CN102615280A - 一种sps技术制备铁基超导体的方法 - Google Patents

一种sps技术制备铁基超导体的方法 Download PDF

Info

Publication number
CN102615280A
CN102615280A CN2012100823885A CN201210082388A CN102615280A CN 102615280 A CN102615280 A CN 102615280A CN 2012100823885 A CN2012100823885 A CN 2012100823885A CN 201210082388 A CN201210082388 A CN 201210082388A CN 102615280 A CN102615280 A CN 102615280A
Authority
CN
China
Prior art keywords
powder
sintering
iron
based superconductor
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100823885A
Other languages
English (en)
Inventor
索红莉
刘志勇
郭志超
马麟
刘敏
王毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN2012100823885A priority Critical patent/CN102615280A/zh
Publication of CN102615280A publication Critical patent/CN102615280A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种SPS技术制备铁基超导体的方法,属于高温超导材料制备技术领域。将稀土粉末Ln和As粉按摩尔比1∶(1~1.1)的比例,在高真空石英管内进行热处理,制备初始粉末LnAs;将LnAs和Fe粉、Fe2O3粉、FeF3粉按摩尔比3∶(1+x)∶(1-x)∶x配比、球磨,将已填充了粉末的模具放入烧结设备中,采用放电等离子体烧结技术制备铁基超导体,在真空条件下加压烧结,烧结压为30~50Mpa,烧结温度为900~1100℃,时间为5~60min。本发明短时间的烧结减小成份元素的损耗,并能提高材料的致密性,从而获得高性能的铁基超导体。

Description

一种SPS技术制备铁基超导体的方法
技术领域
本发明涉及一种铁基超导体的制备方法,属于高温超导材料制备技术领域。
背景技术
铁基超导体具有较高的临界转变温度,相当高的上临界场和不可逆场,因而有望在超导变压器、超导电机、超导限流器等有磁场的强电领域实现其应用。目前,铁基超导体常用的制备方法为传统的固相反应,这一方法在制备铁基超导体时需要相当长的热处理时间,长时间的热处理导致其中部分的元素有大量的损耗(如:As和F),降低了制备材料的质量,进而影响其性能;另外传统的热处理方法制备的铁基超导体致密性不高含有较多的孔洞,导致其输运性能较差。因此需要一种方法在制备铁基超导体时,能够短时间的烧结减小成份元素的损耗,并能提高材料的致密性,从而获得高性能的铁基超导体。
发明内容
本发明的目的是提出一种易成型、高密度、高性能铁基超导体制备方法。
一种铁基超导体的制备方法,其特征在于,采用放电等离子烧结的方法,包括以下步骤:
(1)初始粉末的制备
在高纯Ar(不低于99.9%)保护气氛下,将需要的稀土粉末(Ln)和As粉按摩尔比1∶(1~1.1)的比例进行称量,充分混合;将混合均匀的原料封装在高真空10-5~10-6Pa的石英管内,然后进行热处理,热处理过程依次为:室温~400℃,升温速率为3~5℃/min;400℃~600℃升温速率为1~3℃/min;600℃保温3~10小时;600℃~900℃升温速率为1~3℃/min;900℃保温10~20小时;最后炉冷至室温。
(2)铁基超导体LnO1-xFxFeAs(La、Ce、Pr、Nd、Sm、Eu等)的制备:
在高纯氩气(不低于99.9%)保护的手套箱内,将第一步中制备好的初始粉末LnAs和Fe粉、Fe2O3粉、FeF3粉按摩尔比3∶(1+x)∶(1-x)∶x进行配比(0<x<0.6);然后采用球磨机进行球磨,球磨机转速为150~300转/分钟,球磨总时间为0.5-2小时,待充分混合均匀后,将混好的粉末装入模具中;然后采用放电等离子体烧结技术制备铁基超导体,将已填充了粉末的模具放入烧结设备中,在真空条件下加压烧结,烧结压为30~50Mpa,烧结温度为900~1100℃,时间为5~60min,得到一种铁基超导体。
通过本发明的方法制得的铁基超导体具有以下几个特点:
1、由于本发明采用短时间的热处理,因此在反应过程中付元素损耗较少,有利于提高铁基超导体的性能;
2、相比于现在常用的传统的固相烧结技术,放电等离子烧结技术在制备铁基超导体的热处理过程中,其原料处于熔融的状态,且在热处理过程中施加较大的压力,有利于各种元素的充分反应,且提高其密度。
附图说明
图1为实施例1中制备的SmO0.8F0.2FeAs的图像;
图2为实施例1中制备的SmO0.8F0.2FeAs的段截面的SEM图像;
图3为实施例1中制备的SmO0.8F0.2FeAs的电阻温度转变曲线;
图4为实施例1中制备的SmO0.8F0.2FeAs的Jc随外场变化曲线。
具体实施方式
下面结合附图及实施例对本发明做进一步的详细说明,但本发明并不限于以下实施例。
实施例1:SmO0.8F0.2FeAs超导体的制备
步骤一:初始粉末的制备
将Sm粉与As粉按照摩尔比1∶1.03进行称量并在Ar保护气氛下混和。将混合好的Sm粉与As粉封装在石英管中进行烧结,真空度为10-6Pa,热处理过程依次为:室温~400℃,升温速率为5℃/min;400℃~600℃,升温速率为1℃/min;600℃保温5小时;600℃~900℃升温速率为1℃/min;900℃保温10小时;最后炉冷至室温。
步骤二:SmO0.8F0.2FeAs超导体的制备
在高纯氩气保护的手套箱内,将第一步中制备好的初始粉末SmAs粉、Fe粉、Fe2O3粉、FeF3粉按比例30∶12∶8∶2配比;然后采用球磨机进行球磨,球磨机转速为150转/分钟,球磨总时间为0.5小时,待充分混合均匀后,将混好的粉末装入模具中;然后采用放电等离子体烧结技术制备铁基超导体,将已填充了粉末的模具放入烧结设备中,在真空条件下加压烧结,烧结压力为30Mpa,烧结温度为1000℃,时间为10min,得到一种铁基超导体。
图1为此实施例制备的SmO0.8F0.2FeAs超导体的外观图像。图2为此实施例制备的SmO0.8F0.2FeAs超导体的段截面的SEM图像,图中可以观察到SPS方法制备的样品中的孔洞数量极少,样品中的单个晶粒具有相当大的尺寸,密度的提高和单个晶粒尺寸的增大将会导致其性能的提高。图3为此实施例制备的SmO0.8F0.2FeAs超导体的电阻随温度T的变化曲线,由SmO0.8F0.2FeAs的电阻随温度的变化曲线中可以看出,其临界转变温度的起始点为54K,零电阻的温度为52K,此方法制备出的样品具有SmO0.8F0.2FeAs体系中较高的临界转变温度,其窄的转变宽度表明样品中具有较高的纯度。图4为此实施例制备的SmO0.8F0.2FeAs超导体在10K和30K温度下临界电流密度(Jc)随温度变化的曲线。由图可以看出,在10K的温度下,外磁场0T时SmO0.7F0.3FeAs样品的临界电流密度为2.6×105A/cm2,这一结果接近铜氧化合物超导体。可以看出其具有类似二代超导体的良好电学应用前景。尤为重要的是,在温度为10K时,外磁场3T-9T范围内,SmO0.8F0.2FeAs超导体的临界电流密度几乎不受外场升高的影响,这表明低温下样品具有良好的高场性能,这一点优于铜氧超导体。温度为30K时,低场下,SmO0.8F0.2FeAs超导体的临界电流密度随外场的升高剧烈下降,在3T-9T范围内,样品的临界电流密度几乎不受外场变化的影响。这表明样品的超导性能在高温下对外场十分敏感。
实施例2:CeO0.8F0.2FeAs超导体的制备
步骤一:初始粉末的制备
将Ce粉与As粉按照摩尔比1∶1进行称量并在Ar保护气氛下混和。将混合好的Ce粉与As粉封装在高真空石英管中进行烧结,石英管真空度为10-4Pa,热处理过程依次为:室温~400℃,升温速率为5℃/min;400℃~600℃,升温速率为3℃/min;600℃保温10小时;600℃~900℃升温速率为3℃/min;900℃保温20小时;最后炉冷至室温。
步骤二:CeO0.8F0.2FeAs超导体的制备
在高纯氩气保护的手套箱内,将第一步中制备好的初始粉末CeAs粉、Fe粉、Fe2O3粉、FeF3粉按比例30∶12∶8∶2配比;然后采用球磨机进行球磨,球磨机转速为150转/分钟,球磨总时间为0.5小时,待充分混合均匀后,将混好的粉末装入模具中;然后采用放电等离子体烧结技术制备铁基超导体,将已填充了粉末的模具放入烧结设备中,在真空条件下边加压边烧结,烧结压力为30Mpa,烧结温度约为1000℃,时间约为10min,制备出CeO0.8F0.2FeAs超导体。
实施例3:NdO0.8F0.2FeAs超导体的制备
步骤一:初始粉末的制备
将Nd粉与As粉按照摩尔比1∶1.1进行称量并在Ar保护气氛下混和;将混合好的Nd粉与As粉封装在高真空石英管中进行热处理,石英管真空度为10-5Pa。热处理过程依次为:室温~400℃,升温速率为5℃/min;400℃~600℃,升温速率为3℃/min;600℃保温5小时;600℃~900℃升温速率为3℃/min;900℃保温20小时;最后炉冷至室温。
步骤二:NdO0.8F0.2FeAs超导体的制备
在高纯氩气保护的手套箱内,将第一步中制备好的初始粉末NdAs粉、Fe粉、Fe2O3粉、FeF3粉按比例30∶12∶8∶2配比;然后采用球磨机进行球磨,球磨机转速为150转/分钟,球磨总时间为0.5小时,待充分混合均匀后,将混好的粉末装入模具中;然后采用放电等离子体烧结技术制备铁基超导体,将已填充了粉末的模具放入烧结设备中,在真空条件下边加压边烧结,烧结压力为30Mpa,烧结温度约为1000℃,时间约10min,制备出NdO0.8F0.2FeAs超导体。

Claims (1)

1.一种SPS技术制备铁基超导体的方法,其特征在于,采用放电等离子烧结的方法,包括以下步骤:
(1)初始粉末的制备
在高纯Ar保护气氛下,将稀土粉末Ln和As粉按摩尔比1∶(1~1.1)的比例进行称量,充分混合;将混合均匀的原料封装在高真空10-5~10-6Pa的石英管内,然后进行热处理,热处理过程依次为:室温~400℃,升温速率为3~5℃/min;400℃~600℃升温速率为1~3℃/min;600℃保温3~10小时;600℃~900℃升温速率为1~3℃/min;900℃保温10~20小时;最后炉冷至室温;
(2)铁基超导体LnO1-xFxFeAs的制备:
在高纯氩气保护的手套箱内,将第一步中制备好的初始粉末LnAs和Fe粉、Fe2O3粉、FeF3粉按摩尔比3∶(1+x)∶(1-x)∶x进行配比,其中0<x<0.6;然后采用球磨机进行球磨,球磨机转速为150~300转/分钟,球磨总时间为0.5-2小时,待充分混合均匀后,将混好的粉末装入模具中;然后采用放电等离子体烧结技术制备铁基超导体,将已填充了粉末的模具放入烧结设备中,在真空条件下加压烧结,烧结压为30~50Mpa,烧结温度为900~1100℃,时间为5~60min,得到一种铁基超导体。
CN2012100823885A 2012-03-26 2012-03-26 一种sps技术制备铁基超导体的方法 Pending CN102615280A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100823885A CN102615280A (zh) 2012-03-26 2012-03-26 一种sps技术制备铁基超导体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100823885A CN102615280A (zh) 2012-03-26 2012-03-26 一种sps技术制备铁基超导体的方法

Publications (1)

Publication Number Publication Date
CN102615280A true CN102615280A (zh) 2012-08-01

Family

ID=46555679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100823885A Pending CN102615280A (zh) 2012-03-26 2012-03-26 一种sps技术制备铁基超导体的方法

Country Status (1)

Country Link
CN (1) CN102615280A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735177A (zh) * 2017-01-23 2017-05-31 江苏顺通管业有限公司 一种异径管模具的制造方法
CN108666045A (zh) * 2017-04-01 2018-10-16 中国科学院大连化学物理研究所 一种放电等离子体烧结技术制备铁硒超导材料的方法
JP2021038435A (ja) * 2019-09-03 2021-03-11 国立研究開発法人産業技術総合研究所 多結晶バルク体、及びその製造方法
CN112692281A (zh) * 2020-11-23 2021-04-23 北京理工大学 利用sps烧结及变形的二次硬化超高强度钢的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086412A1 (en) * 2002-10-25 2004-05-06 Yasuyoshi Suzuki Method for producing a soft magnetic material
JP2005068526A (ja) * 2003-08-27 2005-03-17 Fuji Electric Holdings Co Ltd 複合磁性粒子粉末成形体の製造方法
CN1740357A (zh) * 2005-09-23 2006-03-01 北京工业大学 用于高温超导的Ni-W合金的制备方法
CN101880165A (zh) * 2010-04-16 2010-11-10 北京工业大学 一种短时间固相烧结技术制备铁基超导体的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086412A1 (en) * 2002-10-25 2004-05-06 Yasuyoshi Suzuki Method for producing a soft magnetic material
JP2005068526A (ja) * 2003-08-27 2005-03-17 Fuji Electric Holdings Co Ltd 複合磁性粒子粉末成形体の製造方法
CN1740357A (zh) * 2005-09-23 2006-03-01 北京工业大学 用于高温超导的Ni-W合金的制备方法
CN101880165A (zh) * 2010-04-16 2010-11-10 北京工业大学 一种短时间固相烧结技术制备铁基超导体的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735177A (zh) * 2017-01-23 2017-05-31 江苏顺通管业有限公司 一种异径管模具的制造方法
CN108666045A (zh) * 2017-04-01 2018-10-16 中国科学院大连化学物理研究所 一种放电等离子体烧结技术制备铁硒超导材料的方法
CN108666045B (zh) * 2017-04-01 2020-06-09 中国科学院大连化学物理研究所 一种放电等离子体烧结技术制备铁硒超导材料的方法
JP2021038435A (ja) * 2019-09-03 2021-03-11 国立研究開発法人産業技術総合研究所 多結晶バルク体、及びその製造方法
WO2021044871A1 (ja) * 2019-09-03 2021-03-11 国立研究開発法人産業技術総合研究所 多結晶バルク体、及びその製造方法
JP7360123B2 (ja) 2019-09-03 2023-10-12 国立研究開発法人産業技術総合研究所 多結晶バルク体、及びその製造方法
CN112692281A (zh) * 2020-11-23 2021-04-23 北京理工大学 利用sps烧结及变形的二次硬化超高强度钢的制备方法

Similar Documents

Publication Publication Date Title
CN102082010B (zh) 一种铁基超导体的制备方法
Field et al. Optimizing $\hbox {Nb} _ {3}\hbox {Sn} $ Conductors for High Field Applications
CN103065788B (zh) 一种制备烧结钐钴磁体的方法
CN101707089B (zh) 一种提高铁基超导体上临界场和临界电流密度的方法
WO2013056526A1 (zh) 一种提高铁基超导体上临界场和临界电流密度的方法
CN106024196B (zh) Nb3Al超导材料的制备方法
CN101814344A (zh) 一种铁基超导体的制备方法
CN1865457A (zh) 一种铁基二硼化镁超导线带材的热处理方法
CN102615280A (zh) 一种sps技术制备铁基超导体的方法
CN102154577B (zh) 一种无磁性织构NiV合金基带的制备方法
CN110534279A (zh) 一种纯高丰度稀土Ce,La,Y基多元纳米晶永磁合金及制备
CN103924108B (zh) 一种无磁性强立方织构铜基合金复合基带及其制备方法
CN102290180A (zh) 稀土永磁材料及其制备方法
CN101279847A (zh) 微量稀土元素掺杂钇钡铜氧超导块体材料的制备方法
CN101168442B (zh) 一种高性能MgB2超导材料及其制备方法
CN1929044B (zh) 含有Si元素和C元素的MgB2超导材料及其制备方法
CN104217817B (zh) 制备(Ba/Sr)1-xKxFe2As2超导线材或带材的方法
CN102543304B (zh) 一种MgB2超导线材的制备方法
CN112582123B (zh) 低温度系数高使用温度烧结钐钴磁体的制备方法
CN101880165B (zh) 一种短时间固相烧结技术制备铁基超导体的方法
Ren et al. Enhanced critical current density in melt-textured (Y1− xPrx) Ba2Cu3Oy
CN103396115B (zh) 降低单畴钆钡铜氧超导块材成本的制备方法
CN102832333B (zh) 一种Bi-2212超导线/带材的热处理方法
CN101319380B (zh) 稀土242相控制组分生长超导块材的方法
CN109786025B (zh) 一种改性铋系超导体的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120801