CN102687324B - 一种复合陶瓷材料及其制备方法 - Google Patents

一种复合陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN102687324B
CN102687324B CN201080059890.3A CN201080059890A CN102687324B CN 102687324 B CN102687324 B CN 102687324B CN 201080059890 A CN201080059890 A CN 201080059890A CN 102687324 B CN102687324 B CN 102687324B
Authority
CN
China
Prior art keywords
ceramic material
nitrate
particle
lanthanum
composite ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080059890.3A
Other languages
English (en)
Other versions
CN102687324A (zh
Inventor
韩相武
金度亨
全中焕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of CN102687324A publication Critical patent/CN102687324A/zh
Application granted granted Critical
Publication of CN102687324B publication Critical patent/CN102687324B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/70Cobaltates containing rare earth, e.g. LaCoO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/70Nickelates containing rare earth, e.g. LaNiO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62826Iron group metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种燃料电池用复合陶瓷材料及其制备方法。燃料电池用复合陶瓷材料形成为小粒径钙钛矿型陶瓷粒子包住大粒径钴酸镧粒子周围的带芯结构,在合成钙钛矿型陶瓷粒子的工艺中,钴酸镧作为起始原料一起添加而合成。根据本发明的燃料电池用复合陶瓷材料提高分离板和极板之间的电连接特性,且在化学和机械上也很稳定。

Description

一种复合陶瓷材料及其制备方法
技术领域
本发明涉及一种燃料电池,更具体地涉及一种电连接燃料电池的阳极和分离板的复合陶瓷材料及其制备方法。
背景技术
燃料电池中以固体氧化物燃料电池(solidoxidefuelcell;SOFC)为例进行说明,这样的燃料电池由多个电生成单位层压而成,该电生成单位由单位电池和分离板组成。单位电池包括电解质膜、位于电解质膜的一面的阳极(空气极)、位于电解质膜的另一面的阴极(燃料极)。
若向阳极供给氧气,向阴极供给氢气,则在阳极通过氧气的还原反应生成的氧离子经电解质膜移动到阴极后,与供给到阴极的氢气反应而生成水。此时在阴极生成的电子传输至阳极而消耗的过程中,在外部电路形成有电子流,单位电池利用这种电子流生产电能。
固体氧化物燃料电池,由于一个单位电池生产的电能有限,通常由层压多个这种单位电池的堆结构构成。
构成这种堆结构的各单位电池电连接阳极和阴极,且通常使用阻挡气体混合的分离板。
这种分离板通常使用不锈钢板,并提供通向阳极(空气极)的气体流路,同时提供通向阴极(燃料极)的气体流路。
固体氧化物燃料电池中提高性能的方法之一是降低堆的电阻,即燃料电池的内部电阻。
为此提出有使用导电性优秀的材料作为分离板和极板的材料,或者降低分离板和极板的接触电阻的结构。一例为在阳极和分离板之间***传输电的集电体,使用白金网(Ptmesh)作为所述集电体。另一方法为为了减少费用使用耐氧化性金属网替代白金。
然而若使用这样的金属材料作为集电体,当该材料长时间暴露于氧化气氛时,在其表面形成氧化物,使得堆的电阻渐渐变大,由此具有堆性能恶化的问题。
因此有必要采用在氧化气氛中也稳定、并发挥传导性的氧化物,使得在堆的长时间运转中也发挥稳定的性能。
作为在燃料电池的极板和分离板之间将其电连接的接触材料,具有钙钛矿(perovskite)结构的陶瓷材料已为人所知。
但是这种钙钛矿型陶瓷材料,有必要更提高电传导性,并改善物性以稳定化学性能和机械性能。
发明内容
本发明的目的在于提供一种提高维持氧化气氛的燃料电池的分离板和极板之间的电连接,且在化学上和机械上稳定的复合陶瓷材料。
而且本发明的目的在于提供一种提高维持氧化气氛的燃料电池的分离板和极板之间的电连接,且在化学上和机械上稳定的复合陶瓷材料的制备方法。
根据本发明的一实施例的燃料电池用复合陶瓷材料提供一种陶瓷材料,微小的ABO3型钙钛矿型陶瓷粒子与钴酸镧(LaCoO3)粒子复合合成,所述钴酸镧粒子的粒径大于所述钙钛矿型陶瓷粒子的粒径。
优选地,这种复合陶瓷材料形成所述钙钛矿型陶瓷粒子包住钴酸镧粒子周围的带芯结构(coredstructure),优选地,在合成所述钙钛矿型陶瓷粒子的工艺中,所述钴酸镧作为起始原料一起添加而合成。
优选地,在这种复合陶瓷材料中所述钴酸镧的比率为10重量%以上,90重量%以下。
而且,优选地,在复合陶瓷材料中钙钛矿型陶瓷粒子为(La,Sr)MnO3、(La,Sr)CoO3、(La,Sr)(Co,Fe)O3及(La,Ca)(Cr,Co,Cu)O3中的任一种,其粒径为100m以下。更加优选地,这种钙钛矿型陶瓷组成为(La0.8Ca0.2)(Cr0.1Co0.6Cu0.3)O3
而且,优选地,在复合陶瓷材料中钴酸镧粒子为粒径0.5~5.0μm的球状。
根据本发明的一实施例的燃料电池用陶瓷材料的制备方法,包括:i)将混有柠檬酸和钴酸镧粉末的混合物投入到溶有多种硝酸盐的硝酸盐水溶液的步骤;ii)通过加热并搅拌所述水溶液,使反应物从溶胶状态变为凝胶状态的加热搅拌步骤;iii)将在所述加热搅拌步骤中生成的反应物以所述凝胶自燃温度以上的温度加热,使凝胶燃烧的步骤;iv)将在所述凝胶燃烧步骤中生成的炭(char)粉碎后,在700℃以上的温度下进行热处理的煅烧步骤。
在这种复合陶瓷材料的制备方法中,优选地,钴酸镧粉末粒径为0.5~50μm,添加至硝酸盐水溶液的比率为10重量%以上,90重量%以下。
所述硝酸盐水溶液将选自镧硝酸盐、钙硝酸盐、铬硝酸盐、钴硝酸盐、铜硝酸盐、铁硝酸盐、铋硝酸盐、钇硝酸盐、锰硝酸盐、锶硝酸盐及镍硝酸盐中的一种以上的金属硝酸盐,配合AB03型钙钛矿陶瓷的组成溶于蒸馏水。在此,优选地,ABO3型钙钛矿陶瓷为选自(La,Sr)MnO3、(La,Sr)CoO3、(La,Sr)(Co,Fe)O3及(La,Ca)(Cr,Co,Cu)O3中的任一种。优选地,所述(La,Ca)(Cr,Co,Cu)O3的组成为(La0.8Ca0.2)(Cr0.1Co0.6Cu0.3)O3
而且,优选地,所述柠檬酸作为一种贡献于形成金属配合物,并通过高温燃烧形成陶瓷粉末的可燃性有机物使用,这种可燃性有机物优选为甘氨酸硝酸盐、聚乙二醇、尿素及乙二胺四乙酸中的任一种。
根据本发明的一实施例的燃料电池用复合陶瓷材料的制备方法,还包括,将所述煅烧后的粉末与粘合剂、分散剂及溶剂一起均匀混合而制备粘性流体(slurry)。
根据本发明的一实施例的燃料电池用复合陶瓷材料的制备方法,还包括,将所述粘性流体涂覆在燃料电池的极板或分离板后使其烧结。优选地,此时所述烧结步骤在600℃以上的温度下进行1小时以上。
本发明的一实施例提供一种燃料电池,包括涂覆有通过以上方法制备的复合陶瓷材料的极板或分离板。
本发明的另一实施例提供一种燃料电池,包括:i)单位电池,由电解质膜、位于电解质膜的一面的阳极(空气极)、位于电解质膜的另一面的阴极(燃料极)组成;ii)分离板,电连接所述阳极和所述阴极,并涂覆有权利要求8的复合陶瓷材料。
根据本发明的一实施例制备的复合陶瓷材料发挥燃料电池工作温度下的电导率优秀、维持化学稳定状态的技术效果。
附图说明
图1为在制备本发明一实施例的燃料电池用复合陶瓷材料中使用的钴酸镧粉末的扫描电子显微镜照片。
图2为将根据本发明一实施例制备的复合陶瓷材料用场致发射扫描电子显微镜(FFSEM)摄影的照片。
图3为适用根据本发明一实施例制备的复合陶瓷材料的固体氧化物燃料电池的电流电压曲线及电流电力曲线的示意图。
具体实施方式
以下,参照附图对本发明的实施例进行详细说明,使本发明所属技术领域的具有通常知识者能够易于实施。本发明能够以多种不同的形式实现,并不局限于在此说明的实施例。
以下说明的复合陶瓷材料在本说明书中主要以固体氧化物燃料电池为例进行说明,但本发明并不局限于此,适用于使用这种复合陶瓷材料的所有电池。
根据本发明的一实施例的复合陶瓷材料为微小的ABO3型钙钛矿型陶瓷粒子与钴酸镧(LaCoO3)粒子复合而合成,所述钴酸镧粒子的粒径大于该钙钛矿型陶瓷粒子的粒径。优选地,形成微小的ABO3型钙钛矿型陶瓷粒子包住大粒径钴酸镧(LaCoO3)粒子周围的,所谓的带芯结构(coredstructure)。
这种复合陶瓷材料,首先将硝酸盐溶解于水而制备硝酸盐水溶液后,在此硝酸盐水溶液中混合柠檬酸和钴酸镧粉末,并加热而制备。
以下,对于用来制备本发明的一实施例的复合陶瓷材料的起始原料进行说明。
首先硝酸盐水溶液将选自镧硝酸盐、钙硝酸盐、铬硝酸盐、钴硝酸盐、铜硝酸盐、铁硝酸盐、铋硝酸盐、钇硝酸盐、锰硝酸盐、锶硝酸盐及镍硝酸盐中的一种以上的金属硝酸盐溶于蒸馏水而制备。此时,溶于蒸馏水的硝酸盐的组成配合AB03型钙钛矿陶瓷的组成,通过化学计量决定。即所添加的金属硝酸盐的组成比率根据最终形成的传导性钙钛矿陶瓷组成决定。最终形成的钙钛矿陶瓷组成的例有(La,Sr)MnO3、(La,Sr)CoO3、(La,Sr)(Co,Fe)O3、(La,Ca)(Cr,Co,Cu)O3等。
然后,作为起始原料的柠檬酸(citricacid)起到用于燃烧合成的“燃料(fuel)”的作用。因此可以使用甘氨酸硝酸盐、聚乙二醇、尿素、乙二胺四乙酸等贡献于形成金属配合物,并通过高温燃烧形成陶瓷粉末的可燃性有机物。而且,其他有机物例如乙二胺四乙酸也可以与柠檬酸和氨水一起使用。然而柠檬酸可单独起到作为金属配合物形成剂及燃料的作用,因此,优选地使用柠檬酸。
柠檬酸的添加比率由硝酸盐水溶液中的金属阳离子的比率决定。更为详细地,配合硝酸盐的氧化数(oxidationamount)和柠檬酸的氧化数决定。氧化数一般可指元素的原子价(valency),但在通过快速氧化还原反应,即燃烧过程合成陶瓷时,其含义就稍有不同。例如La的氧化数为+3、氧(O)的氧化数为-2、碳(C)的氧化数为+4,氢(H)的氧化数为+1,但氮(N)视为惰性,因此氧化数为0。因此根据此方法决定各硝酸盐的氧化数,其混合物的氧化数也可以根据摩尔比计算。
作为燃料使用相应量的柠檬酸,其具有相应于如上计算的硝酸盐混合物的负氧化数大小的正氧化数。但是燃料柠檬酸的比率稍大时,燃烧反应顺畅,提高随之制备的陶瓷粉末的物性,因此,优选地,增加柠檬酸的比率。其增量随着所合成的钙钛矿的组成而变化。
其次,优选地,另一起始原料钴酸镧为球状粉末,其粒径为0.5-5.0μm,一次粒子之间致密而无空隙。
这样的球状钴酸镧粉末通过混合镧氧化物和钴氧化物,并在1400℃以上温度下加热5小时以上而合成后,将其粉碎而制备。钴酸镧粉末的另一制备方法也可利用以纤维素制备前体并进行燃烧的方法。钴酸镧粉末的又一制备方法还有将金属氯化物、柠檬酸及乙二醇溶于水而制备水溶液,并加热而除去水和有机物后在400℃以上的温度下进行热处理的方法。钴酸镧粉末的另一制备方法还有在镧硝酸盐和钴硝酸盐水溶液添加氢氧化钠,并干燥所生成的沉淀物后,在700℃空气中煅烧6小时而制备的方法。钴酸镧粉末的另一制备方法还有制备镧硝酸盐和钴硝酸盐水溶液,并均匀混合于丙烯醯胺单体和N,N’-亚甲基双丙烯酰胺的混合物中,然后添加过硫酸铵而制备凝胶后,进行加热而制备的方法。
优选地,以选自上述制备方法中的方法合成的钴酸镧粉末的粒度为0.5-5.0μm。当其粒度小于0.5μm时,可在1400℃以上的温度下进行热处理,使钴酸镧粒子成长后,进行粉碎后利用。但是当其粒度小于0.5μm时,制备钴酸镧粉末的费用增多,不经济。而且当其粒度超过5μm时,妨碍陶瓷材料所需的烧结,结果反而可能对收缩率和电导率起到坏影响。这种影响可以通过后述的钴酸镧添加方法及根据添加比率的收缩率和电导率的变化确认。
钴酸镧在固体电解质燃料电池的运转温度700℃~900℃中事实上不烧结,因此若其粒度过大或者添加比率过大,复合陶瓷材料的收缩率和电导率会变小。而且,优选地,钴酸镧添加比率选为在最终获得的复合陶瓷材料中使钴酸镧的比率为10重量%以上,90重量%以下。这是因为若钴酸镧的添加比率小于10重量%,传导性提高效果小,若超过90%,固体氧化物燃料电池工作温度中陶瓷材料不烧结,因此强度显著变小,其结果陶瓷材料容易破损。
以下,对根据本发明的一实施例的复合陶瓷材料的制备方法进行说明。
首先,按如下方法制备硝酸盐水溶液。将镧硝酸盐、钙硝酸盐、铬硝酸盐、钴硝酸盐、铜硝酸盐等硝酸盐配合ABO3型钙钛矿陶瓷的化学计量组成称重后,溶解于蒸馏水并在低温搅拌加热。而且,在准备的柠檬酸(criticacidmonohydrate)添加所准备的钴酸镧粉末并均匀混合后,投入至硝酸盐水溶液并进行溶胶(sol)化。
将此溶胶状态的混合液渐渐加热,直至成为凝胶(gel),粘性变大,且不能搅拌为止。
然后进一步提高加热温度,在凝胶鼓泡结束后变为有粘性的糕状时,以已固化的凝胶的自燃温度以上的温度进行加热,使凝胶自燃燃烧后,将其冷却。将如此制备的炭干式粉碎后在700℃以上的空气中煅烧。此时,煅烧温度优选为,通过X射线衍射分析确认的钙钛矿单相温度700℃以上,且煅烧粉末未烧结的温度1000℃以下。
已煅烧的粉末的形态为,通过硝酸盐水溶液最终形成的钴酸镧陶瓷粒子包住比其粒径大的钴酸镧粒子周围的形状。将此结构称为带芯结构(coredstructure)。此时,优选为,钴酸镧粒径为0.5-5.0μm,一起合成而包住钴酸镧粒子的钴酸镧陶瓷粒子的粒径为100nm以下。这种带芯结构即使经过如球磨等后续物理工艺,优选地,维持带芯结构。
这种煅烧后的粉末将乙醇和球状氧化锆一起置于塑料罐子内进行球磨后干燥,并将其分级。
通过以上的方法制备的煅烧粉末,添加粘合材料均匀混合后进行干燥成型,之后在与固体氧化物燃料电池的电极板和分离板的两侧接触的状态下烧结,并作为复合陶瓷材料使用。优选地,此时的烧结条件为600℃以上,1小时以上。若烧结温度低于600℃,烧结体强度不充分而粉碎,因此丧失作为接触材料的功能。若温度高于600℃,虽然对陶瓷材料的强度收缩率有利,但构成燃料电池的其他结构要素,例如金属分离板或者玻璃密封材料等的损伤变大。即,本发明的陶瓷材料在固体氧化物燃料电池工作温度范围600℃以上温度下烧结一小时以上,就发挥功能。当温度高于这种烧结温度或者增加烧结时间时,陶瓷材料的组织能够变得更致密。
将已制备的煅烧粉末与适当的粘合材料、分散材料,溶剂等一起均匀混合而制备粘性流体(slurry)形态,在固体氧化物燃料电池的干电池(unitcell)或者分离板(interconnect)上喷射为线状或者面状,并使其烧结附着,可作为陶瓷材料利用。
另一使用例为,将已制备的煅烧粉末与有机粘合材料和分散剂混合而制备膏体,并涂覆于固体氧化物燃料电池的分离板后干燥并烧结使其粘接于分离板,并作为陶瓷材料使用。
以下,对本发明的实施例详细说明。
[实施例1]
首先,作为起始原料之一,合成钴酸镧。为此,混合镧氧化物和钴氧化物并在1400℃的温度下加热5小时以上而合成钴酸镧。粉碎已合成的钴酸镧而制备粉末状态。已制备的钴酸镧粉末如图1的以扫描电子显微镜(SEM)摄影的照片,制备成在一次粒子之间致密而无空隙的球状形态。已制备的钴酸镧的平均粒度约为3μm。
其次,制备硝酸盐水溶液。硝酸盐水溶液的组成通过称重混合而配合,以使最终形成的钴酸镧陶瓷的组成为(La,Ca)(Cr,Co,Cu)O3(下称LCCAF)。在本实施例中使用的LCCAF的正确组成为(La0.8Ca0.2)(Cr0.1Co0.6Cu0.3)O3。为制备具有这种组成的硝酸盐水溶液,在蒸馏水50mL中分别添加镧硝酸盐76.9g、钙硝酸盐10.4g、铬硝酸盐8.9g、钴硝酸盐38.5g和铜硝酸盐16.0g,并使之完全溶解后,搅拌并以70℃加热。
其次,将之前制备的钴酸镧粉末50.0g在常温下添加到柠檬酸(criticacidmonohydrate)粉体并均匀混合后,将此混合物投入至硝酸盐水溶液。
将这种状态的混合液在70℃下继续加热,直至其粘性变大,无法搅拌为止。之后将加热温度提高至150℃,使之结束凝胶鼓泡,成为有粘性的糕状。成为糕状后将其以250℃以上的温度加热,使已固化的凝胶自燃燃烧,并将其冷却而获得炭(char)。将如此获得的炭在球磨机中干式粉碎。然后将其干燥后,以2℃/min的速度升温,并在700℃空气中煅烧4小时。
图2显示了以上述方法合成的粉末。
从图2可知,硝酸盐水溶液和钴酸镧粒子合成的复合粉末为小粒子包住大粒子周围的形状。将此结构称为带芯结构(coredstructure)。大粒径粒子为粒径2~5μm的钴酸镧,小粒径粒子为LCCAF,其粒径为约50nm。
优选地,这种带芯结构即使经过球磨等后续物理工艺,维持带芯结构。因此当球磨煅烧粒子时,有必要控制球磨工艺,达到已凝聚的LCCAF粒子粉碎并均匀分散于钴酸镧粒子周围的程度。
已煅烧的粉末与乙醇和氧化锆一起置于塑料罐子(jar)球磨15小时后在60℃干燥24小时以上。干燥后的粉末分级为150μm以下。
为了比较用以上工艺制备的合成陶瓷煅烧粉末的物性,准备用硝酸盐水溶液和柠檬酸另行合成的LCCAF合成粉末中单纯混合钴酸镧的样品。
以下,根据本发明一实施例的具有带芯结构的已合成的粉末称为“合成粉末”,在另外的工艺中合成的LCCAF粉末中单纯混合钴酸镧粉末的粉末称为“混合粉末”。
为了比较合成粉末和混合粉末的物性,对使相对于最终陶瓷粉末的钴酸镧的添加比率变为10~90重量%而合成或者混合的样品在同样的条件下进行煅烧处理。这些粉末全部在700℃煅烧12小时。煅烧后的这些粉末经粉碎与有机粘合剂混合后成型烧结。此时的烧结条件为850℃、4小时。
下表1显示这种实验条件及对烧结后的烧结体测定的在烧结过程中的烧结收缩率和在固体氧化物燃料电池的使用温度范围800℃下的电导率。此时测定电导性时,将烧结后的样品加工成3×3×20(mm)的大小的四角柱后,以四探针法(four-probemethod)在800℃测定其电导率。
【表1】
如表1所述,可知合成粉末比混合粉末,其烧结收缩率及电导率更大。因此根据本发明的一实施例合成粉末比混合粉末,其烧结性和电导率都优秀。
这种实验结果意味着根据本发明的合成粉末的烧结性有显著的改善,因此当在固体氧化物燃料电池的分离板使用为接触材料时,可以维持致密的网状结构。而且根据本发明的合成粉末,在钴酸镧粒子的触点改善电子流,减少陶瓷材料的电阻,结果提高燃料电池堆的整体电导率。
[实施例2]
实施例2将根据实施例1制备的合成粉末的量增大至一批为250g,并对其与纯LCCAF粉末的物理特性进行比较。(在实施例1中合成的合成粉末一批为100g。)
首先,纯LCCAF粉末如下制备:在以化学计量组成称重的硝酸盐水溶液中只添加柠檬酸而制备LCCAF粉末。而且为了与此进行比较,与实施例1相同的方法合成合成粉末。此时,在合成粉末中的钴酸镧的组成为煅烧后获得的粉末中的钴酸镧的比率达到50重量%。以下,将合成的LCCAF粉末称为“纯LCCAF粉末”,将为了进行比较而合成的合成粉末称为“50%合成粉末”。
在如此合成的粉末中分别添加1.0重量%聚乙烯醇缩丁醛并以1000kgf/cm2单轴加压成型为直径为25mm的圆板形。将这些成型体在850℃空气中烧结4小时。此时测定烧结时的收缩率。烧结后的烧结体加工成3×3×20(mm)大小的四角柱后,以四探针法在800℃测定其电导率。
就烧结时的收缩率和电导率而言,纯LCCAF粉末分别为16.2%和64.3S/cm,而50%合成粉末分别为18.6%和505.2S/cm。
钴酸镧粉末在800℃事实上不烧结,因此包括50重量%钴酸镧的合成粉末的烧结收缩率小于纯LCCAF的烧结收缩率。但是电导率变大约4倍,因此能够充分地补偿烧结收缩率降低1.8百分点而可能会发生的电导率降低效果。
[实施例3]
实施例3将根据实施例2制备的合成粉末,作为接触材适用于固体氧化物燃料电池的分离板后,调查此燃料电池的电特性。
在本实验中使用的试片为根据实施例2合成的50%合成粉末。将合成的50%合成粉末和有机粘合材料、分散剂和溶剂一起混合而制备浆料。
将此浆料置于注射器模样的容器中,利用分配(dispenser)装置以线状涂覆于固体氧化物燃料电池分离板上。而且将此在850℃空气中烧结4小时。
所使用的固体氧化物燃料电池中端电池由LaSrCoFeO3(LSCF)阳极、氧化钇稳定化氧化锆(YSZ)及Ni-YSZ阴极构成,分离板由不锈钢材料(ferriticsteel)组成,密封材料为玻璃。
此时变更分离板和两极之间形成的集电体的同时调查燃料电池的电流电压特性。
关于所使用的集电体,比较了使用1)根据实施例3制备的陶瓷材料;2)由白金网(Ptmesh)和白金膏(Ptpaste)组成的接触材料;和3)以铁素体钢类不锈钢合金制备且电镀有Co-Ni的金属网(mesh)这三种情况。
图3显示对这种三种形态的燃料电池调查电流电压特性的结果。
由图3可知,使用1)根据实施例3制备的陶瓷材料的固体氧化物燃料电池与使用2)白金网和白金膏(paste)的情况相比,其电特性同等或者更佳。但是与使用3)的金属集电体的情况相比,3)的金属集电体比1)根据实施例3制备的陶瓷材料显示约94%左右的性能。因此当使用2)白金网和白金膏(paste)时,使用昂贵的白金,相反1)的陶瓷材料,虽然性能同等但由于成本低廉,因此有益于工业上的利用。
[实施例4]
在实施例4中,对实施例2的“50%合成粉末”及具有与此相同组成的混合粉末,即单纯混合额外的LCCAF粉末和钴酸镧而制备的粉末进行烧结,并比较烧结收缩率和电导率。为此,混合粉末是在额外的工艺中制备纯LCCAF粉末后,在其中单纯混合称重50重量%比率的钴酸镧粉末而成(下称“50%混合粉末”)。
将这样准备的各粉末与1重量%聚乙烯醇缩丁醛一起混合并进行球磨后进行干燥。之后与实施例2相同地成型烧结后测定收缩率和电导率。
测定结果,50%合成粉末的收缩率和电导率为18.6%、505.2S/cm,而50%混合粉末的收缩率和电导率分别为10.9%、180.5S/cm。
如此,50%混合粉末的收缩率和电导率小于50%合成粉末的收缩率和电导率。这种结果显示相较于LCCAF粉末和钴酸镧粉末的组成比率,这些粉末的合成状态对物理特性产生很大的差异。这种结果也可由前述的表1确认。
以上对本发明的优选实施例进行说明,然而本发明并不限于此,在权利要求和说明书及其附图所公开的范围内,能够以多种形式变形实施,其理所当然也属于本发明的范围。

Claims (13)

1.一种复合陶瓷材料,
微小的ABO3型钙钛矿型陶瓷粒子与钴酸镧LaCoO3粒子复合合成,所述钴酸镧粒子的粒径大于所述钙钛矿型陶瓷粒子的粒径,其中,形成为所述钙钛矿型陶瓷粒子包住所述钴酸镧粒子的周围的带芯结构,
所述钙钛矿型陶瓷粒子为(La,Sr)MnO3、(La,Sr)CoO3、(La,Sr)(Co,Fe)O3和(La,Ca)(Cr,Co,Cu)O3中的任一种,
所述钴酸镧粒子的粒径为0.5~5.0μm。
2.根据权利要求1所述的复合陶瓷材料,
所述钴酸镧的比率为10重量%以上,90重量%以下。
3.根据权利要求1所述的复合陶瓷材料,
所述钴酸镧粒子为球状。
4.根据权利要求1所述的复合陶瓷材料,
所述钙钛矿型陶瓷粒子的粒径为100nm以下。
5.根据权利要求1所述的复合陶瓷材料,
在合成所述钙钛矿型陶瓷粒子的工艺中,所述钴酸镧作为起始原料一起添加而合成。
6.根据权利要求1所述的复合陶瓷材料,
所述钙钛矿型陶瓷的组成为(La0.8Ca0.2)(Cr0.1Co0.6Cu0.3)O3
7.一种复合陶瓷材料的制备方法,包括:
将混有柠檬酸和钴酸镧粉末的混合物投入到溶有多种硝酸盐的硝酸盐水溶液的步骤;
通过加热并搅拌所述水溶液,使反应物从溶胶状态成为凝胶状态的加热搅拌步骤;
将在所述加热搅拌步骤中生成的反应物,以所述柠檬酸的自燃温度以上的温度加热,使柠檬酸燃烧的步骤;
将在所述柠檬酸燃烧步骤中生成的炭粉碎后,在700℃以上的温度下煅烧的煅烧步骤;
其中,硝酸盐水溶液的组成配合AB03型钙钛矿陶瓷的组成,通过化学计量决定,
所述钴酸镧粉末的粒径为0.5~5.0μm,
将所述钴酸镧添加至所述硝酸盐水溶液的比率为在最终获得的复合陶瓷材料中使钴酸镧的比率为10重量%以上且90重量%以下,
所述ABO3型钙钛矿陶瓷为(La,Sr)MnO3、(La,Sr)CoO3、(La,Sr)(Co,Fe)O3和(La,Ca)(Cr,Co,Cu)O3中的任一种。
8.根据权利要求7所述的复合陶瓷材料的制备方法,
所述硝酸盐水溶液将选自镧硝酸盐、钙硝酸盐、铬硝酸盐、钴硝酸盐、铜硝酸盐、铁硝酸盐、锰硝酸盐和锶硝酸盐中的一种以上的金属硝酸盐,配合AB03型钙钛矿陶瓷的组成溶于蒸馏水。
9.根据权利要求7所述的复合陶瓷材料的制备方法,
所述(La,Ca)(Cr,Co,Cu)O3的组成为(La0.8Ca0.2)(Cr0.1Co0.6Cu0.3)O3
10.根据权利要求7所述的复合陶瓷材料的制备方法,
用甘氨酸硝酸盐、聚乙二醇、尿素和乙二胺四乙酸中的任一种代替柠檬酸。
11.一种制备陶瓷材料的方法,包括,将根据权利要求7所述的方法制备的复合陶瓷材料与粘合材料、分散材料、溶剂一起均匀混合而制备粘性流体形态,在固体氧化物燃料电池的干电池或者分离板上喷射为线状或者面状,并使其烧结附着,作为陶瓷材料利用。
12.一种制备陶瓷材料的方法,包括,将根据权利要求7所述的方法制备的复合陶瓷材料与有机粘合材料和分散剂混合而制备膏体,并涂覆于固体氧化物燃料电池的分离板后干燥并烧结使其粘接于分离板,并作为陶瓷材料使用。
13.根据权利要求11或12所述的制备陶瓷材料的方法,
所述烧结步骤在600℃以上进行1小时以上。
CN201080059890.3A 2009-12-28 2010-12-28 一种复合陶瓷材料及其制备方法 Expired - Fee Related CN102687324B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0131639 2009-12-28
KR1020090131639A KR101300157B1 (ko) 2009-12-28 2009-12-28 고체 산화물 연료 전지용 복합 세라믹 접촉재 및 그 제조방법
PCT/KR2010/009442 WO2011081417A2 (ko) 2009-12-28 2010-12-28 복합 세라믹 재료 및 그 제조방법

Publications (2)

Publication Number Publication Date
CN102687324A CN102687324A (zh) 2012-09-19
CN102687324B true CN102687324B (zh) 2016-01-13

Family

ID=44227020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080059890.3A Expired - Fee Related CN102687324B (zh) 2009-12-28 2010-12-28 一种复合陶瓷材料及其制备方法

Country Status (6)

Country Link
US (2) US20120282394A1 (zh)
EP (1) EP2521209B1 (zh)
JP (1) JP5642197B2 (zh)
KR (1) KR101300157B1 (zh)
CN (1) CN102687324B (zh)
WO (1) WO2011081417A2 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130097962A (ko) * 2012-02-27 2013-09-04 한국생산기술연구원 졸겔법에 의한 중·저온형 고체산화물 연료전지용 공기극 분말 합성방법
KR20130118093A (ko) * 2012-04-19 2013-10-29 주식회사뉴테크 세라믹 연결재 및 그 합성방법
JP6128524B2 (ja) * 2013-08-26 2017-05-17 日本特殊陶業株式会社 固体酸化物形燃料電池及びその製造方法
JP6664881B2 (ja) * 2014-03-31 2020-03-13 Dowaエレクトロニクス株式会社 燃料電池空気電極用複合酸化物粉末とその製造方法、燃料電池空気電極並びに燃料電池
JP6460528B2 (ja) * 2015-03-16 2019-01-30 国立大学法人北海道大学 Ltga、ltgaの製造方法、ltgaを用いた圧電素子もしくはセンサ
CN107855074A (zh) * 2017-11-28 2018-03-30 桂林电子科技大学 一种以硝酸盐为原料制备金属氧化物材料的粒径细化方法
JP7115873B2 (ja) * 2018-02-28 2022-08-09 株式会社ノリタケカンパニーリミテド 固体酸化物形燃料電池とこれに用いる電極材料
JP7134646B2 (ja) * 2018-02-28 2022-09-12 株式会社ノリタケカンパニーリミテド 固体酸化物形燃料電池とこれに用いる電極材料
KR102220452B1 (ko) * 2019-05-14 2021-02-25 한국전력공사 다공성 전극 표면에 나노 단위 입자를 석출시키는 방법 및 그 방법에 의해 제조되는 전극 물질
CN111187066A (zh) * 2020-02-26 2020-05-22 扬州大学 一种单层正交结构磁电多铁陶瓷及其制备方法
CN112280331B (zh) * 2020-10-30 2021-07-09 深圳陶陶科技有限公司 一种黑色氧化锆色料及陶瓷的制备方法
CN112755992A (zh) * 2021-01-08 2021-05-07 华北电力大学 火焰法高比表面积的钙钛矿型陶瓷氧化物及其制备方法和应用
CN114804217B (zh) * 2021-09-16 2024-03-22 北方民族大学 一种纯相钙钛矿型钴酸镧复合氧化物及其制备方法
CN114873656B (zh) * 2022-05-20 2023-02-14 浙江大学 一种高导电层状结构的过渡金属离子改性La-Sr-Co-X-O复合氧化物的制备方法
CN115894023A (zh) * 2022-09-17 2023-04-04 浙江大学温州研究院 由纳米颗粒组装的薄片状Cu@La1/2Sr1/2CoO3导电陶瓷粉体的制备方法
CN116060050A (zh) * 2023-01-03 2023-05-05 陕西科技大学 一种自组装钴酸镧微球/磷酸银纳米复合光响应性抗菌剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715239A (zh) * 2004-05-21 2006-01-04 Tdk株式会社 陶瓷原料粉体及其制造方法、电介质陶瓷组合物、电子部件和叠层陶瓷电容器
CN101307461A (zh) * 2008-06-16 2008-11-19 清华大学 固体氧化物电解池ysz-lsm氧电极粉体的制备方法
CN101533935A (zh) * 2009-04-14 2009-09-16 黄穗阳 高能安全可充式锂氧电池
CN101567447A (zh) * 2009-06-05 2009-10-28 天津大学 C和金属氧化物包覆LiFePO4锂离子电池正极材料及制备方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6813921A (zh) * 1968-09-27 1970-04-01
US3897367A (en) * 1973-10-10 1975-07-29 Du Pont Metal oxide catalytic compositions
US5549850A (en) * 1984-11-02 1996-08-27 The Boeing Company LaMnO3 -coated ceramics
JPS61275108A (ja) * 1985-05-30 1986-12-05 Mitsubishi Mining & Cement Co Ltd 誘電体粉末の製造方法
JPS63144116A (ja) * 1986-12-05 1988-06-16 Sakai Chem Ind Co Ltd 酸化物粒子の製造方法
US4861345A (en) * 1988-05-13 1989-08-29 Westinghouse Electric Corp. Method of bonding a conductive layer on an electrode of an electrochemical cell
JPH04219365A (ja) * 1990-03-30 1992-08-10 Tonen Corp ランタンクロマイト系複合酸化物と用途
JPH0574352A (ja) * 1991-09-10 1993-03-26 Matsushita Electric Ind Co Ltd ガス放電型表示パネル
JPH05266903A (ja) * 1992-03-18 1993-10-15 Isuzu Motors Ltd 固体電解質型燃料電池の製造方法
JP3321902B2 (ja) * 1993-06-07 2002-09-09 株式会社村田製作所 電子セラミックス原料粉体の製造方法
JPH06349504A (ja) * 1993-06-14 1994-12-22 Nippon Telegr & Teleph Corp <Ntt> 固体電解質型燃料電池
EP0669296B1 (en) 1994-02-23 1998-03-04 Samsung Electronics Co., Ltd. Method for forming a composite metal oxide and method for manufacturing an electrode using the same
DE19627504C1 (de) * 1996-07-08 1997-10-23 Siemens Ag Verbundleiterplatte und Verwendung einer Verbundleiterplatte für einen Hochtemperatur-Brennstoffzellenstapel
US20010048969A1 (en) * 1997-05-05 2001-12-06 Constantino Stephen A. Dispersible, metal oxide-coated, barium titanate materials
JP3230156B2 (ja) * 1999-01-06 2001-11-19 三菱マテリアル株式会社 固体酸化物型燃料電池の電極とその製造方法
US6399233B1 (en) * 1999-07-29 2002-06-04 Technology Management, Inc. Technique for rapid cured electrochemical apparatus component fabrication
JP2001097789A (ja) * 1999-10-01 2001-04-10 Nippon Steel Corp セラミック複合材料
DE10059280A1 (de) * 2000-11-29 2002-06-20 Forschungszentrum Juelich Gmbh Keramischer Werkstoff sowie dessen Herstellung
US6677070B2 (en) * 2001-04-19 2004-01-13 Hewlett-Packard Development Company, L.P. Hybrid thin film/thick film solid oxide fuel cell and method of manufacturing the same
JP3786402B2 (ja) * 2001-05-30 2006-06-14 日本電信電話株式会社 固体電解質型燃料電池用空気極への電極活性酸化物の導入方法
JP4130135B2 (ja) * 2003-02-28 2008-08-06 京セラ株式会社 集電部材の表面処理方法
US7190568B2 (en) * 2004-11-16 2007-03-13 Versa Power Systems Ltd. Electrically conductive fuel cell contact materials
JP2007087612A (ja) * 2005-09-20 2007-04-05 Mitsubishi Heavy Ind Ltd 導電性部材、導電性部材の製造方法、及び固体酸化物形燃料電池の製造方法
WO2007061043A1 (ja) * 2005-11-25 2007-05-31 Nippon Telegraph And Telephone Corporation 固体酸化物形燃料電池
JP4219365B2 (ja) 2006-01-13 2009-02-04 野崎紙商事株式会社 うちわ製造装置およびうちわ製造方法
EP2079671A4 (en) * 2006-10-25 2009-10-21 William Michael Carty CONTROLLED DISTRIBUTION OF CHEMICAL CONSTITUENTS IN CERAMIC SYSTEMS
US8343685B2 (en) 2007-01-31 2013-01-01 Technical University Of Denmark Composite material suitable for use as an electrode material in a SOC
KR100904203B1 (ko) * 2007-07-04 2009-06-23 한국과학기술연구원 연료 전지용 전극-전해질 복합체 분말의 제조 방법
FR2921204B1 (fr) * 2007-09-14 2009-12-04 Saint Gobain Ct Recherches Poudre a grains allonges
JP5266903B2 (ja) 2008-06-20 2013-08-21 新日鐵住金株式会社 Mn合金の製造方法
JP5074352B2 (ja) 2008-10-31 2012-11-14 中部電力株式会社 ガス処理システム
US8343888B2 (en) * 2009-10-01 2013-01-01 GM Global Technology Operations LLC Washcoating technique for perovskite catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715239A (zh) * 2004-05-21 2006-01-04 Tdk株式会社 陶瓷原料粉体及其制造方法、电介质陶瓷组合物、电子部件和叠层陶瓷电容器
CN101307461A (zh) * 2008-06-16 2008-11-19 清华大学 固体氧化物电解池ysz-lsm氧电极粉体的制备方法
CN101533935A (zh) * 2009-04-14 2009-09-16 黄穗阳 高能安全可充式锂氧电池
CN101567447A (zh) * 2009-06-05 2009-10-28 天津大学 C和金属氧化物包覆LiFePO4锂离子电池正极材料及制备方法

Also Published As

Publication number Publication date
EP2521209A2 (en) 2012-11-07
US9871259B2 (en) 2018-01-16
EP2521209B1 (en) 2016-05-25
CN102687324A (zh) 2012-09-19
US20160329573A1 (en) 2016-11-10
KR20110075242A (ko) 2011-07-06
JP5642197B2 (ja) 2014-12-17
KR101300157B1 (ko) 2013-08-26
JP2013515669A (ja) 2013-05-09
WO2011081417A2 (ko) 2011-07-07
WO2011081417A3 (ko) 2011-11-10
US20120282394A1 (en) 2012-11-08
EP2521209A4 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
CN102687324B (zh) 一种复合陶瓷材料及其制备方法
Gu et al. Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA–citrate complexing synthesis process
CN104388972B (zh) 用于固体氧化物电解池的阴极材料及其应用
KR20130099704A (ko) 고체산화물 연료전지용 기능층 소재, 및 상기 소재를 이용하여 제조된 기능층과 상기 기능층을 포함하는 고체산화물 연료전지
Maric et al. High‐performance Ni‐SDC cermet anode for solid oxide fuel cells at medium operating temperature
Du et al. A SmBaCo 2 O 5+ δ double perovskite with epitaxially grown Sm 0.2 Ce 0.8 O 2− δ nanoparticles as a promising cathode for solid oxide fuel cells
CN102420332A (zh) 抗铬毒化固体氧化物燃料电池掺杂CeO2包覆的LaNi0.6Fe0.4O3-δ阴极及其制备方法
CN101515646B (zh) 一种中温固体氧化物燃料电池复合阴极材料及其制备方法
Liu et al. Fabrication and characterization of a co-fired La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ cathode-supported Ce0. 9Gd0. 1O1. 95 thin-film for IT-SOFCs
Zhang et al. Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells
CN110492097A (zh) 一种ncm三元复合正极材料及其制备和应用
Jafari et al. Enhancement of an IT-SOFC cathode by introducing YSZ: Electrical and electrochemical properties of La0. 6Ca0. 4Fe0. 8Ni0. 2O3-δ-YSZ composites
CN102044678B (zh) 固体氧化物燃料电池阴极侧电流收集材料及其制备方法
CN112647089B (zh) 一种固体氧化物电解池三元复合阳极的制备方法
JP5196502B2 (ja) Socにおける電極材料としての使用に適した複合材料
Xin et al. Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders
CN106784867B (zh) 一种燃料电池及其制备方法以及燃料电池阳极材料
CN102683720A (zh) 一种固体氧化物燃料电池的梯度复合阴极及其制备方法
EP3203563B1 (en) Electrolyte membrane, fuel cell including same, battery module including fuel cell, and method for manufacturing electrolyte membrane
CN103346330A (zh) 一种抗铬污染固体氧化物燃料电池的复合阴极及其制备方法
Ahn et al. Synthesis and electrochemical performance of La0. 7Sr0. 3Co1− xFexO3 catalysts for zinc air secondary batteries
Peng et al. Characteristics of La0. 85Sr0. 15MnO3–δ Powders Synthesized by a Glycine‐Nitrate Process
US8512910B2 (en) Solid oxide electrolyte, solid oxide fuel cell containing the solid oxide electrolyte, and method of preparing the solid oxide electrolyte
de Larramendi et al. Synthesis and Performance of La0. 6Ca0. 4Fe0. 8Ni0. 2O3-δ Material for Intermediate-Temperature SOFC Cathode
CN106715331A (zh) 复合金属氧化物颗粒及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160113

Termination date: 20201228