CN102709053A - Polymer stack capacitor and manufacturing method thereof - Google Patents

Polymer stack capacitor and manufacturing method thereof Download PDF

Info

Publication number
CN102709053A
CN102709053A CN2012101799099A CN201210179909A CN102709053A CN 102709053 A CN102709053 A CN 102709053A CN 2012101799099 A CN2012101799099 A CN 2012101799099A CN 201210179909 A CN201210179909 A CN 201210179909A CN 102709053 A CN102709053 A CN 102709053A
Authority
CN
China
Prior art keywords
film
polymer
organic polymer
conductive
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101799099A
Other languages
Chinese (zh)
Inventor
徐建华
杨文耀
王偲宇
陈燕
杨亚杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN2012101799099A priority Critical patent/CN102709053A/en
Publication of CN102709053A publication Critical patent/CN102709053A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Abstract

The invention relates to a polymer stack capacitor and a preparation method thereof, belonging to the technical field of electronic components. Because an organic polymer with high dielectric constant has poor processability, the capacitor can not be manufactured in the winding way. The polymer stack capacitor manufactured in a stacking way can accurately control the dimensions and the thickness of each organic polymer dielectric film. Meanwhile, an organic polymer electrode material is adopted, so that the effective area of electrodes can be greatly increased. The capacitor of the polymer stack capacitor is 10-100 times of that of the traditional metalized film capacitor with the same volume, and the miniaturization and high-capacity development of the stack capacitor is promoted. Moreover, with the stack square structure, the capability of product end face resisting the current impact can be enhanced, the inductance is reduced, and the stability and the reliability of the product can be increased. Meanwhile, because the polymer stack capacitor is made of a polymer, the use of resource raw materials can be reduced, and the purposes of protecting environment and saving energy can be achieved.

Description

A kind of polymer lamination type electric container and preparation method thereof
Technical field
The invention belongs to technical field of electronic components, relate to polymer lamination type electric container and manufacturing technology thereof.
Background technology
Chip capacitor is an element indispensable on the modern electronic equipment, can be used as the circuit rectification filter element, DC power supply push away bypass in coupling element and the voicefrequency circuit, coupling element etc.So chip capacitor at all kinds of electron electric power devices, finds broad application in space flight and aviation and the military weapon field.Along with the 21 century progress of science and technology, the development of electronics miniaturization, high capacity, miniaturization, wideband, wide voltage, wide temperature, environmental protection and energy saving are main directions of chip capacitor development.
What traditional metallized polymeric films capacitor adopted usually is takeup type technology; Require the organic polymer dielectric to have preferably mechanical property and ductility; The processing so that reel; And the polymer of general high-k does not often possess this performance, or even exists with powdered form, and what adopt is to have materials (relative dielectric constant is 1 ~ 3) such as 10 μ m left and right thicknesses, polyethylene that dielectric constant is lower, polypropylene, polyphenylene sulfide so metallic film capacitor is general; The effective area of metallic electrode is less simultaneously; More than some all is unfavorable for the development of chip capacitor to the miniaturization high capacity.
Summary of the invention:
The present invention provides a kind of polymer lamination type electric container, has the lamination sheet type structure, and dielectric material adopts the organic polymer of dielectric constant higher relatively (about 10), and inner electrode adopts conducting polymer.The present invention provides the preparation method of the simple polymer stack chip capacitor of a kind of technology simultaneously.
Technical scheme of the present invention is following:
A kind of polymer lamination type electric container, as shown in Figure 1, comprise capacitor body by the alternately laminated square shape lamination of multilayer organic polymer dielectric film 3 and multilayer conductive polymer electrode film 4.In the capacitor body of said square shape lamination; The two-layer conductive polymer electrodes film 4 property one-tenth that are positioned at each layer organic polymer dielectric film 3 two sides are interspersed: promptly wherein one deck conductive polymer electrodes film 4 is coated with the left side of organic polymer dielectric film 3 upper surfaces, and another layer conductive polymer electrodes film 4 is coated with the right side of organic polymer dielectric film 3 lower surfaces; By the dielectric layer of up and down two-layer conductive polymer electrodes film 4 staggered microcapacitor unit of parts formation that cover, the two-layer conductive polymer electrodes film 4 that is interspersed up and down constitutes the upper/lower electrode of a microcapacitor unit in one deck organic polymer dielectric film 3.Respectively there is one deck backing material 1 the capacitor body end face and the bottom surface of said square shape lamination; The right ends of the capacitor body of said square shape lamination respectively has 6, two metal end electrodes 6 of a metal end electrode all microcapacitor unit of capacitor body inner stacks is connected in parallel.
Above-mentioned polymer lamination type electric container, the said polymer lamination type electric container part except that metal end electrode 6 adopts epoxy powder spraying encapsulation.
In the above-mentioned polymer lamination type electric container, said organic polymer dielectric film 3 is Kynoar/Graphene laminated film (PVDF/Graphene), nano barium phthalate/Kynoar laminated film (BT/PVDF), titanium cyanines copper film (Cu (ttb) Pc), polypropylene/Kynoar laminated film (PP/PVDF), ethylene/vinyl acetate copolymer film (EVA) or economize and quinone film (PAQR) more.
In the above-mentioned polymer lamination type electric container, said conductive polymer electrodes film 4 is layer/polyaniline conductive film (Pani), polythiophene conductive film (PT), polypyrrole conductive film (PPY) or polythiophene/kayexalate composite conductive thin films (PEDOT/PSS).
A kind of preparation method of polymer lamination type electric container may further comprise the steps:
Step 1: at backing material 1 surface deposition one deck organic polymer dielectric film 3;
Step 2: at organic polymer dielectric film 3 surface deposition one deck conductive polymer electrodes films 4;
Step 3: at conductive polymer electrodes film 4 surface deposition one deck organic polymer dielectric films 3;
Step 4: execution in step 2 and step 3 repeatedly, till the capacitor body of the square shape lamination that obtains reaches the thickness that needs; Should guarantee that when depositing electrically conductive electrostrictive polymer very thin films 4 two-layer conductive polymer electrodes film 4 formation that are positioned at each layer organic polymer dielectric film 3 two sides are interspersed: wherein one deck conductive polymer electrodes film 4 is coated with the left side of organic polymer dielectric film 3 upper surfaces, and another layer conductive polymer electrodes film 4 is coated with the right side of organic polymer dielectric film 3 lower surfaces; By the dielectric layer of up and down two-layer conductive polymer electrodes film 4 staggered microcapacitor unit of parts formation that cover, the two-layer conductive polymer electrodes film 4 that is interspersed up and down constitutes the upper/lower electrode of a microcapacitor unit in one deck organic polymer dielectric film 3;
Step 5: the capacitor body end face at step 4 gained square shape lamination increases a backing material 1, obtains the capacitor body of final square shape lamination;
Step 6: at the capacitor body two ends impregnated silver pulp of the final square shape lamination of step 5 gained;
Step 7: silver slurry end-blocking, make metal end electrode 6, and will spray encapsulation except that the part the metal end electrode 6 with powdered epoxy resin.
Through above-mentioned steps, can prepare polymer lamination type electric container according to the invention.
Need to prove that in the above-mentioned method for preparing polymer lamination type electric container, the depositing operation of said organic polymer dielectric film 3 and conductive polymer electrodes film 4 can adopt self assembly coating technique or Langmuir-Blodgett film technology.
Owing to the organic polymer processing characteristics that dielectric constant is higher is relatively poor, can not adopt winding method to make capacitor, the present invention adopts the polymer lamination type electric container of overlapped way making, can accurately control size, the thickness of every layer of organic polymer dielectric film; What the present invention simultaneously adopted is the organic polymer electrode material, can carry the effective area of electrode greatly; Can reach 10 ~ 100 times of traditional metallic film capacitor capacity with polymer lamination type electric container of the present invention under the volume, advance the miniaturization high capacity progress of chip capacitor.The lamination square shape structure that adopts of the present invention in addition can strengthen the ability of the anti-rush of current of product end surface, reduces inductance, improves product stability and reliability; The material that polymer lamination type electric container simultaneously of the present invention adopts is a polymer, can reduce the raw-material use of resource, reaches the purpose of environmental protection and energy saving.
Description of drawings
Fig. 1 is a polymer lamination type electric container core structures sketch map provided by the invention.Wherein: 1 is backing material, and 3 is the organic polymer dielectric film, and 4 is the conductive polymer electrodes film, and 6 is the metal end electrode.
Embodiment
Embodiment one
(a) on the self assembly coating machine, clamp an end of clean substrate with clip, it is 5mm/min that the pull rate that makes progress is set, and pull rate is 20mm/min downwards.In the PVDF/Graphene composite solution of substrate immersion 8%, come and go 2 times, can form PVDF/Graphene composite high-dielectric film.
(b) on the self assembly coating machine, clamp the other end of handling back substrate through step (a) with clip, it is 10mm/min that the pull rate that makes progress is set, pull rate is 30mm/min downwards.In the PEDOT/PSS solution of substrate immersion 10%, the degree of depth is no more than 90% of substrate length, comes and goes 5 times, can form the PEDOT/PSS electrode.
(c) on the self assembly coating machine, clamp an end of handling back substrate through step (b) with clip, it is 5mm/min that the pull rate that makes progress is set, and pull rate is 20mm/min downwards.In the PVDF/Graphene composite solution of substrate immersion 8%, come and go 2 times, can form PVDF/Graphene composite high-dielectric film.
(d) on the self assembly coating machine, clamp the other end of handling back substrate through step (c) with clip, it is 10mm/min that the pull rate that makes progress is set, pull rate is 30mm/min downwards.In the PEDOT/PSS solution of substrate immersion 10%, the degree of depth is no more than 90% of substrate length, comes and goes 5 times, can form the PEDOT/PSS electrode.
(e) repeat above-mentioned (a) ~ (d) process repeatedly, can form the capacitor body of the square shape lamination that cascades by a plurality of microcapacitors unit.
(f) impregnated silver pulp at the capacitor body two ends of square shape lamination respectively.
(g) capacitor body is bonded on the lead frame, adopts epoxy powder spraying encapsulation, obtain final polymer lamination type electric container.
Embodiment two
(a) on the self assembly coating machine, clamp an end of clean substrate with clip, it is 5mm/min that the pull rate that makes progress is set, and pull rate is 20mm/min downwards.In the PP/PVDF composite solution of substrate 15%, come and go 2 times, can form PP/PVDF composite high-dielectric film.
(b) on the self assembly coating machine, clamp the other end of handling back substrate through step (a) with clip, it is 10mm/min that the pull rate that makes progress is set, pull rate is 30mm/min downwards.In the PPY solution of substrate immersion 10%, the degree of depth is no more than 90% of substrate length, comes and goes 5 times, can form the PPY electrode.
(c) on the self assembly coating machine, clamp an end of handling back substrate through step (b) with clip, it is 5mm/min that the pull rate that makes progress is set, and pull rate is 20mm/min downwards.In the PP/PVDF composite solution of substrate immersion 15%, come and go 2 times, can form PP/PVDF composite high-dielectric film.
(d) on the self assembly coating machine, clamp the other end of handling back substrate through step (c) with clip, it is 10mm/min that the pull rate that makes progress is set, pull rate is 30mm/min downwards.In the PPY solution of substrate immersion 10%, the degree of depth is no more than 90% of substrate length, comes and goes 5 times, can form the PPY electrode.
(e) repeat above-mentioned (a) ~ (d) process repeatedly, can form the capacitor body of the square shape lamination that cascades by a plurality of microcapacitors unit.
(f) impregnated silver pulp at the capacitor body two ends of square shape lamination respectively.
(g) capacitor body is bonded on the lead frame, adopts epoxy powder spraying encapsulation, obtain final polymer lamination type electric container.
Embodiment three
(a) on the self assembly coating machine, clamp an end of clean substrate with clip, it is 5mm/min that the pull rate that makes progress is set, and pull rate is 20mm/min downwards.In the PAQR solution of substrate immersion 6%, come and go 2 times, can form the PAQR high dielectric thin film.
(b) on the self assembly coating machine, clamp the other end of handling back substrate through step (a) with clip, it is 10mm/min that the pull rate that makes progress is set, pull rate is 30mm/min downwards.In the Pani solution of substrate immersion 8%, the degree of depth is no more than 90% of substrate length, comes and goes 5 times, can form the Pani electrode.
(c) on the self assembly coating machine, clamp an end of handling back substrate through step (b) with clip, it is 5mm/min that the pull rate that makes progress is set, and pull rate is 20mm/min downwards.In the PAQR solution of substrate immersion 6%, come and go 2 times, can form the PAQR high dielectric thin film.
(d) on the self assembly coating machine, clamp the other end of handling back substrate through step (c) with clip, it is 10mm/min that the pull rate that makes progress is set, pull rate is 30mm/min downwards.In the Pani solution of substrate immersion 8%, the degree of depth is no more than 90% of substrate length, comes and goes 5 times, can form the Pani electrode.
(e) repeat above-mentioned (a) ~ (d) process repeatedly, can form the capacitor body of the square shape lamination that cascades by a plurality of microcapacitors unit.
(f) impregnated silver pulp at the capacitor body two ends of square shape lamination respectively.
(g) capacitor body is bonded on the lead frame, adopts epoxy powder spraying encapsulation, obtain final polymer lamination type electric container.

Claims (9)

1. polymer lamination type electric container comprises the capacitor body by the alternately laminated square shape lamination of multilayer organic polymer dielectric film (3) and multilayer conductive polymer electrode film (4);
In the capacitor body of said square shape lamination; The two-layer conductive polymer electrodes film (4) that is positioned at each layer organic polymer dielectric film (3) two sides forms and to be interspersed: promptly wherein one deck conductive polymer electrodes film (4) is coated with the left side of organic polymer dielectric film (3) upper surface, and another layer conductive polymer electrodes film (4) is coated with the right side of organic polymer dielectric film (3) lower surface; One deck organic polymer dielectric film (3) is middle by the dielectric layer of a microcapacitor unit of part formation of the staggered covering of two-layer conductive polymer electrodes film (4) up and down, and the two-layer conductive polymer electrodes film (4) that is interspersed up and down constitutes the upper/lower electrode of a microcapacitor unit;
Respectively there is one deck backing material (1) the capacitor body end face of said square shape lamination and bottom surface;
The right ends of the capacitor body of said square shape lamination respectively has a metal end electrode (6), and two metal end electrodes (6) are connected in parallel all microcapacitor unit of capacitor body inner stacks.
2. polymer lamination type electric container according to claim 1 is characterized in that, the part of said polymer lamination type electric container except that metal end electrode (6) adopts epoxy powder spraying encapsulation.
3. polymer lamination type electric container according to claim 1 and 2; It is characterized in that said organic polymer dielectric film (3) is Kynoar/Graphene laminated film, nano barium phthalate/Kynoar laminated film, titanium cyanines copper film, polypropylene/Kynoar laminated film, ethylene/vinyl acetate copolymer film or economize and the quinone film more.
4. polymer lamination type electric container according to claim 1 and 2; It is characterized in that said conductive polymer electrodes film (4) is layer/polyaniline conductive film, polythiophene conductive film, polypyrrole conductive film or polythiophene/kayexalate composite conductive thin film.
5. polymer lamination type electric container according to claim 1 and 2 is characterized in that said metal end electrode (6) is a silver electrode.
6. the preparation method of a polymer lamination type electric container may further comprise the steps:
Step 1: at backing material (1) surface deposition one deck organic polymer dielectric film (3);
Step 2: at organic polymer dielectric film (3) surface deposition one deck conductive polymer electrodes film (4);
Step 3: at conductive polymer electrodes film (4) surface deposition one deck organic polymer dielectric film (3);
Step 4: execution in step 2 and step 3 repeatedly, till the capacitor body of the square shape lamination that obtains reaches the thickness that needs; Should guarantee that when depositing electrically conductive electrostrictive polymer very thin films (4) two-layer conductive polymer electrodes film (4) formation that is positioned at each layer organic polymer dielectric film (3) two sides is interspersed: wherein one deck conductive polymer electrodes film (4) is coated with the left side of organic polymer dielectric film (3) upper surface, and another layer conductive polymer electrodes film (4) is coated with the right side of organic polymer dielectric film (3) lower surface; One deck organic polymer dielectric film (3) is middle by the dielectric layer of a microcapacitor unit of part formation of the staggered covering of two-layer conductive polymer electrodes film (4) up and down, and the two-layer conductive polymer electrodes film (4) that is interspersed up and down constitutes the upper/lower electrode of a microcapacitor unit;
Step 5: the capacitor body end face at step 4 gained square shape lamination increases a backing material (1), obtains the capacitor body of final square shape lamination;
Step 6: at the capacitor body two ends impregnated silver pulp of the final square shape lamination of step 5 gained;
Step 7: silver slurry end-blocking, make metal end electrode (6), and will spray encapsulation except that the part the metal end electrode (6) with powdered epoxy resin.
7. the preparation method of polymer lamination type electric container according to claim 6; It is characterized in that said organic polymer dielectric film (3) is Kynoar/Graphene laminated film, nano barium phthalate/Kynoar laminated film, titanium cyanines copper film, polypropylene/Kynoar laminated film, ethylene/vinyl acetate copolymer film or economize and the quinone film more.
8. the preparation method of polymer lamination type electric container according to claim 6; It is characterized in that said conductive polymer electrodes film (4) is layer/polyaniline conductive film, polythiophene conductive film, polypyrrole conductive film or polythiophene/kayexalate composite conductive thin film.
9. the preparation method of polymer lamination type electric container according to claim 6; It is characterized in that the depositing operation of said organic polymer dielectric film (3) and conductive polymer electrodes film (4) adopts self assembly coating technique or Langmuir-Blodgett film technology.
CN2012101799099A 2012-06-04 2012-06-04 Polymer stack capacitor and manufacturing method thereof Pending CN102709053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101799099A CN102709053A (en) 2012-06-04 2012-06-04 Polymer stack capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101799099A CN102709053A (en) 2012-06-04 2012-06-04 Polymer stack capacitor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN102709053A true CN102709053A (en) 2012-10-03

Family

ID=46901737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101799099A Pending CN102709053A (en) 2012-06-04 2012-06-04 Polymer stack capacitor and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN102709053A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841430A (en) * 2019-03-22 2019-06-04 杭州灵通电子有限公司 A kind of termination device and closed-end technology for large scale multilayer ceramic capacitor
EP3511964A1 (en) * 2013-03-14 2019-07-17 Saudi Basic Industries Corporation Fractional order capacitor based on dielectric polymer doped with conductive nano-fillers
CN110556247A (en) * 2019-09-11 2019-12-10 邯郸学院 preparation method of sandwich-structure high-energy-storage low-conductivity polymer-based composite film
CN110931261A (en) * 2019-12-18 2020-03-27 中原工学院 Preparation method of flexible fabric supercapacitor electrode material with graphene/polypyrrole as active substance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731948A (en) * 1996-04-04 1998-03-24 Sigma Labs Inc. High energy density capacitor
CN1321993A (en) * 2000-08-12 2001-11-14 王喜成 Film capacitor and its production method
CN1783373A (en) * 2004-10-08 2006-06-07 罗门哈斯电子材料有限公司 Capacitor structure
CN101351856A (en) * 2005-12-27 2009-01-21 如碧空株式会社 Process for producing laminated film capacitor
CN101752087A (en) * 2010-01-27 2010-06-23 中国科学院上海技术物理研究所 Polyvinylidene fluoride (PVDF) organic polymer thin film capacitor
CN102426918A (en) * 2010-08-09 2012-04-25 小岛冲压工业株式会社 Stacked film capacitor and method of producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731948A (en) * 1996-04-04 1998-03-24 Sigma Labs Inc. High energy density capacitor
CN1321993A (en) * 2000-08-12 2001-11-14 王喜成 Film capacitor and its production method
CN1783373A (en) * 2004-10-08 2006-06-07 罗门哈斯电子材料有限公司 Capacitor structure
CN101351856A (en) * 2005-12-27 2009-01-21 如碧空株式会社 Process for producing laminated film capacitor
CN101752087A (en) * 2010-01-27 2010-06-23 中国科学院上海技术物理研究所 Polyvinylidene fluoride (PVDF) organic polymer thin film capacitor
CN102426918A (en) * 2010-08-09 2012-04-25 小岛冲压工业株式会社 Stacked film capacitor and method of producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511964A1 (en) * 2013-03-14 2019-07-17 Saudi Basic Industries Corporation Fractional order capacitor based on dielectric polymer doped with conductive nano-fillers
CN109841430A (en) * 2019-03-22 2019-06-04 杭州灵通电子有限公司 A kind of termination device and closed-end technology for large scale multilayer ceramic capacitor
CN110556247A (en) * 2019-09-11 2019-12-10 邯郸学院 preparation method of sandwich-structure high-energy-storage low-conductivity polymer-based composite film
CN110931261A (en) * 2019-12-18 2020-03-27 中原工学院 Preparation method of flexible fabric supercapacitor electrode material with graphene/polypyrrole as active substance
CN110931261B (en) * 2019-12-18 2021-10-29 中原工学院 Preparation method of flexible fabric supercapacitor electrode material with graphene/polypyrrole as active substance

Similar Documents

Publication Publication Date Title
KR100779263B1 (en) Metal electrolytic capacitor and method manufacturing thereof
CN111247610A (en) Electrolytic capacitor and method for manufacturing the same
CN107275085A (en) A kind of graphene-based high-voltage pulse thin film capacitor
CN102709053A (en) Polymer stack capacitor and manufacturing method thereof
TWI421888B (en) Stacked capacitor with many product pins
US9953769B2 (en) Composite electronic component and board having the same
JP6393026B2 (en) Metallized film capacitors
US20170196092A1 (en) Composite electronic component and board having the same
WO2021085555A1 (en) Electrolytic capacitor
CN203456293U (en) Single-surface aluminum-and-zinc metalized film with single reserved edge
CN103456513A (en) Solid electrolytic capacitor packaging structure for reducing equivalent series resistance and manufacturing method thereof
US20160379761A1 (en) Method for fabricating solid electrolytic capacitors
CN105977024A (en) Metalized safety film layer stacked-type pulse capacitor
WO2021230089A1 (en) Electric circuit for integrated circuit power supply, capacitor, and electric circuit having integrated circuit
CN203826222U (en) Sheet type ultra-small high voltage heavy current capacitor
CN102074383B (en) Stack solid electrolytic capacitor with multi-end pins
CN104347272A (en) Organic thin-film capacitor
Shahane et al. Nanopackaging for component assembly and embedded power in flexible electronics: Heterogeneous component integration for flexible systems
JP2023028537A (en) Electric device, filter device and capacitor module
WO2022181606A1 (en) Filter circuit
CN103456502A (en) Improved manufacturing method of solid electrolytic capacitor
WO2022163644A1 (en) Electrolytic capacitor
CN110895995B (en) Capacitor, capacitor packaging structure and manufacturing method thereof
JP2004288793A (en) Substrate with built-in dc power supply circuit and its manufacturing method
CN203812729U (en) Solid electrolytic condenser

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121003