CN102615431B - 一种灰铸铁缸盖自动化激光熔覆再制造方法 - Google Patents

一种灰铸铁缸盖自动化激光熔覆再制造方法 Download PDF

Info

Publication number
CN102615431B
CN102615431B CN201210106025.0A CN201210106025A CN102615431B CN 102615431 B CN102615431 B CN 102615431B CN 201210106025 A CN201210106025 A CN 201210106025A CN 102615431 B CN102615431 B CN 102615431B
Authority
CN
China
Prior art keywords
cladding
iron cylinder
cylinder head
groove
gray iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210106025.0A
Other languages
English (en)
Other versions
CN102615431A (zh
Inventor
董世运
徐滨士
闫世兴
王玉江
方金祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Armored Forces Engineering of PLA
Original Assignee
Academy of Armored Forces Engineering of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Armored Forces Engineering of PLA filed Critical Academy of Armored Forces Engineering of PLA
Priority to CN201210106025.0A priority Critical patent/CN102615431B/zh
Publication of CN102615431A publication Critical patent/CN102615431A/zh
Application granted granted Critical
Publication of CN102615431B publication Critical patent/CN102615431B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种灰铸铁缸盖自动化激光熔覆再制造方法,包括配制灰铸铁激光熔覆修复材料;对灰铸铁缸盖上的“鼻裂”裂纹的深度做无损检测;对灰铸铁缸盖上的“鼻裂”部位做修复前的预处理;通过激光熔覆对所述灰铸铁缸盖上的“鼻裂”部位做仿形修复;对修复部位去除应力。本发明成形尺寸精确,仅需较小的后加工,对基体的热影响较小;且立体成形修复部位力学性能很优越,可以很好地抑制结合界面白口化趋势,有效阻隔了碳扩散。

Description

一种灰铸铁缸盖自动化激光熔覆再制造方法
技术领域
本发明涉及装备再制造领域,特别涉及一种灰铸铁缸盖自动化激光熔覆再制造方法。
背景技术
灰铸铁由于其价格便宜,具有良好的铸造性能、优良的减振性、良好的耐磨性能、优异的切削加工性能、较高的抗拉强度、低的缺口敏感性、良好的导热性能等优点,在工业生产中常用来制作大型铸件。发动机缸盖是采用该材料制造的典型零件之一。这种大型构件通常需要复杂的热处理和制造工艺,以及精确的机械加工等,需要专项设备制备,价格比较昂贵,成本很高。
然而在使用过程中,由于灰铸铁自身疏松组织特性、片状石墨割裂效应,导致灰铸铁的抗拉强度、塑性、韧性远低于钢,力学性能较差。一些杂质成分对灰铸铁本身组织、结构也有一定的影响。灰铸铁的这些特性导致灰铸铁缸盖缺陷较多,其中最为常见的缺陷类型是在气门间“鼻梁”部位产生横断裂纹,所述横断裂纹产生的原因与该部位结构特征和工况环境密切相关。气缸盖在发动机工作过程中承受高温,需要内部循环水路的及时冷却,故缸盖的结构设计较为复杂,而“鼻梁”部位为实心结构,循环水冷却效应较弱,同时该部位在工作中要承受高温、高压燃气的作用和较大的机械载荷冲击,在热应力作用下导致该部位发生疲劳断裂。
倘若发生疲劳断裂的缸盖直接报废,作为废品回炉,那么构件制造时的劳动价值与能源价值等附加值全面丢失,所获得的产品只能作为原材料使用,造成极大的浪费。工业上常采用焊补方式进行修复,常见的焊补方法有手工电弧焊和CO2气体保护焊,但这些方法存在以下问题:热输入量过大,对基体热影响严重,导致焊缝残余应力过大,焊接接头存在白口组织与淬硬组织,焊缝极易开裂。虽然采用异质焊缝材料可减小焊接接头组织的白口倾向,但对多层堆焊后残余应力的控制还缺乏有效的技术手段。
发明内容
本发明的目的在于克服现有焊补方法所形成的焊缝易开裂,残余应力大的缺陷,从而提供一种灰铸铁缸盖的自动化激光熔覆再制造方法,包括:
步骤1)、配制灰铸铁激光熔覆修复材料;其中,
所述灰铸铁激光熔覆修复材料具有以下理化属性:强度不低于基体,塑性、韧性高,抗开裂性能突出;可阻隔碳元素扩散,抑制界面白口化作用显著;具有良好的自脱氧、造渣能力,表面出现质量优异,内部无气孔;与灰铸铁基体具有良好的润湿性,激光熔覆成形性优异;
步骤2)、对灰铸铁缸盖上的“鼻裂”裂纹的深度做无损检测;
步骤3)、对灰铸铁缸盖上的“鼻裂”部位做修复前的预处理,在所述预处理中,根据步骤2)得到的裂纹深度检测结果去除“鼻裂”部位的裂纹,形成一坡口,然后利用角砂轮打磨坡口周围直至露出新鲜金属表面,用丙酮溶液清洗坡口及其周围表面;
步骤4)、通过激光熔覆对所述灰铸铁缸盖上的“鼻裂”部位做仿形修复;该步骤包括:
步骤4-1)、在所述灰铸铁缸盖上的所述坡口处做单道单层熔覆;
步骤4-2)、在所述灰铸铁缸盖上的所述坡口处形成打底层;
步骤4-3)、在步骤4-2)所生成的打底层的基础上,做多层堆积仿形修复;
步骤5)、对修复部位去除应力。
上述技术方案中,在所述的步骤1)中,所述灰铸铁激光熔覆修复材料为Ni-Cu系合金粉末,该合金粉末中包括质量分数为0.01%~0.05%的C元素、质量分数为2.0%~4.0%的Si元素、质量分数为1.0%~3.0%的B元素、质量分数为0.1%~1.0%的Fe元素、质量分数为10%~40%的Cu元素以及质量分数为Bal的Ni元素。
上述技术方案中,在所述的步骤3)中,所述坡口为“V”形坡口,所述“V”形坡口底部为圆角,对于10mm深度的坡口,坡口夹角不低于80°  。
上述技术方案中,在所述的步骤4-1)中,所述的在所述灰铸铁缸盖上的所述坡口处做单道单层熔覆包括:在做单道单层熔覆时,采用侧向同步送粉方式,高纯氮气保护,激光功率为800 W,扫描速度为150mm/min,送粉电压为11 V,光斑尺寸为3.5 mm,送粉载气流量为200 L/h,所形成的熔覆层单层厚度为0.5mm。
上述技术方案中,在所述的步骤4-2)中,在所述灰铸铁缸盖上的所述坡口处形成打底层时,采用单道激光熔覆工艺,在熔覆时,需调整机器人,控制激光束轴心与坡口表面夹角在70~90°的范围内;激光束轴心与粉末喷枪轴心夹角范围为10~45°,打底熔覆层搭接率为45%。
上述技术方案中,在所述的步骤4-3)中,做多层堆积仿形修复时,堆积系数为0.5mm,熔覆层每搭接4道,连续熔覆长度小于50mm,激光光闸停止一次;同时以小铁锤迅速锤击熔覆层,消除内部应力;然后继续开光熔覆,直至将堆满坡口部位,熔覆过程中始终保持后向送粉方式。
本发明的优点在于:
本发明成形尺寸精确,仅需较小的后加工,对基体的热影响较小;且立体成形修复部位力学性能很优越,可以很好地抑制结合界面白口化趋势,有效阻隔了碳扩散。
说明书附图
图1为本发明的灰铸铁缸盖的自动化激光熔覆再制造方法的流程图。
具体实施方式
下面结合附图和具体实施方式对本发明做详细说明。
在本发明的一个实施例中,一缸盖进-进气门间“鼻梁”部位萌生裂纹,鼻梁部位材料厚度14mm(表面至水套距离),裂纹深度未知,缸盖材料为HT250。下面以该实施例为例,结合图1,对这一缸盖采用本发明的激光熔覆再制造方法实现再制造的过程进行说明。
步骤1、配制灰铸铁激光熔覆修复专用材料。
为满足灰铸铁件激光熔覆堆积成形的性能需要,且能避免灰铸铁熔覆常见缺陷的出现,灰铸铁激光熔覆修复用的材料需具有以下理化属性:
(1)强度不低于基体,塑性、韧性高,抗开裂性能突出。
(2)可阻隔C元素扩散,抑制界面白口化作用显著。
(3)具有良好的自脱氧、造渣能力,表面出现质量优异,内部无气孔。
(4)与灰铸铁基体具有良好的润湿性,激光熔覆成形性优异。
根据上述理化属性,在本实施例中,所采用的修复用的材料为Ni-Cu系合金粉末。该合金粉末所含元素质量分数如表1所示,粉末粒度为-140~+325目。
表1
其中,Bal表示余量。
在其他实施例中,也可选用其他材料作为修复材料,只要这些材料能够满足前面所提到的理化属性即可。
步骤2、对“鼻裂”裂纹的深度做无损检测。
在本步骤中,为了更清晰地表示出裂纹深度不同时的涡流检测信号,采用涡流法对不同深度裂纹分别进行了检测。随着裂纹深度的增加,涡流信号幅值逐渐变大,但其相位变化并不明显。为了实现缸盖“鼻裂”深度的评价,在本步骤中建立了裂纹深度-涡流信号幅值间的数学模型。
y=8.9334·e0.402·x    (1)
其中:y表示涡流信号幅值;x表示裂纹深度。
因而当裂纹深度在涡流检测范围内时,将实际测量得到的涡流信号幅值代入式(1)中,即可初步获得缸盖“鼻裂”深度数据,为缸盖的修复提供依据。
步骤3、对缸盖“鼻裂”部位做修复前的预处理。
根据步骤2检测得到的缸盖“鼻裂”裂纹深度及走向结果,首先在裂纹部位开深“V”形坡口去除裂纹,所述“V”形坡口底部为圆角,为保证激光可达性,对于10mm深度的坡口,坡口夹角不低于80°。然后利用角砂轮打磨坡口周围直至露出新鲜金属表面,用丙酮溶液清洗坡口及其周围表面。
步骤4、通过激光熔覆对灰铸铁缸盖上的“鼻裂”部位做仿形修复。该步骤可包括:
步骤4-1、在灰铸铁缸盖上的“鼻裂”部位做单道单层熔覆。
利用光纤传导机器人控制YAG激光器,以气动送粉方式同步送入步骤1中所配制的Ni-Cu系合金粉末,通过在HT250基体上进行大量正交实验,评价在不同熔覆工艺条件下,单道单层熔覆层成形质量。评价指标包括:熔覆层表面质量(是否光亮、连续,有无裂纹、夹杂,气孔大小及数量)和显微组织、性能测试(显微硬度、残余应力),确定HT250基体上最佳激光熔覆工艺参数。发现采用侧向同步送粉方式,高纯氮气保护,激光功率为800W,扫描速度为150mm/min,送粉电压为11V,光斑尺寸为3.5mm,送粉载气流量为200L/h时,熔覆层单层厚度0.5mm,熔覆层无气孔、裂纹缺陷,同时熔覆层表面连续、光亮,成形质量优异。
步骤4-2、成形打底层。
立体仿形修复通常需要进行多层熔覆,打底层是最重要的一层。作为与基体直接结合的一层,打底层与基体的结合强度直接决定着熔覆层的结合质量与抗开裂性能;本发明针对灰铸铁的激光熔覆,采用Ni-Cu系合金粉末制备打底层,目的是使基体仅产生较小的熔深,并利用熔化的Ni-Cu合金将基体中C元素阻隔在界面处,即熔覆层底部的半熔化区,减小甚至消除界面处白口趋势。
采用上述单道激光熔覆工艺,沿坡口表面先期制备打底层,熔覆时,为保证光斑区域能量密度呈标准的高斯分布,需调整机器人,控制激光束轴心与坡口表面夹角在70~90°范围内;激光束轴心与粉末喷枪轴心夹角范围为10~45°,打底熔覆层搭接率为45%,此时熔覆层具有较高平整度。
步骤4-3、多层堆积仿形修复
在步骤4-2打底层的基础上,沿V形表面逐层堆积,堆积系数为0.5mm,熔覆层每搭接4道,连续熔覆长度小于50mm,激光光闸停止一次,即短段成形、断续熔覆方式,同时以小铁锤迅速锤击熔覆层,消除内部应力。然后继续开光熔覆,直至将堆满坡口部位,熔覆过程中始终保持后向送粉方式(粉末喷枪轴心与熔覆层轴心夹角小于90°),该方式一方面具有较高的粉末利用率,另一方面可有效防止堆积熔覆层边角尺寸塌陷。为留出后加工余量,熔覆堆积尺寸在各向均需大于“鼻梁”原始尺寸;为保证熔覆层与基体良好的界面结合,表层熔覆时熔覆层需跨越与坡口部位的接触界面,深入缸盖表面1~3mm。
步骤5、对修复部位去除应力。
为进一步消除堆积熔覆层内部残余应力,整体堆积完毕后,以汽油喷灯加热修复部位及附近区域,加热至200~400℃,保温1小时左右,表面覆盖石棉,从而抑制熔覆层延迟开裂倾向。
以上是本发明的激光熔覆再制造方法的实现过程。对于灰铸铁零件而言,本发明方法中所采用的激光熔覆的技术手段可使基体产生较小的熔深,对熔覆层具有极低的稀释影响,进而减小了C元素的扩散作用,防止形成白口组织,同时配合Ni、Cu类合金与C的不互溶作用,将C元素堵塞在结合界面处,进一步抑制了白口趋势。同时,激光熔覆热量集中,对基体热影响小,在低功率密度下,进行慢扫描成形,并配合外界的锤击、缓冷措施,可有效降低熔覆层的残余应力,达到厚成形熔覆层控制开裂的目的。

Claims (5)

1.一种灰铸铁缸盖的自动化激光熔覆再制造方法,包括:
步骤1)、配制灰铸铁激光熔覆修复材料;其中,
所述灰铸铁激光熔覆修复材料具有以下理化属性:强度不低于基体,塑性、韧性高,抗开裂性能突出;可阻隔碳元素扩散,抑制界面白口化作用显著;具有良好的自脱氧、造渣能力,表面出现质量优异,内部无气孔;与灰铸铁基体具有良好的润湿性,激光熔覆成形性优异;
步骤2)、对灰铸铁缸盖上的“鼻裂”裂纹的深度做无损检测;
步骤3)、对灰铸铁缸盖上的“鼻裂”部位做修复前的预处理,在所述预处理中,根据步骤2)得到的裂纹深度检测结果去除“鼻裂”部位的裂纹,形成一坡口,然后利用角砂轮打磨坡口周围直至露出新鲜金属表面,用丙酮溶液清洗坡口及其周围表面;
步骤4)、通过激光熔覆对所述灰铸铁缸盖上的“鼻裂”部位做仿形修复;该步骤包括:
步骤4-1)、在所述灰铸铁缸盖上的所述坡口处做单道单层熔覆;
步骤4-2)、在所述灰铸铁缸盖上的所述坡口处形成打底层;
步骤4-3)、在步骤4-2)所生成的打底层的基础上,做多层堆积仿形修复;
步骤5)、对修复部位去除应力;
在所述的步骤1)中,所述灰铸铁激光熔覆修复材料为Ni-Cu系合金粉末,该合金粉末中包括质量分数为0.01%~0.05%的C元素、质量分数为2.0%~4.0%的Si元素、质量分数为1.0%~3.0%的B元素、质量分数为0.1%~1.0%的Fe元素、质量分数为10%~40%的Cu元素以及质量分数为Bal的Ni元素。
2.根据权利要求1所述的灰铸铁缸盖的自动化激光熔覆再制造方法,其特征在于,在所述的步骤3)中,所述坡口为“V”形坡口,所述“V”形坡口底部为圆角,对于10mm深度的坡口,坡口夹角不低于80°。
3.根据权利要求1所述的灰铸铁缸盖的自动化激光熔覆再制造方法,其特征在于,在所述的步骤4-1)中,所述的在所述灰铸铁缸盖上的所述坡口处做单道单层熔覆包括:在做单道单层熔覆时,采用侧向同步送粉方式,高纯氮气保护,激光功率为800W,扫描速度为150mm/min,送粉电压为11V,光斑尺寸为3.5mm,送粉载气流量为200L/h,所形成的熔覆层单层厚度为0.5mm。
4.根据权利要求1所述的灰铸铁缸盖的自动化激光熔覆再制造方法,其特征在于,在所述的步骤4-2)中,在所述灰铸铁缸盖上的所述坡口处形成打底层时,采用单道激光熔覆工艺,在熔覆时,需调整机器人,控制激光束轴心与坡口表面夹角在70~90°的范围内;激光束轴心与粉末喷枪轴心夹角范围为10~45°,打底熔覆层搭接率为45%。
5.根据权利要求1所述的灰铸铁缸盖的自动化激光熔覆再制造方法,其特征在于,在所述的步骤4-3)中,做多层堆积仿形修复时,堆积系数为0.5mm,熔覆层每搭接4道,连续熔覆长度小于50mm,激光光闸停止一次;同时以小铁锤迅速锤击熔覆层,消除内部应力;然后继续开光熔覆,直至将堆满坡口部位,熔覆过程中始终保持后向送粉方式。
CN201210106025.0A 2012-04-12 2012-04-12 一种灰铸铁缸盖自动化激光熔覆再制造方法 Expired - Fee Related CN102615431B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210106025.0A CN102615431B (zh) 2012-04-12 2012-04-12 一种灰铸铁缸盖自动化激光熔覆再制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210106025.0A CN102615431B (zh) 2012-04-12 2012-04-12 一种灰铸铁缸盖自动化激光熔覆再制造方法

Publications (2)

Publication Number Publication Date
CN102615431A CN102615431A (zh) 2012-08-01
CN102615431B true CN102615431B (zh) 2014-08-13

Family

ID=46555824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210106025.0A Expired - Fee Related CN102615431B (zh) 2012-04-12 2012-04-12 一种灰铸铁缸盖自动化激光熔覆再制造方法

Country Status (1)

Country Link
CN (1) CN102615431B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103264267A (zh) * 2013-06-07 2013-08-28 山东塔高矿业机械装备制造有限公司 综采液压支架再制造工艺
CN103600214A (zh) * 2013-12-06 2014-02-26 山东塔高矿业机械装备制造有限公司 一种液压支架立柱再制造柱头螺纹孔加工工艺
CN104233292A (zh) * 2014-10-09 2014-12-24 江苏中科四象激光科技有限公司 一种采用金属粉末的激光修复方法
CN104439704B (zh) * 2014-11-06 2016-01-06 中国航空工业集团公司北京航空材料研究院 一种Ti3Al铸件铸造缺陷的激光补焊方法
CN105088225B (zh) * 2015-09-07 2017-08-11 燕山大学 一种有效减少激光熔覆裂纹的机械冲击方法及装置
CN105177569B (zh) * 2015-10-13 2017-12-15 武汉华工激光工程有限责任公司 一种球磨铸铁表面激光修复方法
CN107043933A (zh) * 2017-04-14 2017-08-15 广西大学 一种在铸铁表面制备无缺陷熔覆层的方法
CN107723700A (zh) * 2017-08-23 2018-02-23 韩传怀 一种磨损轴承的修复方法
CN108015424B (zh) * 2017-12-28 2020-08-11 中国人民解放军陆军装甲兵学院 一种用于trt承缸铸铁件的激光-电弧复合再制造方法
CN110468404A (zh) * 2019-07-24 2019-11-19 成都飞机工业(集团)有限责任公司 一种损伤钛合金构件凹槽型缺陷的修复方法
CN112025224B (zh) * 2020-09-03 2021-11-19 河北省瑞兆激光机电设备再制造产业技术研究院 一种球墨铸铁类承缸二氧化碳自动熔覆再制造方法
CN114016017B (zh) * 2021-10-28 2022-10-04 山东大学 一种铸铁表面激光熔覆铜合金的方法及防爆叶轮表面结构
CN114101913B (zh) * 2021-12-08 2024-05-14 中国航发南方工业有限公司 叶片铸件深槽用补焊方法
CN115369398A (zh) * 2021-12-22 2022-11-22 杭州航林机械制造有限公司 灰铁铸铁件的激光熔覆工艺及其所用复合粉末

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1442829A2 (en) * 2002-10-30 2004-08-04 General Electric Company Method of repairing a stationary shroud of a gas turbine engine using laser cladding
CN1660538A (zh) * 2004-02-26 2005-08-31 沈阳大陆激光技术有限公司 一种发电机、汽轮机转子轴的现场激光修复方法及专用设备
CN1990168A (zh) * 2005-12-26 2007-07-04 沈阳大陆激光技术有限公司 一种燃气轮机过渡段修复工艺用的检测工装及修复工艺
CN101391338A (zh) * 2008-10-17 2009-03-25 哈尔滨建成集团有限公司 一种低合金钢筒体对接环缝热丝tig多层多道焊接方法
CN101397663A (zh) * 2008-11-11 2009-04-01 岳阳大陆激光技术有限公司 一种带钢卷取机空心轴缺陷处理修复再造的新工艺方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1442829A2 (en) * 2002-10-30 2004-08-04 General Electric Company Method of repairing a stationary shroud of a gas turbine engine using laser cladding
CN1660538A (zh) * 2004-02-26 2005-08-31 沈阳大陆激光技术有限公司 一种发电机、汽轮机转子轴的现场激光修复方法及专用设备
CN1990168A (zh) * 2005-12-26 2007-07-04 沈阳大陆激光技术有限公司 一种燃气轮机过渡段修复工艺用的检测工装及修复工艺
CN101391338A (zh) * 2008-10-17 2009-03-25 哈尔滨建成集团有限公司 一种低合金钢筒体对接环缝热丝tig多层多道焊接方法
CN101397663A (zh) * 2008-11-11 2009-04-01 岳阳大陆激光技术有限公司 一种带钢卷取机空心轴缺陷处理修复再造的新工艺方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
林何等.激光熔覆技术的工艺过程及应用.《工程与试验》.2011,第51卷(第2期),22-24,50.
栾景飞等.激光熔覆参数对灰铸铁激光熔覆层裂纹的影响.《应用激光》.2000,第20卷(第2期),第53-56、60页.
激光熔覆参数对灰铸铁激光熔覆层裂纹的影响;栾景飞等;《应用激光》;20000430;第20卷(第2期);第53-56、60页 *
激光熔覆技术的工艺过程及应用;林何等;《工程与试验》;20110630;第51卷(第2期);第22~24页、第50页 *

Also Published As

Publication number Publication date
CN102615431A (zh) 2012-08-01

Similar Documents

Publication Publication Date Title
CN102615431B (zh) 一种灰铸铁缸盖自动化激光熔覆再制造方法
US20200199698A1 (en) Method for reinforcing rail by laser and auxiliary heat source efficient hybrid cladding
CN102732831B (zh) 汽车模具的激光修复工艺
CN105177569B (zh) 一种球磨铸铁表面激光修复方法
CN105200420B (zh) 一种铸铁气缸盖鼻梁区激光熔覆工艺
CN106583881A (zh) 一种铸铁弧焊修复的方法
CN105081575A (zh) 模具表面的激光修复方法
CN104741865A (zh) 一种模具的激光修复方法
CN109967842A (zh) 一种eh36高强度钢厚板的不预热埋弧焊方法
CN104087931A (zh) 一种45钢激光单道熔覆工艺方法
CN110340529B (zh) 一种窄间隙激光填丝焊接板的坡口宽度计算方法
CN110747462A (zh) 一种高速激光熔覆工艺
Pavlík et al. Influence of electron beam welding parameters on the properties of dissimilar copper–stainless steel overlapped joints
Dong-Yoon et al. Weldability evaluation and tensile strength estimation model for aluminum alloy lap joint welding using hybrid system with laser and scanner head
CN109722510A (zh) 优化先进高强韧特厚板粗晶热影响区组织与性能的方法
CN103668181B (zh) 熔合率高的汽车模具的激光修复工艺
CN112210774A (zh) 一种机床失效齿轮的激光熔覆修复方法
Sorgente et al. Evaluation of the strain behaviour of butt joints on AZ31 magnesium alloy thin sheets welded by Nd: YAG laser
CN103668180A (zh) 与模具磨损部位结合紧密的汽车模具的激光修复工艺
CN104084680B (zh) 一种球墨铸铁件的微色差焊接工艺
CN103343339B (zh) 拉深模的激光修复方法
CN103290408B (zh) 落料模的激光修复方法
Chen et al. Finite element simulation of tensile behavior of laser welded 5083 aluminum alloy joint with different filler wires
CN110666313A (zh) 一种海洋工程装备厚壁梁柱焊接工艺
YA et al. Parameter Optimization for Laser Ring Welding Dissimilar Steel Piston Rods.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140813

Termination date: 20190412