CN102609805A - 一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法 - Google Patents

一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法 Download PDF

Info

Publication number
CN102609805A
CN102609805A CN201210012320XA CN201210012320A CN102609805A CN 102609805 A CN102609805 A CN 102609805A CN 201210012320X A CN201210012320X A CN 201210012320XA CN 201210012320 A CN201210012320 A CN 201210012320A CN 102609805 A CN102609805 A CN 102609805A
Authority
CN
China
Prior art keywords
individuality
control method
genetic algorithm
scheduling
objective function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210012320XA
Other languages
English (en)
Other versions
CN102609805B (zh
Inventor
陈勇
盛家君
邱晓杰
吴云翔
潘益菁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Xinyong Investment Development Co ltd
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201210012320.XA priority Critical patent/CN102609805B/zh
Publication of CN102609805A publication Critical patent/CN102609805A/zh
Application granted granted Critical
Publication of CN102609805B publication Critical patent/CN102609805B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法,包括以下步骤:1)、设定模糊化参数的作业车间调度模型,以最大化所有产品满意度和最大化最小满意度为目标函数;2)、采用改进的遗传算法求解所述目标函数,(2.1)采用基于工序的编码;(2.2)多次运行G&T算法产生一个初始种群;(2.3)采用目标函数作为适应度函数对个体进行评价;(2.4)选择和交叉操作;(2.5)采用反转变异;(2.6)当每个组的个体均收敛到某一个度时,将各组种群合并继续进化直到收敛;(2.7)以预先设定的最大进化代数Nmax作为停止条件,将目前为止最好的解作为最优解,得到解决复杂生产环境下作业车间调度方案。本发明精确性良好、可靠性较好、实用性强。

Description

一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法
技术领域
本发明涉及作业车间调度控制技术领域,尤其是一种解决复杂生产环境下作业车间调度控制方法。
背景技术
近年来对JSP(作业车间调度问题(Job-Shop Scheduling Problem,JSP))的研究,已经突破了原始的运筹学范畴,在管理科学、控制论、人工智能、工业工程、***工程等领域都有学者用各自的领域知识开展了卓有成效的研究工作,从而推动各种优化算法的发展和融合。随着先进制造技术的发展,作业车间调度问题的含义有所拓展,增加了随机性、动态性、不确定性、约束性、多目标性等属性,其与实际生产情况更为接近。
目前对作业车间调度问题的研究大多存在以下问题:
(1)将生产过程中的各项参数看做确定性的精确值。过去的研究工作多数集中于确定型作业车间调度问题,即工件的加工时间和交货期都是已知的确定量。而事实上,由于各种随机因素,如机器故障、操作工人的熟练程度、环境参数等影响,很少能获得精确的加工时间和交货期,人们只能估计加工时间或交货期的变化范围。因此,调度中生产参数用非精确数来表示更符合生产实际,即模糊作业车间调度问题。
(2)将生产***当作一个静态的***,忽略实际生产过程中各种突发状况的出现。由于待加工的工件连续不断的到来、机床设备突然损坏或被修复、工人生病、紧急订单等各种状况的出现而产生的原调度中断失效情况,调度中应加以考虑,即动态的作业车间调度。
已有的作业车间调度研究往往将生产模型大大简化,与实际生产状况距离较远,不完全适合生产条件变化频繁、工况变化大的制造企业。
发明内容
为了克服已有作业车间调度技术的精确性较差、可靠性较差、实用性较差的不足,本发明提供一种精确性良好、可靠性较好、实用性强的基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法。
本发明解决其技术问题所采用的技术方案是:
一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法,所述控制方法包括以下步骤:
1)、确定模糊化参数作业车间调度的目标函数
设定模糊化参数的作业车间调度模型,以最大化所有产品满意度和最大化最小满意度为目标函数,即
max z 1 = Σ i = 1 n w i AI i - - - ( 1 )
max z 2 = AI min = min i = 1 , Λn AIi - - - ( 2 )
其中,W=(w1,w2,Λ,wn)为各产品交货期满意度的权重系数,w1表示顾客对产品i交货期要求的重要程度,目标函数z1,z2分别表示所有产品满意度和最小满意度;
z′=y1z1+y2z2                        (3)
Y=(y1,y2)为z1和z2的权重系数,y1+y2=1。
这样,模糊作业车间调度问题的目标函数为:求一个满足z*的工件加工顺序,使得:
z*=max(z′)                          (4)
2)、采用改进的遗传算法求解所述目标函数,具体过程如下:
(2.1)编码:采用基于工序的编码;
(2.2)初始种群的生成:多次运行G&T算法产生一个初始种群;
(2.3)采用目标函数作为适应度函数对个体进行评价;
(2.4)选择和交叉操作:
采用交叉操作从两个父代中产生一个子代,具体如下:
步骤2.4.1.选择所有工件的第1道操作,加入集合C;假定机器在同一时刻可以加工任意多个作业,计算集合C中各操作Oijk∈C的模糊完成时间,记作
Figure BDA0000131222810000031
根据三角模糊数的比较准则,确定集合C中最小模糊完成时间的操作将与操作
Figure BDA0000131222810000033
使用同一台机器
Figure BDA0000131222810000034
的操作
Figure BDA0000131222810000035
构成集合G。由于操作与操作
Figure BDA0000131222810000037
的操作时间上是有重叠的,集合G为冲突集合;
步骤2.4.2.以50%的相同概率从两个父代个体中任选一个个体,在冲突集合G中选择具有最小模糊完成时间的操作,用选出的父代个体代替并表示为步骤2.4.3.以步骤2.4.2.中所选择的操作为基准,通过模糊数的取大操作依次更新冲突集合中其他操作的EC1,EC2和EC3值,从集合C中移去操作
Figure BDA0000131222810000039
将其下一道工序加入集合C,并计算其相应模糊完成时间;
通过以上的操作得到了一个新的子代个体,进行c次以上的操作得到c个新子代个体。
为保留由c个子代和2个父代组成的(c+2)个个体中具有优良性状的个体,用以下的方法选择两个在下一次遗传时保留下来的个体:
a.在c个子代个体中,选择具有最大目标函数值的个体,也即局部排名选择;
b.在剩下的(c+1)个个体中,选择具有最大目标函数值的个体;
(2.5)变异操作:采用反转变异;
(2.6)种群构造:当每个组的个体均收敛到某一个度时,将各组种群合并继续进化直到收敛;
(2.7)以预先设定的最大进化代数Nmax作为停止条件,将目前为止最好的解作为最优解,得到解决复杂生产环境下作业车间调度方案。
本发明的技术构思为:在目前国内外作业车间调度问题现状分析的基础上,考虑实际生产调度过程中的非确定性加工参数及动态扰动因素,将作业车间调度问题从严格限定的理想环境拓展到贴近现实的复杂生产环境中,使其具有灵活性和实用性。
本文将加工参数非确定性和动态干扰事件发生的作业车间调度定义为复杂生产环境下的作业车间调度研究。正是由于复杂生产环境下的车间调度更符合实际的生产情况,因此研究复杂生产环境下的作业车间调度问题,更具有重要的理论意义和实用价值。
作业车间调度问题是典型的NP-hard难题,已有的作业车间调度问题的研究大都存在以下问题:一是将生产***中各种加工参数看作确定性的精确值;二是将生产***当作一个静态的***,忽略了实际加工过程中的各种突发状况。本文从复杂生产环境下生产运作和管理的实际需求出发,考虑到生产过程中的加工参数非确定性精确值、动态扰动等因素的影响,基于改进遗传算法开展了复杂生产环境下的作业车间调度问题的研究工作。
遗传算法是一种借鉴生物界自然选择和进化机制发展起来的高度并行、随机、自适应搜索算法,在问题求解、优化和搜索、智能控制、模式识别以及人工生命等领域均获得了令人鼓舞的成就。特别是对于那些传统搜索算法难以解决的复杂的和非线性的问题尤其适用。目前,进化计算与人工神经网络、模糊***理论一起已成为新的研究方向——计算智能。同样地,在车间作业调度领域,基于遗传算法甚至计算智能的研究也成为了研究的热点。
G&T算法:G&T算法的具体步骤如下:
步骤1.选择所有工件的第1道操作(工序),加入集合C;
步骤2.假定机器在同一时刻可以加工任意多个作业,计算集合C中各操作Oijk∈C的模糊完成时间,记作
Figure BDA0000131222810000051
步骤3.根据三角模糊数的比较准则,确定集合C中最小模糊完成时间的操作
Figure BDA0000131222810000052
将与操作
Figure BDA0000131222810000053
使用同一台机器
Figure BDA0000131222810000054
的操作
Figure BDA0000131222810000055
构成集合G。由于操作
Figure BDA0000131222810000056
与操作
Figure BDA0000131222810000057
的操作时间上是有重叠的,因此集合G叫做冲突集合;
步骤4.从集合G中随机选择一个操作
Figure BDA0000131222810000058
步骤5.以上一步中所选择的操作为基准,通过模糊数的取大操作(对作业的加工开始时间的调整)和模糊数的加法操作(对作业的加工完成时间的调整)依次更新冲突集合中其他操作的EC1,EC2和EC3值(因为每台机器同一时刻只能加工一个工件,所以必须对步骤2所确定的模糊时间作调整)。从集合C中移去操作
Figure BDA0000131222810000059
将其下一道工序加入集合C,并计算其相应模糊完成时间。
步骤6.重复步骤3-5,直到所有的操作加工完毕。
通过以上的步骤这样就可得到一条染色体,执行n次G&T算法,就可得到n条染色体。以此作为遗传算法的初始种群可以将问题的搜索空间限于活跃调度集,从而可以提高遗传算法的运算效率。
模拟退火算法:这里采用的模拟退火算法求解过程如下所述:
步骤1.在G&T算法的第4步随机选择产生一个调度方案(当前解),用Xc表示,计算目标函数值F(xc)。设定初始温度为T0
步骤2.用相应的矩阵表示当前解Xc的每台机器的工件加工顺序,随机选择一台机器Mk。随机选择这台机器上的两个工件并进行互换。例如,3×3的调度问题中,当机器2的第1个工件(J2)和第3个工件(J3)被选择时,互换后的结果就如图4(b)所示。
步骤3.通过上述工件交换后,得到新的工件加工顺序,G&T算法的第4步的个体冲突将得到解散,并产生一个新的调度方案(解)。若获得的解与工件互换前的解不一样,则设当前解为一个解X,并进入下一步;若否,返回第2步选择一个新的交换对;
步骤4.若当前解的目标函数值得到优化,则接受互换,并令Xc=X。若否,用下面的子步骤决定是否接受交换;
1.计算当前目标函数值F(x)与目标函数值F(xc)的差值Δf,计算概率值exp(-Δf/T);
2.生成(0,1)之间的随机数,并与exp(-Δf/T)相比;
3.若exp(-Δf/T)>random(0,1),则接受互换,令Xc=X;否则,互换将不被接受;
当互换接受时进入下一步。否则返回第2步寻找下一个交换对。
步骤5.进行平衡态检验。检查经过一定次数交换后获得的目标函数值的变化是否足够小。平衡态检验的次数定义为世代。按下面的四个步骤进行平衡态检验。
1.重复步骤2至4,直到交换达到世代的数量。然后进行以下操作;
2.计算当前代的目标函数值的平均值
Figure BDA0000131222810000061
和经过交换后的目标函数值的平均值
Figure BDA0000131222810000062
3.比较
Figure BDA0000131222810000063
Figure BDA0000131222810000064
的相对误差
Figure BDA0000131222810000065
与给定公差值ε的大小;
4.当相对误差小于公差值时,即
Figure BDA0000131222810000066
则认为在这个温度达到平衡态,进入下一步。否则,清除世代的计算,回到第2步重复工件交换流程;
步骤6.确定模拟退火的衰减温度,Tnew=α×Told,(α为模拟退火衰减系数,一般取0.8-0.9左右)
步骤7.如果交换对数达到预定数量,算法结束,得到调度问题近似解。
重复以上操作直到算法终止,在获得的解中选择最优目标函数值的解。
本发明的有益效果主要表现在:(1)针对复杂的生产环境,用模糊数来表示非确定性的加工参数。基于满意度概念,以单个工件最小满意度和所有产品满意度为目标函数,建立了模糊化参数的作业车间调度模型。
(2)将G&T算法运用于遗传算法初始染色体的生成,对所建立的模糊化参数模型进行了求解,通过与模拟退火算法的比较,验证了算法的有效性和稳定性,对模型有较好的求解效果。
(3)建立了基于模糊化参数的动态调度模型,详细讨论了紧急插单工件的到来、机器损坏与修复、工件到期时间改变等三种动态扰动事件,用改进遗传算法对模型进行验证,并比较了动态事件发生后实行再调度和未实行再调度的调度方案优劣。
(4)以TYDQ机加工车间为例,结合车间实际生产情况,建立了模糊化参数的动态调度模型,通过与原始调度方案的比较,获得了较好的结果。
附图说明
图1是相似度计算示意图。
图2是翻转变异算子的示意图。
图3是种群构造的示意图。
图4是3×3调度问题的工件加工顺序和互换的示意图,其中该,(a)为工件交换前;(b)为工件交换后。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1~图4,一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法,所述控制方法包括以下步骤:
1、确定模糊化参数作业车间调度的目标函数
为了更贴切地反应作业车间调度最大化满足顾客需求和顾客对不同产品具有不同的满意度的情况,提出模糊化参数的作业车间调度模型,以最大化所有产品满意度和最大化最小满意度为目标函数,即
z 1 = Σ i = 1 n w i AI i - - - ( 1 )
max z 2 = AI min = min i = 1 , Λn AIi - - - ( 2 )
其中,W=(w1,w2,Λ,wn)为各产品交货期满意度的权重系数,w1表示顾客对产品i交货期要求的重要程度,
Figure BDA0000131222810000083
目标函数z1,z2分别表示所有产品满意度和最小满意度。
z′=y1z1+y2z2                            (3)
Y=(y1,y2)为z1和z2的权重系数,y1+y2=1。
这样,模糊作业车间调度问题的目标函数为:求一个满足z*的工件加工顺序,使得:
z*=max(z′)                              (4)
2、改进的遗传算法
(2.1)编码
合理地设计编码机制对遗传算法的质量和效益有很大影响,在进行遗传算法编码时,必须考虑染色体的合法性、可行性、有效性以及对问题解空间表征的完整性。
这里采用基于工序的编码,例如3工件3机器的问题,假定染色体为[123113223],其中1代表工件J1,2代表工件J2,3代表工件J3。由于每个工件有三道工序,所以每个工件在染色体中出现三次。工件的工序对应工件在染色体中出现的顺序。如第一个1代表工件J1的第1道工序,第二个1代表工件J1的第2道工序。每个工序的加工时间用三角模糊数表示。
(2.2)初始种群的生成
多次运行G&T算法可以产生一个初始种群。由于其G&T第4步是随机选择,为保证初始种群的多样性,要求初始种群的相似度不能太大。通过Sakawa的研究,当个体相似度在0.8或以下的时候,产生的初始种群有最大的稳定性。这里要求初始种群的个体相似度不能大于0.8。
以4×4的JSP为例介绍个体相似度的计算方法。个体1和个体2的每台机器上的工件加工序列表如图3-4所示。对于个体1,在机器1上,工件的优先权分别是1、2、4、3。对于个体2,机器1上的工件优先权是2、1、4、3。对比两个个体同机器上的工件顺序,机器1上与工件1拥有相同的优先关系的工件是3和4,因此赋值为2。同理,机器1上与工件2拥有相同的优先关系的工件是3和4,因此赋值2。机器1上与工件3拥有相同优先关系的工件有1、2和4,因此赋值3,机器1上与工件4拥有相同优先关系的工件是1、2和3,赋值3。这样机器1上的工件赋值相加为2+2+3+3=10。同样的方法处理另外机器,计算过程如图1所示。通过这个方法,可以得到个体1和个体2的相似度为0.917。
(2.3)适应度函数设计
适应度函数用于对个体进行评价,同时也是优化过程发展的依据。这里采用目标函数作为适应度函数对个体进行评价。
(2.4)选择和交叉操作
选择操作用于避免有效基因的损失,使得适应度大的个体得以更大的概率存活至下一代,从而提高全局收敛性和计算效率。交叉操作用于产生一个新个体,并保证子代尽量继承父代的优良性状。基于G&T算法,采用下面的交叉操作从两个父代中产生一个子代。
步骤2.4.1.执行G&T算法的第1至3步,获得集合C和冲突集合G;
步骤2.4.2.以50%的相同概率从两个父代个体中任选一个个体。在冲突集合G中选择具有最小模糊完成时间的操作,用选出的父代个体代替并表示为
Figure BDA0000131222810000091
步骤2.4.3.执行G&T算法的第5和第6步。
通过以上的操作得到了一个新的子代个体,进行c次以上的操作就可以得到c个新子代个体。
为保留由c个子代和2个父代组成的(c+2)个个体中具有优良性状的个体,用以下的方法选择两个在下一次遗传时保留下来的个体。
a.在c个子代个体中,选择具有最大目标函数值的个体,也即局部排名选择;
b.在剩下的(c+1)个个体中(2个父代和(c-1)个子代),选择具有最大目标函数值的个体。
上述的交叉和选择操作,由于更大的c值意味着更大的子代群体,优良子代的产生概率将变得比较高。然而,由于这些子代是由相同的父代产生的,子代间的相似度也将变得比较高。因此在本算法中将c设定为5。
(2.5)变异操作
当交叉操作产生的后代适应度不再进化,不向好的方向发展,就意味着算法的早熟收敛。变异操作就是在一定程度上克服这种情况。这里,采用比较通用的反转变异(Inversion Mutation),即随机选择两个基因位置,将此位置的基因相互交换。例如,对于父代个体parent1选取基因位置为1和6的基因进行交换以达到变异的目的,从而得到变异子代个体son1,如图2所示。
(2.6)种群构造
在遗传算法运行中,必须防止进入局部最优解。为防止收敛到局部解,采用Sakawa提出的种群构造方法[71,72]。假设有3组种群,每组基于相似度产生10个个体。当每个组的个体均收敛到某一个度时,将各组种群合并继续进化直到收敛,如图3所示。
(2.7)算法终止条件
由于在实际问题中使用遗传算法,是绝不允许让其无休止搜索下去的,同时问题的最优解也通常未知,因此必须设计一些近似收敛准则来终止算法进程。这里以预先设定的最大进化代数Nmax作为停止条件,将目前为止最好的解作为最优解。
针对实际生产中加工参数的非确定性,采用三角模糊数和梯形模糊数分别表示非精确性的加工时间和交货期。基于满意度概念,以整体满意度最大和最小满意度最大为目标函数,建立了模糊化参数的作业车间调度模型。用G&T算法产生初始染色体来改进遗传算法,通过经典的算例与模拟退火算法比较来验证算法的优越性。最后演算验证了所建立的模型能较好的符合生产的实际,所提出的改进遗传算法也能很好的解决调度模型。
设定改进遗传算法种群规模N=100,交叉概率Pc=0.9,变异概率Pm=0.05。当生产***未发生动态扰动事件时,可得到最优目标函数为0.25。
模型在较高的目标函数值的情况下能够获得良好的体现动态特性的调度方案。

Claims (1)

1.一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法,其特征在于:所述控制方法包括以下步骤:
1)、确定模糊化参数作业车间调度的目标函数
设定模糊化参数的作业车间调度模型,以最大化所有产品满意度和最大化最小满意度为目标函数,即
max z 1 = Σ i = 1 n w i AI i - - - ( 1 )
max z 2 = AI min = min i = 1 , Λn AIi - - - ( 2 )
其中,W=(w1,w2,Λ,wn)为各产品交货期满意度的权重系数,w1表示顾客对产品i交货期要求的重要程度,
Figure FDA0000131222800000013
目标函数z1,z2分别表示所有产品满意度和最小满意度;
z′=y1z1+y2z2                          (3)
Y=(y1,y2)为z1和z2的权重系数,y1+y2=1;
这样,模糊作业车间调度问题的目标函数为:求一个满足z*的工件加工顺序,使得:
z*=max(z′)                            (4)
2)、采用改进的遗传算法求解所述目标函数,具体过程如下:
(2.1)编码:采用基于工序的编码;
(2.2)初始种群的生成:多次运行G&T算法可以产生一个初始种群;
(2.3)采用目标函数作为适应度函数对个体进行评价;
(2.4)选择和交叉操作:
采用交叉操作从两个父代中产生一个子代,具体如下:
步骤2.4.1.选择所有工件的第1道操作,加入集合C;假定机器在同一时刻可以加工任意多个作业,计算集合C中各操作Oijk∈C的模糊完成时间,记作
Figure FDA0000131222800000014
根据三角模糊数的比较准则,确定集合C中最小模糊完成时间的操作将与操作
Figure FDA0000131222800000016
使用同一台机器
Figure FDA0000131222800000017
的操作
Figure FDA0000131222800000018
构成集合G;由于操作与操作
Figure FDA00001312228000000110
的操作时间上是有重叠的,集合G为冲突集合;
步骤2.4.2.以50%的相同概率从两个父代个体中任选一个个体,在冲突集合G中选择具有最小模糊完成时间的操作,用选出的父代个体代替并表示为
Figure FDA00001312228000000111
步骤2.4.3.以步骤2.4.2.中所选择的操作为基准,通过模糊数的取大操作依次更新冲突集合中其他操作的EC1,EC2和EC3值,从集合C中移去操作
Figure FDA00001312228000000112
将其下一道工序加入集合C,并计算其相应模糊完成时间;
通过以上的操作得到了一个新的子代个体,进行c次以上的操作得到c个新子代个体;
为保留由c个子代和2个父代组成的(c+2)个个体中具有优良性状的个体,用以下的方法选择两个在下一次遗传时保留下来的个体:
a.在c个子代个体中,选择具有最大目标函数值的个体,也即局部排名选择;
b.在剩下的(c+1)个个体中,选择具有最大目标函数值的个体;
(2.5)变异操作:采用反转变异;
(2.6)种群构造:当每个组的个体均收敛到某一个度时,将各组种群合并继续进化直到收敛;
(2.7)以预先设定的最大进化代数Nmax作为停止条件,将目前为止最好的解作为最优解,得到解决复杂生产环境下作业车间调度方案。
CN201210012320.XA 2012-01-16 2012-01-16 一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法 Expired - Fee Related CN102609805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210012320.XA CN102609805B (zh) 2012-01-16 2012-01-16 一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210012320.XA CN102609805B (zh) 2012-01-16 2012-01-16 一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法

Publications (2)

Publication Number Publication Date
CN102609805A true CN102609805A (zh) 2012-07-25
CN102609805B CN102609805B (zh) 2015-03-04

Family

ID=46527157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210012320.XA Expired - Fee Related CN102609805B (zh) 2012-01-16 2012-01-16 一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法

Country Status (1)

Country Link
CN (1) CN102609805B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104166630A (zh) * 2014-08-06 2014-11-26 哈尔滨工程大学 一种面向内容中心网络中基于预测的最优化缓存放置方法
CN104392298A (zh) * 2014-10-28 2015-03-04 沈阳建筑大学 一种采用粒子群算法进行生产调度的方法
CN104571007A (zh) * 2014-11-20 2015-04-29 昆明理工大学 一种轿车生产制造中总装配线生产装配过程的优化调度方法
WO2016169286A1 (zh) * 2015-04-20 2016-10-27 海安县申菱电器制造有限公司 一种离散制造***的车间布局方法
CN106933200A (zh) * 2015-12-31 2017-07-07 中国科学院沈阳计算技术研究所有限公司 基于遗传算法的解决柔性作业车间调度问题的控制方法
CN106959675A (zh) * 2017-03-21 2017-07-18 山东大学 一种面向流水车间的多目标调度优化方法
CN108960483A (zh) * 2017-05-24 2018-12-07 电视广播有限公司 卫星调度方法、处理***以及软件程序产品
CN110187673A (zh) * 2019-04-14 2019-08-30 台州学院 一种非线性规划的rgv动态调度方法
CN111461459A (zh) * 2020-04-24 2020-07-28 温州大学乐清工业研究院 断路器数字制造孪生车间的动态重调度预测方法及***
CN115309120A (zh) * 2022-08-25 2022-11-08 浙江工业大学 一种面向不确定的作业车间低碳调度优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐新黎等: "求解模糊柔性Job-shop调度问题的多智能体免疫算法", 《控制与决策》 *
陈勇等: "基于遗传算法改进的动态车间调度", 《浙江工业大学学报》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104166630B (zh) * 2014-08-06 2017-06-20 哈尔滨工程大学 一种面向内容中心网络中基于预测的最优化缓存放置方法
CN104166630A (zh) * 2014-08-06 2014-11-26 哈尔滨工程大学 一种面向内容中心网络中基于预测的最优化缓存放置方法
CN104392298A (zh) * 2014-10-28 2015-03-04 沈阳建筑大学 一种采用粒子群算法进行生产调度的方法
CN104571007B (zh) * 2014-11-20 2018-11-27 昆明理工大学 一种轿车生产制造中总装配线生产装配过程的优化调度方法
CN104571007A (zh) * 2014-11-20 2015-04-29 昆明理工大学 一种轿车生产制造中总装配线生产装配过程的优化调度方法
WO2016169286A1 (zh) * 2015-04-20 2016-10-27 海安县申菱电器制造有限公司 一种离散制造***的车间布局方法
CN106933200A (zh) * 2015-12-31 2017-07-07 中国科学院沈阳计算技术研究所有限公司 基于遗传算法的解决柔性作业车间调度问题的控制方法
CN106959675A (zh) * 2017-03-21 2017-07-18 山东大学 一种面向流水车间的多目标调度优化方法
CN108960483A (zh) * 2017-05-24 2018-12-07 电视广播有限公司 卫星调度方法、处理***以及软件程序产品
CN110187673A (zh) * 2019-04-14 2019-08-30 台州学院 一种非线性规划的rgv动态调度方法
CN110187673B (zh) * 2019-04-14 2021-04-20 台州学院 一种非线性规划的rgv动态调度方法
CN111461459A (zh) * 2020-04-24 2020-07-28 温州大学乐清工业研究院 断路器数字制造孪生车间的动态重调度预测方法及***
CN111461459B (zh) * 2020-04-24 2023-06-30 温州大学乐清工业研究院 断路器数字制造孪生车间的动态重调度预测方法及***
CN115309120A (zh) * 2022-08-25 2022-11-08 浙江工业大学 一种面向不确定的作业车间低碳调度优化方法

Also Published As

Publication number Publication date
CN102609805B (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
CN102609805A (zh) 一种基于改进遗传算法的解决复杂生产环境下作业车间调度控制方法
CN102566431A (zh) 一种基于改进遗传算法的动态扰动下的模糊化参数作业车间调度控制方法
CN112650187B (zh) 一种车间调度方法、装置和***
CN110163436A (zh) 基于动态瓶颈预测的智能车间生产优化方法
CN109934364B (zh) 一种基于遗传模拟退火算法的刀具准时化配送方法
CN104842564A (zh) 一种基于nsga-ii的三维打印多任务优化调度方法
CN110991784B (zh) 一种用于异常低压台区派工的方法及***
CN103942609B (zh) 产品服务供应链优化设计方法
CN106125684A (zh) 基于不确定环境下的多目标流水车间逆调度方法
Javadian et al. An immune algorithm for hybrid flow shop scheduling problem with time lags and sequence-dependent setup times
Rifai et al. Reentrant FMS scheduling in loop layout with consideration of multi loading-unloading stations and shortcuts
Gholian Jouybari et al. Electromagnetism-like algorithms for the fuzzy fixed charge transportation problem
CN104281917A (zh) 基于自适应遗传和克隆选择算法的模糊作业车间调度方法
Liu et al. A new knowledge-guided multi-objective optimisation for the multi-AGV dispatching problem in dynamic production environments
CN103942647A (zh) 一种面向复杂供给模式的应急资源调度方法
PINTO et al. Layout design of a furniture production line using formal methods
CN103177403A (zh) 一种综合停电检修计划的控制方法
Bramhane et al. Simulation of flexible manufacturing system using adaptive neuro fuzzy hybrid structure for efficient job sequencing and routing
Mehrsai et al. Toward learning autonomous pallets by using fuzzy rules, applied in a Conwip system
TW202347062A (zh) 用於半導體廠房中之等待時間預測之方法
Baek et al. Co-evolutionary genetic algorithm for multi-machine scheduling: coping with high performance variability
Li et al. Scheduling strategy of semiconductor production lines with remaining cycle time prediction
Wagner et al. Automated generation of material flow network models with cluster structures using random walks
CN112734286B (zh) 一种基于多策略深度强化学习的车间调度方法
Chang et al. Combining SOM and GA-CBR for flow time prediction in semiconductor manufacturing factory

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200602

Address after: 234000 building 1602, B1, Gangli Jinxiu Jiangnan (West Area), east of Qingyun Road, north of Yinhe 2nd Road, Suzhou City, Anhui Province

Patentee after: Suzhou Teng Teng Intellectual Property Advisory Co.,Ltd.

Address before: 510000 unit 2414-2416, building, No. five, No. 371, Tianhe District, Guangdong, China

Patentee before: GUANGDONG GAOHANG INTELLECTUAL PROPERTY OPERATION Co.,Ltd.

Effective date of registration: 20200602

Address after: 510000 unit 2414-2416, building, No. five, No. 371, Tianhe District, Guangdong, China

Patentee after: GUANGDONG GAOHANG INTELLECTUAL PROPERTY OPERATION Co.,Ltd.

Address before: Hangzhou City, Zhejiang province 310014 City Zhaohui District Six

Patentee before: ZHEJIANG University OF TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201230

Address after: 224006 room 1608, building 1, yanchuang building, Yimin neighborhood committee and directional neighborhood committee, Yanlong sub district office, Yandu District, Yancheng City, Jiangsu Province (d)

Patentee after: Yancheng Xinyong Investment Development Co.,Ltd.

Address before: 234000 1602, B1 / F, Gangli Jinxiu Jiangnan (West District), east of Qingyun Road, north of Yinhe 2nd Road, Suzhou City, Anhui Province

Patentee before: Suzhou Teng Teng Intellectual Property Advisory Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150304

Termination date: 20210116

CF01 Termination of patent right due to non-payment of annual fee