属分支与第二金属分支的长度相等。
10.根据权利要求9所述的动中通天线,其特征在于,所述平面雪花状的金属微结构的每个第一金属分支及每个第二金属分支的两端还连接有完全相同的第三金属分支,相应的第三金属分支的中点分别与第一金属分支及第二金属分支的端点相连。
11.根据权利要求9所述的动中通天线,其特征在于,所述平面雪花状的金属微结构的第一金属线与第二金属线均设置有两个弯折部,所述平面雪花状的金属微结构绕第一金属线与第二金属线的交点在金属微结构所处平面内向任意方向旋转90度的图形都与原图重合。
CN201210132973.1A 2012-04-28 2012-04-28 一种动中通天线 Active CN102709675B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210132973.1A CN102709675B (zh) 2012-04-28 2012-04-28 一种动中通天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210132973.1A CN102709675B (zh) 2012-04-28 2012-04-28 一种动中通天线

Publications (2)

Publication Number Publication Date
CN102709675A CN102709675A (zh) 2012-10-03
CN102709675B true CN102709675B (zh) 2015-03-11

Family

ID=46902305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210132973.1A Active CN102709675B (zh) 2012-04-28 2012-04-28 一种动中通天线

Country Status (1)

Country Link
CN (1) CN102709675B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657031A (en) * 1991-01-07 1997-08-12 Anderson; Fredrick C. Earth station antenna system
WO2005067615A2 (en) * 2004-01-07 2005-07-28 Motia Inc. Vehicle mounted satellite antenna system with in-motion tracking using beam forming
CN201285794Y (zh) * 2008-10-17 2009-08-05 广州市易恒信息技术有限公司 一种卫星天线伺服机构
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线
CN101867094A (zh) * 2010-05-02 2010-10-20 兰州大学 一种聚焦平板天线
CN201629405U (zh) * 2010-03-02 2010-11-10 重庆航天新世纪卫星应用技术有限责任公司 方位主轴偏心设置式动中通

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657031A (en) * 1991-01-07 1997-08-12 Anderson; Fredrick C. Earth station antenna system
WO2005067615A2 (en) * 2004-01-07 2005-07-28 Motia Inc. Vehicle mounted satellite antenna system with in-motion tracking using beam forming
CN201285794Y (zh) * 2008-10-17 2009-08-05 广州市易恒信息技术有限公司 一种卫星天线伺服机构
CN101699659A (zh) * 2009-11-04 2010-04-28 东南大学 一种透镜天线
CN201629405U (zh) * 2010-03-02 2010-11-10 重庆航天新世纪卫星应用技术有限责任公司 方位主轴偏心设置式动中通
CN101867094A (zh) * 2010-05-02 2010-10-20 兰州大学 一种聚焦平板天线

Also Published As

Publication number Publication date
CN102709675A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
CN102723578B (zh) 一种动中通卫星天线
CN102683818B (zh) 一种动中通卫星天线
CN102593606B (zh) 一种倾斜反射板的超材料天线及***接收***
CN102820555B (zh) 一种卡塞格伦型超材料天线
CN102683857B (zh) 一种便携式卫星天线及卫星天线接收***
CN102709675B (zh) 一种动中通天线
CN102683811B (zh) 一种超材料卫星天线及卫星接收***
CN102760950B (zh) 一种便携式卫星天线及卫星天线接收***
CN102683889B (zh) 一种超材料卫星天线及卫星接收***
CN103296458A (zh) 一种动中通天线
CN102683813B (zh) 一种动中通卫星天线
CN103367927A (zh) 一种静中通卫星天线
CN102683815B (zh) 一种超材料卫星天线及卫星接收***
CN102709693B (zh) 高增益天线罩和天线***
CN103367871A (zh) 一种动中通天线
CN103367930B (zh) 一种动中通天线
CN102683817B (zh) 一种超材料卫星天线及卫星接收***
CN102683819B (zh) 一种超材料卫星天线及卫星接收***
CN103367872A (zh) 一种动中通天线
CN103367925A (zh) 一种动中通天线
CN103296460A (zh) 一种动中通天线
CN103296457A (zh) 一种动中通天线
CN103367929A (zh) 一种动中通天线
CN103367873A (zh) 一种动中通天线
CN103367928B (zh) 一种静中通卫星天线

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210511

Address after: 2 / F, software building, No.9, Gaoxin Zhongyi Road, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: KUANG-CHI INSTITUTE OF ADVANCED TECHNOLOGY

Address before: 18B, building a, CIC international business center, 1061 Xiangmei Road, Futian District, Shenzhen, Guangdong 518034

Patentee before: KUANG-CHI INNOVATIVE TECHNOLOGY Ltd.

TR01 Transfer of patent right