CN102636471A - 基于光子晶体谐振腔led激发光源的微流控芯片荧光检测*** - Google Patents

基于光子晶体谐振腔led激发光源的微流控芯片荧光检测*** Download PDF

Info

Publication number
CN102636471A
CN102636471A CN2012101269694A CN201210126969A CN102636471A CN 102636471 A CN102636471 A CN 102636471A CN 2012101269694 A CN2012101269694 A CN 2012101269694A CN 201210126969 A CN201210126969 A CN 201210126969A CN 102636471 A CN102636471 A CN 102636471A
Authority
CN
China
Prior art keywords
photonic crystal
resonant cavity
crystal resonant
excitation source
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101269694A
Other languages
English (en)
Inventor
曹暾
闫卫平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN2012101269694A priority Critical patent/CN102636471A/zh
Publication of CN102636471A publication Critical patent/CN102636471A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,该检测***和结构是在衬底上先生长一层2μm的基于III-V族半导体材料的n型层,再生长一层反光层,然后生长一层基于III-V族半导体材料的有源层,最后生长一层200-300nm厚基于III-V族半导体材料的p型层;最后通过刻蚀工艺,在p型层刻蚀出光子晶体谐振腔图样。本发明能够通过产生的窄带发射光谱诱发荧光,提高了检测***的灵敏度和分辨率。同时,利用光子晶体谐振腔的光子禁带特性,可以有效抑制激发光源的侧面辐射,滤除激发光背景噪声,提高***信噪比和抗噪性。

Description

基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***
技术领域
本发明属于生物样品(例如蛋白质、DNA以及抗体等)检测领域,涉及一种基于光子晶体谐振腔发光二级管(LED)激发光源的微流控芯片荧光检测***,可应用于疾病治疗诊断和生物医学。
背景技术
微流控芯片,已经在基因分析、病毒和细菌检测等领域的研究中发挥重要作用,成为实现高通量“微型全分析***”的主要手段之一。虽然近年来人们对微流控芯片的研究取得很大的进展,但是主要还是集中于对功能各异的微型化、集成化微流控芯片本身的研制。而与微流控芯片配套的微型集成化检测***的研制却相对落后。当前微流控分析中应用较为普遍的是共聚焦式激光诱导荧光检测,它虽然具有很高的灵敏度,但却远未达到微型化和集成化的要求。尽管近期大量研究表明,可以通过在共聚焦式激光诱导荧光检测***中集成发光二极管(Light emitting diode,LED)和光电二极管(Photodiode,PD)等方法提高***的微型集成化,但这些研究大都受限于激发光源的光谱较宽和侧面辐射较大所导致的***灵敏度和分辨率低、信噪比小等问题。
Sensors and Actuators B,2005(106):878-884,其报道了将PD集成在微流控装置上,组建了化学反应检测器,并证明了PD在600nm-700nm范围内具有较好的响应特性。Sensors and Actuators B,2009(140):643-648,其研制出集成了PD的抗氧化能力筛选的微流控芯片,并实验显示了PD与常用的光电倍增管(PMT)具有相似的响应特性。Proc.SPIE 2005(6036):60361O-1,其在便携式微流控检测***中,采用LED作为激发光源,以PD作为探测器。然而,他们大多利用LED或OLED作为激发光源,因此产生的光谱带宽较宽,影响***检测的灵敏度。Lab on a Chip,2005(5):1041-1047(2005),其以OLED为激发光源组建了微流控芯片的微型化荧光检测***,同时利用自制的300um滤光片来解决OLED发射光谱较宽的问题。然而该方法采用分离的滤光片,使检测***的体积偏大,便携性较低。Optics Express,2010(18):8781-8789,其提出了一种基于垂直腔面发射激光器(Vertical-cavity-surface-emitting laser,VCSEL)技术的微流控芯片荧光探测方法,这种方法的优点在于减小了发射光谱的宽度的同时也实现了高精度和高指数发射滤波器的集成。然而,VCSEL相对于LED和OLED的制作工艺复杂、成本过高、尤其VCSEL侧面自发辐射而形成的激光背景噪声难以滤除,因此限制了整个***的探测灵敏度。
光子晶体谐振腔具有品质因数高,抑制侧面自发辐射能力强和体积小等优点,在微纳有源光学器件领域中有着重要的应用前景。因此,如何在微流控芯片荧光检测***的LED激发光源上集成二维光子晶体谐振腔,使其产生窄带发射光谱,提高***的灵敏度和分辨率;同时利用光子晶体谐振腔的光子禁带特性,有效抑制LED的侧面辐射,滤除激发光背景噪声,提高***信噪比,是本发明的创研动机。
发明内容
本发明针对上述问题,提供了一种基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,该***具有尺寸小、灵敏度高、分辨率强、准确率高、信噪比好的特点。
本发明解决问题采用的技术方案如下:
一种基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,该***的荧光诱导激发光源是由光子晶体谐振腔LED构成,所述的LED是通过在衬底上依次生长基于III-V族半导体材料的n型层、反光层、基于III-V族半导体材料的有源层、基于III-V族半导体材料的p型层而成;其上集成光子晶体谐振腔,使其具高品质因数和光子禁带,从而实现窄带线宽和侧面辐射抑制能力强的荧光诱导激发光源,进而提高***的分辨率、灵敏度和信噪比。
所述的LED激发光源结构是通过在衬底上,先生长一层2μm左右基于III-V族半导体材料的n型层,再生长一层反光层,然后生长基于III-V族半导体材料的有源层,其次生长一层200-300nm厚的基于III-V族半导体材料的p型层。最后通过刻蚀工艺,在p型层窗口层刻蚀出光子晶体谐振腔图样。
所述的III-V族半导体材料层可以是磷化镓(GaP)、镓铝砷(GaAlAs)、砷化镓(GaAs)、氮化镓(GaN)等材料,其内部结构具有单向导电性
所述的有源层可以是n(n>=4)个周期的InGaN/GaN量子阱或量子点结构。
所述的反光层可以是金属层或分布式布拉格反射镜(DBR),金属层包括Al、Ag、Au、Cu等金属层。
所述的衬底可以采用晶体材料、有机材料,其中晶体材料包括硅(Si)、砷化镓(GaAs)、磷化铟(InP)、蓝宝石(Al2O3)等半导体衬底。
所述的光子晶体是矩形、方形、圆形、椭圆形等图形,光子晶体孔宽度为20纳米至10微米,高度在60纳米至10厘米。周期性孔矩阵可以通过干法或者湿法刻蚀工艺实现,如电子束曝光(E-beam lithography)、聚焦离子束曝光(FocusIon Beam lithography)和反应离子束刻蚀(Reactive Ion Etching,RIE)等,其特点是底部平坦,空壁光滑,侧面形状不限。
光子晶体谐振腔LED激发光源的制备过程是在衬底上通过生长工艺制备III-V族半导体材料基LED;然后在LED上通过掩模和刻蚀工艺制备光子晶体谐振腔。
本发明的测试***包括依光子晶体谐振腔LED平板式激发光源14、激发光滤波片15、微流控芯片16、光纤17、发射光滤光片18、光电倍增管19、高压电源20和计算机控制***21等组成。
本发明的有益效果是:
1、本发明采用光子晶体谐振腔LED作为激发光源,代替原有的半导体激光器,使微流控芯片荧光检测***的尺寸减少。同时,不必采用棱镜和透镜组的光学器件,简化了检测***。
2、与现有的微流控芯片荧光检测***相比,本发明采用光子晶体谐振腔将LED激发光的侧面辐射抑制住,有效地提高了***的信噪比和准确度。
3、由于本发明提出的光子晶体谐振腔具有较高的品质因数,可以使LED的激发光谱线宽变窄,有效提高了***的分辨率和灵敏度。
附图说明
图1为光子晶体谐振腔LED激发光源制作流程示意图。
图2为光子晶体谐振腔LED激发光源示意图。
图3是基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***结构示意图。
图中:1衬底;2III-V族半导体材料n型层;3反光层;
4III-V族半导体材料有源层;5III-V族半导体材料p型层;6沉积掩模;
7光子晶体谐振腔;8ITO层;9p型电极;10n型电极;
11光子晶体谐振腔LED;12玻璃基片;13玻璃盖片;
14光子晶体谐振腔LED平板式光源;15激发光滤波片;16微流控芯片;
17光纤;18发射光滤光片;19光电倍增管;20高压电源;21计算机控制***。
具体实施方式
为使得本发明的技术方案的内容更加清晰,以下结合技术方案和附图详细叙述本发明的具体实施方式。其中的薄膜生长技术包括:蒸发、溅射、金属有机化学气相沉积(MOCVD)、分子束外延(MBE)、电子束蒸发(E-beam evaporation)或液相外延(LPE)等常用技术。其中的掩模工艺包括电子束曝光(E-beamlithography,EBL)、聚焦离子束曝光(Focus Ion Beam lithography,FIBL)等常用技术。其中的刻蚀工艺包括湿法刻蚀和干法刻蚀,如酸法刻蚀、电子束刻蚀、聚焦离子束刻蚀和反应离子束刻蚀(Reactive Ion Etching,RIE)等常用工艺。
首先,采用MOCVD技术在衬底1上制作LED器件:先生长一层2μm左右的基于III-V族半导体材料的n型层2,再生长一层反光层3,然后生长基于III-V族半导体材料的有源层4,最后生长一层200-300nm厚的基于III-V族半导体材料的p型层5,外延片生长完成,如附图1中(a)所示。然后,清洗外延片,进行沉积掩模6,其中6可以是SiO2等,如附图1中(b)所示。
再根据理论计算的结果,定义满足填充因子和刻蚀图形要求的光子晶体谐振腔样板,并通过扫描式离子束曝光或聚焦离子束曝光将样本转换到掩模上,如附图1(c)所示。其中,理论计算可以采用有限时域差分法、有限元法等算法。通过刻蚀工艺,在5材料上制备光子晶体谐振腔7,如附图1中(d)所示。然后,移除掩模6,去胶清洗,如附图1中(e)示。再在光子晶体谐振腔上表面采用真空镀膜的方法制作一层250-300nm厚的ITO层8作为电流扩展层,如附图1(f)所示。然后,分别制备上p型电极9和下n型电极10并退火,光子晶体谐振腔集成LED 11制备完成,如附图1中(g)所示。
最后,将光子晶体谐振腔集成LED 11置放于玻璃基片12上,用玻璃盖片13进行封装,构成光子晶体谐振腔LED平板式光源14,如附图2所示。光源14的体积大小与微流控芯片16相近,通过调节加在p型电极9和n型电极10之间的电压,光源14发出具有一定强度的相应波长激发光,用于诱发荧光。通过改变LED有源层4的材料和参杂,可以制出具有蓝光、绿光、红光和紫外光的光源11。
如图3所示,本发明测试***主要由光子晶体谐振腔LED平板式激发光源14、激发光滤波片15、微流控芯片16、光纤17、发射光滤光片18、光电倍增管19、高压电源20和计算机控制***21等组成。光子晶体谐振腔可以将LED的侧面辐射有效的抑制住,同时光子晶体谐振腔的高品质因数也可以有效的减少激发光的光谱宽度,提高***的分辨率和灵敏度。激发光滤波片15可以将激发光源14发出的激发光中覆盖检测区域的杂散光滤掉,微流控芯片16上由激发光14产生的荧光信号,通过光纤17传递到另一端的发射光滤光片18,过滤后被光电倍增管19接受放大,最后传输至计算机20,由计算机21记录并进行数据处理。微流控芯片16上的样品池和缓冲溶液池连接到高压电源上,高压电源20同时与计算机21连接,用来控制微流控芯片16上的电泳进样及分离操作。
综上所述,本发明提供的光子晶体谐振腔LED激发光源具有较高的品质因数,所以可以得到窄带线宽激发光谱,该特性可以显著提高微流控芯片荧光检测***的分辨率和灵敏度。同时,光子晶体谐振腔良好的限光性,可以有效的抑制LED的侧面辐射,从而提高***的信噪比和抗干扰性。
以上所述是本发明应用的技术原理和具体实例,依据本发明的构想所做的等效变换,只要其所运用的方案仍未超出说明书和附图所涵盖的精神时,均应在本发明的范围内,特此说明。

Claims (8)

1.一种基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,其特征在于,基于光子晶体谐振腔LED激发光源是将光子晶体谐振腔集成于LED上的激发光源,其结构是在衬底上先生长一层2μm的基于III-V族半导体材料的n型层,再生长一层反光层,然后生长一层基于III-V族半导体材料的有源层,最后生长一层200-300nm厚的基于III-V族半导体材料的p型层;最后通过刻蚀工艺,在p型层刻蚀出光子晶体谐振腔图样。
2.根据权利要求1所述的基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,其特征在于,所述的III-V族半导体材料层是内部结构具有单向导电性的磷化镓、镓铝砷、砷化镓、氮化镓。
3.根据权利要求1所述的基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,其特征在于,所述的光子晶体是矩形、方形、圆形、椭圆形;光子晶体孔宽度为20纳米至10微米,高度在60纳米至10厘米。
4.根据权利要求1所述的基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,其特征在于,所述的有源层是n个周期的InGaN/GaN量子阱或量子点结构,其中n不小于4。
5.根据权利要求1或2或3或4所述的基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,其特征在于,反光层是金属层或分布式布拉格反射镜(DBR)。
6.根据权利要求1或2或3或4所述的基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,其特征在于,所述的衬底采用晶体材料、有机材料。
7.根据权利要求5所述的基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,其特征在于,金属层的金属是指Al、Ag、Au、Cu。 
8.根据权利要求6所述的基于光子晶体谐振腔LED激发光源的微流控芯片荧光检测***,其特征在于,晶体材料包括硅、砷化镓、磷化铟、蓝宝石。 
CN2012101269694A 2012-04-26 2012-04-26 基于光子晶体谐振腔led激发光源的微流控芯片荧光检测*** Pending CN102636471A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101269694A CN102636471A (zh) 2012-04-26 2012-04-26 基于光子晶体谐振腔led激发光源的微流控芯片荧光检测***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101269694A CN102636471A (zh) 2012-04-26 2012-04-26 基于光子晶体谐振腔led激发光源的微流控芯片荧光检测***

Publications (1)

Publication Number Publication Date
CN102636471A true CN102636471A (zh) 2012-08-15

Family

ID=46620946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101269694A Pending CN102636471A (zh) 2012-04-26 2012-04-26 基于光子晶体谐振腔led激发光源的微流控芯片荧光检测***

Country Status (1)

Country Link
CN (1) CN102636471A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879366A (zh) * 2012-09-21 2013-01-16 常州大学 检测量子点与生物分子相互作用的液滴微流控***及方法
US9478713B2 (en) 2014-05-27 2016-10-25 Rohm And Haas Electronic Materials Llc Nanostructure material methods and devices
CN106505076A (zh) * 2016-11-09 2017-03-15 太原理工大学 微米阵列led制备方法
CN111785819A (zh) * 2020-06-29 2020-10-16 厦门大学 一种GaN基窄带发射共振腔发光二极管及其制作方法
DE102021212505A1 (de) 2021-11-08 2023-05-11 Robert Bosch Gesellschaft mit beschränkter Haftung Optische Vorrichtung zum Anregen einer Probe, Analysegerät und Verfahren zum Anregen einer Probe

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
《物理学报》 20101130 陈依新等 表面为二维光子晶体结构的AlGaInP系发光二极管的研究 8083-8087 第59卷, 第11期 *
DANAE DELBEKE ET.AL: "High-Efficiency Semiconductor Resonant-Cavity Light-Emitting Diodes:A Review", 《IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS》 *
DAVID ERICKSON ET.AL: "Nanofluidic tuning of photonic crystal circuits", 《SPIE PROCEEDINGS》 *
MAXIME RATTIER 等: "Toward Ultrahigh-Efficiency Aluminum Oxide Microcavity Light-Emitting Diodes:Guided Mode Extraction by Photonic Crystals", 《IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS 》 *
杨梅: "光子晶体结构优化对提高GaN基LED光提取效率影响的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
罗雁横,张瑞君: "光子晶体微腔发光二极管", 《微纳电子技术》 *
聂瑞芬等: "RCLED的制作工艺与性能研究", 《固体电子学研究与进展》 *
陈依新等: "表面为二维光子晶体结构的AlGaInP系发光二极管的研究", 《物理学报》 *
陈松等: "二维点缺陷正方光子晶体的微腔结构", 《发光学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879366A (zh) * 2012-09-21 2013-01-16 常州大学 检测量子点与生物分子相互作用的液滴微流控***及方法
CN102879366B (zh) * 2012-09-21 2015-07-01 常州大学 检测量子点与生物分子相互作用的液滴微流控***及方法
US9478713B2 (en) 2014-05-27 2016-10-25 Rohm And Haas Electronic Materials Llc Nanostructure material methods and devices
CN106505076A (zh) * 2016-11-09 2017-03-15 太原理工大学 微米阵列led制备方法
CN106505076B (zh) * 2016-11-09 2018-07-31 太原理工大学 微米阵列led制备方法
CN111785819A (zh) * 2020-06-29 2020-10-16 厦门大学 一种GaN基窄带发射共振腔发光二极管及其制作方法
CN111785819B (zh) * 2020-06-29 2021-09-07 厦门大学 一种GaN基窄带发射共振腔发光二极管及其制作方法
DE102021212505A1 (de) 2021-11-08 2023-05-11 Robert Bosch Gesellschaft mit beschränkter Haftung Optische Vorrichtung zum Anregen einer Probe, Analysegerät und Verfahren zum Anregen einer Probe

Similar Documents

Publication Publication Date Title
Wasisto et al. Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs
CN102636471A (zh) 基于光子晶体谐振腔led激发光源的微流控芯片荧光检测***
US9995682B2 (en) Cointegration of optical waveguides, microfluidics, and electronics on sapphire substrates
US7489401B2 (en) Device for detecting emission light of micro-object
Bouchet et al. Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas
US9696531B2 (en) Solid-state microscope for selectively imaging a sample
KR20190097163A (ko) 광 커플러 및 도파로 시스템
US9106056B1 (en) Phase-coupled arrays of nanowire laser devices and method of controlling an array of such devices
CN102628805B (zh) 基于光子晶体滤波片的微流控芯片荧光检测***
Zwiller et al. Quantum optics with single quantum dot devices
CN108988123A (zh) 基于超表面的单片集成面发射半导体激光器及其制备方法
CN107768979A (zh) 外延集成高对比度光栅外腔面发射激光器
CN108028513B (zh) 纳米线激光器结构和制造方法
JP2005283568A (ja) 微小対象物放出光検出装置
CN102530821A (zh) 基于硅衬底氮化物材料的悬空谐振光子器件及其制备方法
TWI794145B (zh) 包含整合性帶通濾波器之光學裝置陣列
KR20210132176A (ko) 통합 디바이스를 위한 광학 흡수 필터
CN105742387B (zh) AlGaN渐变组分超晶格雪崩光电二极管
Kaganskiy et al. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses
US10224443B2 (en) Semiconductor device and a method of making a semiconductor device
CN104393127B (zh) 一种倒装结构发光二极管及其制作方法
CN107544117B (zh) 集成光源倾斜光栅耦合器件及其制备方法
CN102570313B (zh) 基于硅衬底氮化物材料的集成光子器件及其制备方法
Qiu et al. Enhancement of spontaneous emission from CdSe/ZnS quantum dots through silicon nitride photonic crystal cavity based on miniaturized bound states in the continuum
Visser et al. GaInP nanowire arrays for color conversion applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120815