CN102593777B - 一种带专用换流变压器直流融冰装置的设计方法 - Google Patents

一种带专用换流变压器直流融冰装置的设计方法 Download PDF

Info

Publication number
CN102593777B
CN102593777B CN201210018908.6A CN201210018908A CN102593777B CN 102593777 B CN102593777 B CN 102593777B CN 201210018908 A CN201210018908 A CN 201210018908A CN 102593777 B CN102593777 B CN 102593777B
Authority
CN
China
Prior art keywords
reactor
current
throw
converter transformer
icing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210018908.6A
Other languages
English (en)
Other versions
CN102593777A (zh
Inventor
傅闯
饶宏
许树楷
黎小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China South Power Grid International Co ltd
Original Assignee
China South Power Grid International Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China South Power Grid International Co ltd filed Critical China South Power Grid International Co ltd
Priority to CN201210018908.6A priority Critical patent/CN102593777B/zh
Publication of CN102593777A publication Critical patent/CN102593777A/zh
Application granted granted Critical
Publication of CN102593777B publication Critical patent/CN102593777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

本发明是一种带专用换流变压器直流融冰装置的设计方法。包括如下步骤1)确定融冰装置覆盖线路;2)预选导线融冰电流;3)确定导线最大允许电流;4)计算预选融冰电流下直流压降和功率;5)确定融冰装置额定参数;6)计算理想空载直流电压;7)计算换相电抗器阀侧额定电压;8)计算换流变压器换相电抗器侧额定电压;9)计算换流器交流侧额定电流;10)计算换相电抗器电感;11)计算换流变压器额定容量;12)计算换流变压器感抗;13)确定TCR或TSR支路额定容量和电流;14)确定TCR或TSR支路总感抗值;15)确定TCR或TSR支路需增加电感值;16)确定零功率回路电感;17)确定零功率最小允许电流;18)设计交流滤波器。

Description

一种带专用换流变压器直流融冰装置的设计方法
技术领域
本发明是一种带专用换流变压器直流融冰装置的设计方法,特别是一种涉及综合考虑直流融冰及其等效试验、晶闸管控制电抗器(TCR)或晶闸管投切电抗器(TSR)等功能的设计方法,属于高压及特高压电网输电线路直流融冰和静止无功补偿应用的创新技术。
背景技术
输电线路在冬季覆冰严重威胁电力***的安全运行。由于导线上增加了冰载荷,对导线、铁塔和金具都会带来一定的机械损坏,覆冰严重时会断线、倒杆塔,导致大面积停电事故,对国民经济造成重大损失。
随着全球气候的不断恶化,冰灾对输电线路造成的危害越发严重。特别是2008年初的冰灾,对我国电网造成了巨大的损失。
国内外研究融冰的几种思路为:将电能转化为热能融冰;将电能转化为机械能以破坏输电线上的覆冰的物理结构,达到使覆冰脱落的目的;直接破坏物理结构的机械法除冰。
我国自上世纪70年代以来就一直在220kV以下线路上采用交流短路方法对严重覆冰线路进行融冰,对防止冰灾起到了一定的作用。由于交流融冰需要很高的热量,且交流线路存在电抗,致使220kV及以下线路融冰时要求的融冰电源容量是线路实际融冰功率的5-10倍;对于500kV以上超高压和特高压交流输电线路融冰时要求的融冰电源容量是线路实际融冰功率的10-20倍。在实施交流电流短路融冰时往往存在融冰电源容量远远不足的问题。因此,对于500kV或更高电压等级输电线来说,由于难以找到满足要求的融冰电源,采用交流短路融冰方案不可行。
由于交流短路融冰法的局限,国际上自上世纪80年代开始就一直在探讨直流融冰的可能和开发直流融冰装置。1998年的北美冰风暴灾难后,魁北克水电局与AREVA公司合作开发了一套直流融冰装置,该装置装设于魁北克的Lévis变电站,2008年完成现场调试。但是到目前为止,该装置还没有用于过实际融冰。
2008年冰灾后,我国电力科技工作者自主进行了直流融冰技术及装置的研发,成功研发出了具有完全自主知识产权的大功率直流融冰装置,主要包括带专用换流变压器、不带专用换流变压器和车载移动式等多种型式,进而在全国进行了推广应用。
2011年1月,受持续低温雨雪凝冻天气影响,南方电网供电区域内贵州大部分地区、广西桂北地区、广东粤北地区和云南滇东北地区的输变电设施相继出现覆冰险情,先后导致1414条10kV及以上线路、70个35kV及以上变电站停运。2011年次冰灾是继2008年之后南方电网遭遇的又一次特重冰灾。但与2008年多条线路断线倒塔、500kV主网架遭受重创、电网多处解列或孤网运行、大量减供负荷相比,本次冰灾期间未发生220kV及以上线路倒塔事故,未发生县级及以上城市停电事故,确保了电网安全稳定运行和电力正常供应。2011年冰灾中,南方电网已经安装的19套直流融冰装置首次得到了全面实战检验,发挥了巨大的作用,累计对110kV及以上线路融冰227次,其中500kV线路40余次。
鉴于直流融冰装置实际应用效果,我国电网企业从2011年开始又进行了新一轮的大规模推广应用。
鉴于直流融冰装置每年用于融冰的时间并不是很长,在实际的应用中一般均兼有静止无功补偿装置的功能,没有尚未有完整设计方法提出。
发明内容
本发明的目的在于考虑上述问题而提供一种综合考虑直流融冰及其等效试验、晶闸管控制电抗器或晶闸管投切电抗器等功能的带专用换流变压器直流融冰装置的设计方法。本发明方便实用。
本发明的技术方案是:一种带专用换流变压器直流融冰装置的设计方法,所述带专用换流变压器直流融冰装置具有静止无功补偿功能,包括有一台或两台专用换流变压器T,一组或两组电抗器L1a、L1b、L1c,一组或两组六脉动换流器R,一组或两组电抗器L2a、L2b、L2c,刀闸S1、S2、S3、S4,控制保护***CP,交流滤波器组F,电抗器L1a、L1b、L1c在直流融冰模式下为换相电抗,在无功补偿模式下为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR的一部分,电抗器L2a、L2b、L2c三相并联或一相在直流融冰模式下为平波电抗器,在无功补偿模式下为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR的一部分;在直流融冰模式下,换流器R交流侧通过电抗器L1a、L1b、L1c与专用换流变压器T相连,换流器R直流侧通过电抗器L2a、L2b、L2c与刀闸S1、S2、S3、S4相连,专用换流变压器T通过隔离刀闸K和断路器QF与交流***连接;在无功补偿模式下,即晶闸管控制电抗器TCR或晶闸管投切电抗器TSR模式下,换流器R中的阀V1、V4反并联连接后与电抗器L2a、L1c串联后接在专用换流变压器T低压侧b、c相间,换流器R中的阀V5、V2反并联连接后与电抗器L1a、L2b串联后接在专用换流变压器T低压侧a、c相间,换流器R中的阀V3、V6反并联连接后与电抗器L2c、L1b串联后接在专用换流变压器T低压侧a、b相间,专用换流变压器T通过隔离刀闸K和断路器QF与交流***连接;滤波器F通过隔离刀闸K1和断路器QF1接在换流变压器T电源侧;刀闸S1、S2、S3、K、K1和断路器QF、QF1的位置信号及换流变阀侧电流信号Iva、Ivb、Ivc及网侧电流Ia、Ib、Ic及直流侧电流信号Idp、Idn、Idgnd及直流侧电压信号Udp、Udn及换流器R的监测信号接入控制保护***CP;控制保护***CP发出刀闸和断路器的分合命令及发出换流器R的控制和触发命令;
其中具有静止无功补偿功能的带专用换流变压器的直流融冰兼装置的设计方法包括如下步骤:
1)确定直流融冰装置覆盖线路范围;
2)预选各导线融冰电流;
3)确定各导线最大允许电流;
4)计算各线路在预选融冰电流时的直流压降和直流功率;
5)确定直流融冰装置额定参数;
6)计算换流器在额定触发角下理想空载直流电压;
7)计算换相电抗器阀侧额定交流电压;
8)计算专用换流变压器换相电抗器侧额定交流电压;
9)计算换流器交流侧额定电流;
10)计算换相电抗器电感值;
11)计算专用换流变压器额定容量;
12)计算专用换流变压器感抗;
13)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路额定电流和额定容量;
14)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路总感抗值;
15)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路除换相电抗器外增加电抗器的电感值;
16)确定直流融冰装置零功率模式下回路电感;
17)确定直流融冰装置零功率模式下最小允许电流;
18)设计交流滤波器。
上述步骤1)确定直流融冰装置覆盖线路范围的方法如下:
根据直流融冰装置使用地点确定需要利用该装置进行融冰的线路,包括特殊情况下可能通过变电站串联连接进行融冰的个别线路。根据各线路导线型号可得到线路各导线在20℃时的直流电阻值。
上述步骤2)预选各导线融冰电流的方法如下:
根据布尔格斯道尔夫公式计算各线路在典型覆冰条件下的最小融冰电流,取计算值的1.1倍为各导线预选融冰电流,即
Idpr=1.1Ide·min      (1)
式中,Idpr-各导线预选融冰电流,kA;Ide·min-线路最小融冰电流,kA。
上述步骤4)计算各线路在预选融冰电流时的直流压降和直流功率的方法如下:
根据两相导线串联方式,即“一去一回”方式,或称“1-1”方式,计算各线路在预选融冰电流时的直流压降和直流功率,即下式
U dpr = 2 I dpr RL P dc = 2 I dN 2 RL - - - ( 2 )
式中,Udpr-各导线“一去一回”方式融冰时直流压降,kV;R-融冰线路20℃直流电阻,Ω/km;L-线路长度,km;Pde-各导线“一去一回”方式融冰时的直流功率,MW。
上述步骤5)确定直流融冰装置额定电流参数的方法如下:
以式(1)和(2)计算得到的最大值为基础确定直流融冰装置的额定直流功率、直流电流和直流电压,直流融冰装置的额定直流功率、额定直流电流和额定直流电压大于等于式(1)和(2)计算得到的最大值,且额定直流电流小于导线最大允许电流Imax中的最大值,即
U dN ≥ max { U dpr · i } max { I dpr · i } ≤ I dN ≤ max { I max · i } P dN ≥ max { P dpr · i } - - - ( 3 )
式中,UdN-直流融冰装置额定直流电压,kV;IdN-直流融冰装置额定直流电流,kA;PdN-直流融冰装置额定直流功率,MW;i-利用该直流融冰装置进行融冰线路序号。
上述步骤6)计算换流器在额定触发角下理想空载直流电压的方法如下:
换流器在额定触发角下的理想空载直流电压采用下式计算,即
U dioN = U dN n + V T cos α N - d xn - d rn - - - ( 4 )
式中,UdioN-额定触发角下理想空载直流电压,kV;αN-额定触发触发角,额定直流电压和直流功率工况时对应的触发角,°,取5°-20°;n-六脉动换流器个数,六脉动换流器取1,双桥串联形成的十二脉动换流器取2;dxn-直流感性压降标幺值,UK%为***阻抗电压US%、换流变阻抗电压UT%与换相电抗器阻抗电压UCR%之和,设计中可忽略***阻抗电压;drn-直流阻性压降标幺值,取0;VT-换流器正向导通压降,取0。
上述步骤7)计算换相电抗器阀侧额定交流电压的方法如下:
换相电抗器阀侧额定交流电压按下式计算,即
U VN = U di 0 N 1.35 - - - ( 5 )
式中,UVN为换相电抗器阀侧交流电压,kV。
上述步骤8)计算专用换流变压器换相电抗器侧额定交流电压的方法如下:
专用换流变压器换相电抗器侧额定交流电压按照下式计算,即
U 2 N = U VN 1 - U CR % - - - ( 6 )
式中,U2N为专用换流变压器换相电抗器侧交流电压,kV;UCR%为换相电抗器阻抗电压,取0-0.06,取为0时即不使用换相电抗器,换流器直接接在专用换流变压器输出侧。
上述步骤9)计算换流器交流侧额定电流的方法如下:
换流器交流侧额定电流电流采用下式计算,即
I VN = 2 3 I dN = 0.816 I dN - - - ( 7 )
式中,IVN-换流器额定阀侧电流,kA。
上述步骤10)计算换相电抗器电感值的方法如下:
换相电抗器电感值采用下式计算
L CR = U 2 N × U CR % 2 πf × I VN - - - ( 8 )
式中,LCR-换相电抗器电感值,H;UCR%-换相电抗器阻抗电压;
上述步骤11)计算专用换流变压器额定容量的方法如下:
对于六脉动换流器,专用换流变压器采用一台三相变压器,对于十二脉动换流器,专用换流变压器采用两台三相变压器,单台额定容量采用下式计算,即
S N = 3 U 2 N I VN ( 1 + K ) - - - ( 9 )
式中,SN-专用换流变压器额定容量,MVA;K-谐波功率倍数,取0.08-0.12;
上述步骤12)计算专用换流变压器感抗的方法如下:
专用换流变压器感抗采用下式计算
X T = U 2 N 2 S N × U T % - - - ( 10 )
式中,XT-专用换流变压器阻抗,Ω;UT%-专用换流变压器阻抗电压,取0.08-0.12,无换相电抗器时取大值,有换相电抗器时取小值;
上述步骤13)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路容量和额定电流的方法如下:
直流融冰装置转换为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR运行时,晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路容量决定于专用换流变压器容量,所以
Q SVCN = S N I SVCN = Q SVCN 3 U an - - - ( 11 )
式中,QSVCN-晶闸管控制电抗器TCR或晶闸管投切电抗器TSR额定容量,MVAr;ISVCN-晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路额定电流,kA;
上述步骤14)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路总感抗值的方法如下:
晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路总感抗值采用下式计算,即
X SVC · Y = U 2 N 2 9 Q N - - - ( 12 )
式中,XSVCY-晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路电抗值,Ω。
上述步骤15)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路除换相电抗器外增加电抗器的电感值的方法如下:
对于晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路,需要增加电抗器的电感值按下式计算,即
式中,LTCR·Δ-晶闸管控制电抗器TCR支路增加电抗器的电感值,H;αN-晶闸管控制电抗器TCR额定额定容量时的延迟触发角,°,取95-104°;LTSR·Δ-晶闸管投切电抗器TSR支路增加电抗器的电感值,H。
上述步骤16)确定直流融冰装置零功率模式下回路电感的方法如下:
对于十二脉动,采用晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路中增加电抗器中的三相并联作为平波电抗器,直流融冰装置零功率模式下整个回路电感按照下式计算,即
对于六脉动,采用晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路中增加电抗器中的一相作为平波电抗器,直流融冰装置零功率模式下整个回路电感按照下式计算,即
L dcs = 1.5 ( X T 2 πf + L CR ) + L TCR · Δ L dcs = 1.5 ( X T 2 πf + L CR ) + L TSR · Δ - - - ( 15 )
式中,Ldcs-直流融冰装置零功率模式下回路电感值,H;
上述步骤17)确定直流融冰装置零功率模式下最小允许电流的方法如下:
对于十二脉动直流融冰装置,零功率模式下最小允许电流按照下式计算,即
I al min = K sr 0.023 × 2 × U dioN ω L dcs - - - ( 16 )
对于六脉动直流融冰装置,零功率模式下最小允许电流按照下式计算,即
I al min = K sr 0.0931 U dioN ω L dcs - - - ( 17 )
式中,Ialmin-直流融冰回路最小允许电流,kA;Ksr-保证零功率试验时电流不断续的可靠系数,取1.2-2.0;
上述步骤18)设计交流滤波器的方法如下:
根据直流融冰装置以额定电流运行于零功率模式时的谐波和无功特性完成交流滤波器设计。
本发明与现有技术相比,提供了一种完整的综合考虑了直流融冰及其等效试验、晶闸管控制电抗器或晶闸管投切电抗器等功能的带专用换流变压器直流融冰装置设计方法。本发明是一种方便实用的带专用换流变压器直流融冰装置的设计方法。
附图说明
图1为带专用换流变压器十二脉动直流融冰装置示意图。
图2为带专用换流变压器十二脉动直流融冰装置转换为TCR或TSR运行的示意图。
图3为带专用换流变压器六脉动直流融冰装置示意图。
图4为带专用换流变压器六脉动直流融冰装置转换为TCR或TSR运行的示意图。
具体实施方式
实施例1:
本发明的带专用换流变压器十二脉动直流融冰兼无功补偿装置结构示意图如图1、2所示,本实施例中,包括有两台专用换流变压器T(一台为Y/Y联结,另一台为Y/Δ联结),两组电抗器L1a、L1b、L1c,两组六脉动换流器R,两组电抗器L2a、L2b、L2c,刀闸S1、S2、S3、S4,控制保护***CP,交流滤波器组F,电抗器L1a、L1b、L1c在直流融冰模式下为换相电抗,在无功补偿模式下为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR的一部分,电抗器L2a、L2b、L2c全部在直流融冰模式下并联连接为平波电抗器,在无功补偿模式下为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR的一部分;在直流融冰模式下,两个六脉动换流器R交流侧通过电抗器L1a、L1b、L1c与两台专用换流变压器T相连构成一个十二脉动换流器,两个六脉动换流器R直流侧通过电抗器L2a、L2b、L2c与刀闸S1、S2、S3、S4相连,两台专用换流变压器T通过隔离刀闸K和断路器QF与交流***连接;在无功补偿模式下,即晶闸管控制电抗器TCR或晶闸管投切电抗器TSR模式下,六脉动换流器R中的阀V1、V4反并联连接后与电抗器L2a、L1c串联后接在专用换流变压器T低压侧b、c相间,换流器R中的阀V5、V2反并联连接后与电抗器L1a、L2b串联后接在专用换流变压器T低压侧a、c相间,换流器R中的阀V3、V6反并联连接后与电抗器L2c、L1b串联后接在专用换流变压器T低压侧a、b相间,专用换流变压器T通过隔离刀闸K和断路器QF与交流***连接;滤波器F通过隔离刀闸K1和断路器QF1接在换流变压器T电源侧;刀闸S1、S2、S3、K、K1和断路器QF、QF1的位置信号及换流变阀侧电流信号Iva、Ivb、Ivc及网侧电流Ia、Ib、Ic及直流侧电流信号Idp、Idn、Idgnd及直流侧电压信号Udp、Udn及换流器R的监测信号接入控制保护***CP;控制保护***CP发出刀闸和断路器的分合命令及发出换流器R的控制和触发命令。其中具有静止无功补偿功能的带专用换流变压器的直流融冰兼装置的设计方法包括如下步骤:
1)确定直流融冰装置覆盖线路范围
根据直流融冰装置使用地点确定需要利用该装置进行融冰的线路,包括特殊情况下可能通过变电站串联连接进行融冰的个别线路。根据各线路导线型号可得到线路各导线在20℃时的直流电阻值。
2)预选各导线融冰电流
根据布尔格斯道尔夫公式计算各线路在典型覆冰条件下(例如:-5℃,风速5m/s,冰厚10mm,1小时内完成融冰)的最小融冰电流,取计算值的1.1倍为各导线预选融冰电流,即
Idpr=1.1Ide·min     (1)
式中,Idpr-各导线预选融冰电流,kA;Ide·min-线路最小融冰电流,kA。
3)确定各导线最大允许电流
按GB5045-2010《110kV-750kV架空输电线路设计规范》条文说明5.0.6条提供的计算方法计算各导线最大允许电流Imax,计算条件:环境温度10℃,风速0.5米/秒,导线允许温度90℃,辐射系数0.9,吸收系数0.9,日照强度0.1W/cm2
4)计算各线路在预选融冰电流时的直流压降和直流功率
根据两相导线串联方式,即“一去一回”方式,或称“1-1”方式,计算各线路在预选融冰电流时的直流压降和直流功率,即下式
U dpr = 2 I dpr RL P dc = 2 I dN 2 RL - - - ( 2 )
式中,Udpr-各导线“一去一回”方式融冰时直流压降,kV;R-融冰线路20℃直流电阻,Ω/km;L-线路长度,km;Pdc-各导线“一去一回”方式融冰时的直流功率,MW。
5)确定直流融冰装置额定电流参数
以式(1)和(2)计算得到的最大值为基础确定直流融冰装置的额定直流功率、直流电流和直流电压,直流融冰装置的额定直流功率、额定直流电流和额定直流电压大于等于式(1)和(2)计算得到的最大值,且额定直流电流小于导线最大允许电流Imax中的最大值,即
U dN ≥ max { U dpr · i } max { I dpr · i } ≤ I dN ≤ max { I max · i } P dN ≥ max { P dpr · i } - - - ( 3 )
式中,UdN-直流融冰装置额定直流电压,kV;IdN-直流融冰装置额定直流电流,kA;PdN-直流融冰装置额定直流功率,MW;i-利用该直流融冰装置进行融冰线路序号。
6)计算换流器在额定触发角下理想空载直流电压
换流器在额定触发角下的理想空载直流电压采用下式计算,即
U dioN = U dN n + V T cos α N - d xn - d rn - - - ( 4 )
式中,UdioN-额定触发角下理想空载直流电压,kV;αN-额定触发触发角,额定直流电压和直流功率工况时对应的触发角,取5-20°;dxn-直流感性压降标幺值,UK%为***阻抗电压US%、换流变阻抗电压UT%与换相电抗器阻抗电压UCR%之和,设计中可忽略***阻抗电压;drn-直流阻性压降标幺值,取0;VT-换流器正向导通压降,取0。
7)计算换相电抗器阀侧额定交流电压
换相电抗器阀侧额定交流电压按下式计算,即
U VN = U di 0 N 1.35 - - - ( 5 )
式中,UVN为换相电抗器阀侧交流电压,kV。
8)计算专用换流变压器换相电抗器侧额定交流电压
专用换流变压器换相电抗器侧额定交流电压按照下式计算,即
U 2 N = U VN 1 - U CR % - - - ( 6 )
式中,U2N为专用换流变压器换相电抗器侧交流电压,kV;UCR%为换相电抗器阻抗电压,取0-0.06,取为0时即不使用换相电抗器。
9)计算换流器交流侧额定电流
换流器交流侧额定电流电流采用下式计算,即
I VN = 2 3 I dN = 0.816 I dN - - - ( 7 )
式中,IVN-换流器额定阀侧电流,kA。
10)计算换相电抗器电感值
换相电抗器电感值采用下式计算
L CR = U 2 N × U CR % 2 πf × I VN - - - ( 8 )
式中,LCR-换相电抗器电感值,H;UCR%-换相电抗器阻抗电压。
11)计算专用换流变压器额定容量
专用换流变压器采用两台三相变压器,单台额定容量采用下式计算,即
S N = 3 U 2 N I VN ( 1 + K ) - - - ( 9 )
式中,SN-专用换流变压器额定容量,MVA;K-谐波功率倍数,取0.08-0.12。
12)计算专用换流变压器感抗
专用换流变压器感抗采用下式计算
X T = U 2 N 2 S N × U T % - - - ( 10 )
式中,XT-专用换流变压器阻抗,Ω;UT%-专用换流变压器阻抗电压,取0.08-0.12,无换相电抗器时取大值,有换相电抗器时取小值。
13)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路容量和额定电流
直流融冰装置转换为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR运行时,晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路容量决定于专用换流变压器容量,所以
Q SVCN = S N I SVCN = Q SVCN 3 U an - - - ( 11 )
式中,QSVCN-晶闸管控制电抗器TCR或晶闸管投切电抗器TSR额定容量,MVAr;ISVCN-晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路额定电流,kA。
14)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路总感抗值
晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路总感抗值采用下式计算,即
X SVC · Y = U 2 N 2 9 Q N - - - ( 12 )
式中,XSVC·Y-晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路电抗值,Ω。
15)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路除换相电抗器外增加电抗器的电感值;
对于晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路,需要增加电抗器的电感值按下式计算,即
式中,LTCR·Δ-晶闸管控制电抗器TCR支路增加电抗器的电感值,H;αN-晶闸管控制电抗器TCR额定额定容量时的延迟触发角,°,取95-104°;LTSR·Δ-晶闸管投切电抗器TSR支路增加电抗器的电感值,H。
16)确定直流融冰装置零功率模式下回路电感
对于十二脉动,采用晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路中增加电抗器中的三相并联作为平波电抗器,直流融冰装置零功率模式下整个回路电感按照下式计算,即
式中,Ldcs-直流融冰装置零功率模式下回路电感值,H;
17)确定直流融冰装置零功率模式下最小允许电流
对于十二脉动直流融冰装置,采用增加电抗器中的三相并联作为平波电抗器,零功率模式下最小允许电流按照下式计算,即
I al min = K sr 0.023 × 2 U dioN ω L dcs - - - ( 15 )
式中,Ialmin-直流融冰回路最小允许电流,kA;Ksr-保证零功率试验时电流不断续的可靠系数,取1.2-2.0。
18)设计交流滤波器
根据直流融冰装置以额定电流运行于零功率模式时的谐波和无功特性完成交流滤波器设计。
实施例2:
本发明的带专用换流变压器六脉动直流融冰兼无功补偿装置结构示意图如图3、4所示,本实施例中,包括有一台专用换流变压器T(Y/Δ联结),一组电抗器L1a、L1b、L1c,一组六脉动换流器R,一组电抗器L2a、L2b、L2c,刀闸S1、S2、S3、S4,控制保护***CP,交流滤波器组F,电抗器L1a、L1b、L1c在直流融冰模式下为换相电抗,在无功补偿模式下为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR的一部分,电抗器L2a、L2b、L2c全部在直流融冰模式下一相为平波电抗器,在无功补偿模式下为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR的一部分;在直流融冰模式下,六脉动换流器R交流侧通过电抗器L1a、L1b、L1c与专用换流变压器T相连,六脉动换流器R直流侧通过电抗器L2a、L2b、L2c与刀闸S1、S2、S3、S4相连,专用换流变压器T通过隔离刀闸K和断路器QF与交流***连接;在无功补偿模式下,即晶闸管控制电抗器TCR或晶闸管投切电抗器TSR模式下,六脉动换流器R中的阀V1、V4反并联连接后与电抗器L2a、L1c串联后接在专用换流变压器T低压侧b、c相间,换流器R中的阀V5、V2反并联连接后与电抗器L1a、L2b串联后接在专用换流变压器T低压侧a、c相间,换流器R中的阀V3、V6反并联连接后与电抗器L2c、L1b串联后接在专用换流变压器T低压侧a、b相间,专用换流变压器T通过隔离刀闸K和断路器QF与交流***连接;滤波器F通过隔离刀闸K1和断路器QF1接在换流变压器T电源侧;刀闸S1、S2、S3、K、K1和断路器QF、QF1的位置信号及换流变阀侧电流信号Iva、Ivb、Ivc及网侧电流Ia、Ib、Ic及直流侧电流信号Idp、Idn及直流侧电压信号Udp、Udn及换流器R的监测信号接入控制保护***CP;控制保护***CP发出刀闸和断路器的分合命令及发出换流器R的控制和触发命令。其中具有静止无功补偿功能的带专用换流变压器的直流融冰兼装置的设计方法包括如下步骤:
1)确定直流融冰装置覆盖线路范围
根据直流融冰装置使用地点确定需要利用该装置进行融冰的线路,包括特殊情况下可能通过变电站串联连接进行融冰的个别线路。根据各线路导线型号可得到线路各导线在20℃时的直流电阻值。
2)预选各导线融冰电流
根据布尔格斯道尔夫公式计算各线路在典型覆冰条件下(例如:-5℃,风速5m/s,冰厚10mm,1小时内完成融冰)的最小融冰电流,取计算值的1.1倍为各导线预选融冰电流,即
Idpr=1.1Ide·min          (1)
式中,Idpr-各导线预选融冰电流,kA;Ide·min-线路最小融冰电流,kA。
3)确定各导线最大允许电流
按GB5045-2010《110kV-750kV架空输电线路设计规范》条文说明5.0.6条提供的计算方法计算各导线最大允许电流Imax,计算条件:环境温度10℃,风速0.5米/秒,导线允许温度90℃,辐射系数0.9,吸收系数0.9,日照强度0.1W/cm2
4)计算各线路在预选融冰电流时的直流压降和直流功率;
根据两相导线串联方式,即“一去一回”方式,或称“1-1”方式,计算各线路在预选融冰电流时的直流压降和直流功率,即下式
U dpr = 2 I dpr RL P dc = 2 I dN 2 RL - - - ( 2 )
式中,Udpr-各导线“一去一回”方式融冰时直流压降,kV;R-融冰线路20℃直流电阻,Ω/km;L-线路长度,km;Pde-各导线“一去一回”方式融冰时的直流功率,MW。
5)确定直流融冰装置额定电流参数
以式(1)和(2)计算得到的最大值为基础确定直流融冰装置的额定直流功率、直流电流和直流电压,直流融冰装置的额定直流功率、额定直流电流和额定直流电压大于等于式(1)和(2)计算得到的最大值,且额定直流电流小于导线最大允许电流Imax中的最大值,即
U dN ≥ max { U dpr · i } max { I dpr · i } ≤ I dN ≤ max { I max · i } P dN ≥ max { P dpr · i } - - - ( 3 )
式中,UdN-直流融冰装置额定直流电压,kV;IdN-直流融冰装置额定直流电流,kA;PdN-直流融冰装置额定直流功率,MW;i-利用该直流融冰装置进行融冰线路序号。
6)计算换流器在额定触发角下理想空载直流电压
换流器在额定触发角下的理想空载直流电压采用下式计算,即
U dioN = U dN n + V T cos α N - d xn - d rn - - - ( 4 )
式中,UdioN-额定触发角下理想空载直流电压,kV;αN-额定触发触发角,额定直流电压和直流功率工况时对应的触发角,取5-20°;dxn-直流感性压降标幺值,UK%为***阻抗电压US%、换流变阻抗电压UT%与换相电抗器阻抗电压UCR%之和,设计中可忽略***阻抗电压;drn-直流阻性压降标幺值,取0;VT-换流器正向导通压降,取0。
7)计算换相电抗器阀侧额定交流电压
换相电抗器阀侧额定交流电压按下式计算,即
U VN = U di 0 N 1.35 - - - ( 5 )
式中,UVN为换相电抗器阀侧交流电压,kV。
8)计算专用换流变压器换相电抗器侧额定交流电压
专用换流变压器换相电抗器侧额定交流电压按照下式计算,即
U 2 N = U VN 1 - U CR % - - - ( 6 )
式中,U2N为专用换流变压器换相电抗器侧交流电压,kV;UCR%为换相电抗器阻抗电压,取0-0.06,取为0时即不使用换相电抗器。
9)计算换流器交流侧额定电流
换流器交流侧额定电流电流采用下式计算,即
I VN = 2 3 I dN = 0.816 I dN - - - ( 7 )
式中,IVN-换流器额定阀侧电流,kA。
10)计算换相电抗器电感值
换相电抗器电感值采用下式计算
L CR = U 2 N × U CR % 2 πf × I VN - - - ( 8 )
式中,LCR-换相电抗器电感值,H;UCR%-换相电抗器阻抗电压。
11)计算专用换流变压器额定容量
专用换流变压器采用一台三相变压器,额定容量采用下式计算,即
S N = 3 U 2 N I VN ( 1 + K ) - - - ( 9 )
式中,SN-专用换流变压器额定容量,MVA;K-谐波功率倍数,取0.08-0.12。
12)计算专用换流变压器感抗
专用换流变压器感抗采用下式计算
X T = U 2 N 2 S N × U T % - - - ( 10 )
式中,XT-专用换流变压器阻抗,Ω;UT%-专用换流变压器阻抗电压,取0.08-0.12,无换相电抗器时取大值,有换相电抗器时取小值。
13)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路容量和额定电流
直流融冰装置转换为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR运行时,晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路容量决定于专用换流变压器容量,所以
Q SVCN = S N I SVCN = Q SVCN 3 U an - - - ( 11 )
式中,QSVCN-晶闸管控制电抗器TCR或晶闸管投切电抗器TSR额定容量,MVAr;ISVCN-晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路额定电流,kA。
14)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路总感抗值
晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路总感抗值采用下式计算,即
X SVC · Y = U 2 N 2 9 Q N - - - ( 12 )
式中,XSVCY-晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路电抗值,Ω。
15)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路除换相电抗器外增加电抗器的电感值
对于晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路,需要增加电抗器的电感值按下式计算,即
式中,TCR·Δ-晶闸管控制电抗器TCR支路增加电抗器的电感值,H;αN-晶闸管控制电抗器TCR额定额定容量时的延迟触发角,°,取95-104°;LTSR·Δ-晶闸管投切电抗器TSR支路增加电抗器的电感值,H。
16)确定直流融冰装置零功率模式下回路电感
对于六脉动,采用晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路中增加电抗器中的一相作为平波电抗器,直流融冰装置零功率模式下整个回路电感按照下式计算,即
式中,Ldcs-直流融冰装置零功率模式下回路电感值,H;
17)确定直流融冰装置零功率模式下最小允许电流
对于六脉动直流融冰装置,采用增加电抗器中的一相作为平波电抗器,零功率模式下最小允许电流按照下式计算,即
I al min = K sr 0.0931 U dioN ω L dcs - - - ( 15 )
式中,Ialmin-直流融冰回路最小允许电流,kA;Ksr-保证零功率试验时电流不断续的可靠系数,取1.2-2.0。
18)设计交流滤波器
根据直流融冰装置以额定电流运行于零功率模式时的谐波和无功特性完成交流滤波器设计。

Claims (10)

1.一种带专用换流变压器直流融冰装置的设计方法,所述带专用换流变压器直流融冰装置具有静止无功补偿功能,包括有一台或两台专用换流变压器T,一组或两组电抗器L1a、L1b、L1c,一组或两组六脉动换流器R,一组或两组电抗器L2a、L2b、L2c,刀闸S1、S2、S3、S4,控制保护***CP,交流滤波器组F,电抗器L1a、L1b、L1c在直流融冰模式下为换相电抗,在无功补偿模式下为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR的一部分,电抗器L2a、L2b、L2c三相并联或一相在直流融冰模式下为平波电抗器,在无功补偿模式下为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR的一部分;在直流融冰模式下,换流器R交流侧通过电抗器L1a、L1b、L1c与专用换流变压器T相连,换流器R直流侧通过电抗器L2a、L2b、L2c与刀闸S1、S2、S3、S4相连,专用换流变压器T通过隔离刀闸K和断路器QF与交流***连接;在无功补偿模式下,即晶闸管控制电抗器TCR或晶闸管投切电抗器TSR模式下,换流器R中的阀V1、V4反并联连接后与电抗器L2a、L1c串联后接在专用换流变压器T低压侧b、c相间,换流器R中的阀V5、V2反并联连接后与电抗器L1a、L2b串联后接在专用换流变压器T低压侧a、c相间,换流器R中的阀V3、V6反并联连接后与电抗器L2c、L1b串联后接在专用换流变压器T低压侧a、b相间,专用换流变压器T通过隔离刀闸K和断路器QF与交流***连接;滤波器F通过隔离刀闸K1和断路器QF1接在换流变压器T电源侧;刀闸S1、S2、S3、K、K1和断路器QF、QF1的位置信号及换流变阀侧电流信号Iva、Ivb、Ivc及网侧电流Ia、Ib、Ic及直流侧电流信号 Idp、Idn、Idgnd及直流侧电压信号Udp、Udn及换流器R的监测信号接入控制保护***CP;控制保护***CP发出刀闸和断路器的分合命令及发出换流器R的控制和触发命令;
其特征在于具有静止无功补偿功能的带专用换流变压器的直流融冰装置的设计方法包括如下步骤:
1)确定直流融冰装置覆盖线路范围;
2)预选各导线融冰电流;
3)确定各导线最大允许电流;
4)计算各线路在预选融冰电流时的直流压降和直流功率;
5)确定直流融冰装置额定参数;
6)计算换流器在额定触发角下理想空载直流电压;
7)计算换相电抗器阀侧额定交流电压;
8)计算专用换流变压器换相电抗器侧额定交流电压;
9)计算换流器交流侧额定电流;
10)计算换相电抗器电感值;
11)计算专用换流变压器额定容量;
12)计算专用换流变压器感抗;
13)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路额定电流和额定容量;
14)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路总感抗值;
15)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路除换相电抗器外增加电抗器的电感值;
16)确定直流融冰装置零功率模式下回路电感;
17)确定直流融冰装置零功率模式下最小允许电流;
18)设计交流滤波器。
2.根据权利要求1所述的带专用换流变压器直流融冰装置的设计方法,其特征在于上述步骤1)确定直流融冰装置覆盖线路范围的方法如下:
根据直流融冰装置使用地点确定需要利用该装置进行融冰的线路,包括特殊情况下可能通过变电站串联连接进行融冰的个别线路,根据各线路导线型号可得到线路各导线在20℃时的直流电阻值;
上述步骤2)预选各导线融冰电流的方法如下:
根据布尔格斯道尔夫公式计算各线路在典型覆冰条件下的最小融冰电流,取计算值的1.1倍为各导线预选融冰电流,即
Idpr=1.1Ide·min   (1)
式中,Idpr—各导线预选融冰电流,kA;Ide·min—线路最小融冰电流,kA。
3.根据权利要求1所述的带专用换流变压器直流融冰装置的设计方法,其特征在于上述步骤4)计算各线路在预选融冰电流时的直流压降和直流功率的方法如下:
根据两相导线串联方式,即“一去一回”方式,或称“1-1”方式,计算各线路在预选融冰电流时的直流压降和直流功率,即下式
式中,Udpr—各导线“一去一回”方式融冰时直流压降,kV;R—融冰线路20℃直流电阻,Ω/km;L—线路长度,km;Pdc—各导线“一去一回”方式融冰时的直流功率,MW。
4.根据权利要求1所述的带专用换流变压器直流融冰装置的设计方法,其特征在于上述步骤5)确定直流融冰装置额定电流参数的方法如下:
以式(1)和(2)计算得到的最大值为基础确定直流融冰装置的额定直流功率、直流电流和直流电压,直流融冰装置的额定直流功率、额定直流电流和额定直流电压大于等于式(1)和(2)计算得到的最大值,且额定直流电流小于导线最大允许电流Imax中的最大值,即
式中,UdN—直流融冰装置额定直流电压,kV;IdN—直流融冰装置额定直流电流,kA;PdN—直流融冰装置额定直流功率,MW;i—利用该直流融冰装置进行融冰线路序号;Udpr·i为第i条线路导线‘一去一回’方式融冰时直流压降,kV;Idpr·i为第i条线路导线预选融冰电流,kA;Imax·i为第i条线路导线最大允许电流,kA;Pdpr·i为第i条线路导线‘一去一回’方式融冰时的直流功率,MW。
5.根据权利要求1所述的带专用换流变压器直流融冰装置的设计方法,其特征在于上述步骤6)计算换流器在额定触发角下理想空载直流电压的方法如下:
换流器在额定触发角下的理想空载直流电压采用下式计算,即
式中,UdioN—额定触发角下理想空载直流电压,kV;αN—额定触发触发角,额定直流电压和直流功率工况时对应的触发角,取5°-20°;n—六脉动换流器个数,六脉动换流器取1,双桥串联形成的十二脉动换流器取2;dxn—直流感性压降标幺值,UK%为***阻抗电压US%、换流变阻抗电压UT%与换相电抗器阻抗电压UCR%之和,设计中忽略***阻抗电压;drn—直流阻性压降标幺值,取0;VT—换流器正向导通压降,取0。
6.根据权利要求1所述的带专用换流变压器直流融冰装置的设计方法,其特征在于上述步骤7)计算换相电抗器阀侧额定交流电压的方法如下:
换相电抗器阀侧额定交流电压按下式计算,即
式中,UVN为换相电抗器阀侧交流电压,kV。
7.根据权利要求1所述的带专用换流变压器直流融冰装置的设计方法,其特征在于上述步骤8)计算专用换流变压器换相电抗器侧额定交流电压的方法如下:
专用换流变压器换相电抗器侧额定交流电压按照下式计算,即
式中,U2N为专用换流变压器换相电抗器侧交流电压,kV;UCR%为换相电抗器阻抗电压,取0-0.06,取为0时即不使用换相电抗器,换流器直接接在专用换流变压器输出侧。
8.根据权利要求1所述的带专用换流变压器直流融冰装置的设计方法,其特征在于上述步骤9)计算换流器交流侧额定电流的方法如下:
换流器交流侧额定电流电流采用下式计算,即
式中,IVN—换流器额定阀侧电流,kA。
9.根据权利要求1所述的带专用换流变压器直流融冰装置的设计方法,其特征在于上述步骤10)计算换相电抗器电感值的方法如下:
换相电抗器电感值采用下式计算
式中,LCR—换相电抗器电感值,H;UCR%—换相电抗器阻抗电压;f为电网频率,Hz,π为圆周率;
上述步骤11)计算专用换流变压器额定容量的方法如下:
对于六脉动换流器,专用换流变压器采用一台三相变压器,对于十二脉动换流器,专用换流变压器采用两台三相变压器,单台额定容 量采用下式计算,即
式中,SN—专用换流变压器额定容量,MVA;K—谐波功率倍数,取0.08-0.12;
上述步骤12)计算专用换流变压器感抗的方法如下:
专用换流变压器感抗采用下式计算
式中,XT—专用换流变压器阻抗,Ω;UT%—专用换流变压器阻抗电压,取0.08-0.12,无换相电抗器时取大值,有换相电抗器时取小值;
上述步骤13)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路容量和额定电流的方法如下:
直流融冰装置转换为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR运行时,晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路容量决定于专用换流变压器容量,所以
式中,QSVCN—晶闸管控制电抗器TCR或晶闸管投切电抗器TSR额定容量,MVAr;ISVCN—晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路额定电流,kA;Uan为晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路电压,kV;
上述步骤14)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路总感抗值的方法如下:
晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路总感抗值采用下式计算,即
式中,XSVC·Y—晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路电抗值,Ω;
上述步骤15)确定晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路除换相电抗器外增加电抗器的电感值的方法如下:
对于晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路,需要增加电抗器的电感值按下式计算,即
式中,LTCR·Δ—晶闸管控制电抗器TCR支路增加电抗器的电感值,H;αN—晶闸管控制电抗器TCR额定额定容量时的延迟触发角,取95-104°;LTSR·Δ—晶闸管投切电抗器TSR支路增加电抗器的电感值,H。
10.根据权利要求1所述的带专用换流变压器直流融冰装置的设计方法,其特征在于上述步骤16)确定直流融冰装置零功率模式下回路电感的方法如下:
对于十二脉动,采用晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路中增加电抗器中的三相并联作为平波电抗器,直流融冰装置 零功率模式下整个回路电感按照下式计算,即
LDCC为直流融冰装置零功率模式下整个回路电感,H;
对于六脉动,采用晶闸管控制电抗器TCR或晶闸管投切电抗器TSR支路中增加电抗器中的一相作为平波电抗器,直流融冰装置零功率模式下整个回路电感按照下式计算,即
式中,Ldcs—直流融冰装置零功率模式下回路电感值,H;π为圆周率;
上述步骤17)确定直流融冰装置零功率模式下最小允许电流的方法如下:
对于十二脉动直流融冰装置,零功率模式下最小允许电流按照下式计算,即
对于六脉动直流融冰装置,零功率模式下最小允许电流按照下式计算,即
式中,Ial min—直流融冰回路最小允许电流,kA;Ksr—保证零功率试验时电流不断续的可靠系数,取1.2-2.0;ω为角频率,rad/s;
上述步骤18)设计交流滤波器的方法如下:
根据直流融冰装置以额定电流运行于零功率模式时的谐波和无功特性完成交流滤波器设计。
CN201210018908.6A 2012-01-20 2012-01-20 一种带专用换流变压器直流融冰装置的设计方法 Active CN102593777B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210018908.6A CN102593777B (zh) 2012-01-20 2012-01-20 一种带专用换流变压器直流融冰装置的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210018908.6A CN102593777B (zh) 2012-01-20 2012-01-20 一种带专用换流变压器直流融冰装置的设计方法

Publications (2)

Publication Number Publication Date
CN102593777A CN102593777A (zh) 2012-07-18
CN102593777B true CN102593777B (zh) 2015-08-19

Family

ID=46482108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210018908.6A Active CN102593777B (zh) 2012-01-20 2012-01-20 一种带专用换流变压器直流融冰装置的设计方法

Country Status (1)

Country Link
CN (1) CN102593777B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753014A (zh) * 2015-04-10 2015-07-01 国家电网公司 用于特高压直流融冰装置的整流器冷却方法及***
CN113161965B (zh) * 2021-03-09 2022-07-19 湖南防灾科技有限公司 风电线路专用高效直流融冰装置及其参数适配方法
CN113300307B (zh) * 2021-04-29 2022-12-27 珠海万力达电气自动化有限公司 一种具有双网融冰功能的铁路电力***互联装备及控制方法
CN114709780A (zh) * 2021-12-21 2022-07-05 贵州电网有限责任公司 一种基于功率调节的输配电线路在线融冰装置及控制方法
CN117154665B (zh) * 2023-09-06 2024-04-16 国网经济技术研究院有限公司 一种对称单极柔直***深度过电压抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433520B1 (en) * 2001-05-29 2002-08-13 Siemens Power Transmission & Distribution Inc Dc power regulator incorporating high power ac to dc converter with controllable dc voltage and method of use
RU2316867C1 (ru) * 2006-08-11 2008-02-10 Открытое Акционерное Общество "Федеральная Сетевая Компания Единой Энергетической Системы" (Оао "Фск Еэс") Комбинированная установка для плавки гололеда и компенсации реактивной мощности
CN101237134A (zh) * 2008-02-29 2008-08-06 梁一桥 具有静止式动态无功补偿功能的直流大电流融冰装置
CN101465549A (zh) * 2009-01-16 2009-06-24 中国电力科学研究院 一种两个六脉动并联整流阀组的重构配置方法
CN101540491A (zh) * 2009-03-06 2009-09-23 南方电网技术研究中心 直流融冰的主回路设置方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433520B1 (en) * 2001-05-29 2002-08-13 Siemens Power Transmission & Distribution Inc Dc power regulator incorporating high power ac to dc converter with controllable dc voltage and method of use
RU2316867C1 (ru) * 2006-08-11 2008-02-10 Открытое Акционерное Общество "Федеральная Сетевая Компания Единой Энергетической Системы" (Оао "Фск Еэс") Комбинированная установка для плавки гололеда и компенсации реактивной мощности
CN101237134A (zh) * 2008-02-29 2008-08-06 梁一桥 具有静止式动态无功补偿功能的直流大电流融冰装置
CN101465549A (zh) * 2009-01-16 2009-06-24 中国电力科学研究院 一种两个六脉动并联整流阀组的重构配置方法
CN101540491A (zh) * 2009-03-06 2009-09-23 南方电网技术研究中心 直流融冰的主回路设置方法

Also Published As

Publication number Publication date
CN102593777A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
CN102510039B (zh) 一种多功能直流融冰自动转换电路及其转换方法
CN102570369B (zh) 一种不带专用换流变压器直流融冰装置的设计方法
CN101877470B (zh) 一种带专用整流变压器的直流融冰装置及其保护方法
CN101882774B (zh) 一种不带专用整流变压器的直流融冰装置及其保护方法
CN102593777B (zh) 一种带专用换流变压器直流融冰装置的设计方法
CN101540491B (zh) 直流融冰的主回路设置方法
Juanjuan et al. Research and application of DC de–icing technology in china southern power grid
CN101615772B (zh) 一种线路末端注入无功电流的输电线路融冰方法
CN203813384U (zh) 基于电压源型换流器的直流融冰装置
CN103915808A (zh) 基于电压源型换流器的直流融冰装置及其控制方法
CN202749782U (zh) 全过程利用倒闸操作实施的输电线路融冰***
CN105514905B (zh) 一种具有statcom功能的移动式融冰装置
Zhu et al. Research on melting and de-icing methods of lines in distribution network
CN101505043B (zh) 直流融冰三相交流线路自动切换的方法
CN201341007Y (zh) 高低压电力线路除冰车
CN110932215A (zh) 一种使用光伏发电进行架空线路融冰的***及方法
CN201829904U (zh) 一种带专用整流变压器的直流融冰装置
CN102315615A (zh) 一种车载式直流融冰装置及其保护方法
CN202103392U (zh) 一种车载式直流融冰装置
CN102299499A (zh) 将10kV电源通过35kV主变降压后对线路交流短路融冰的方案
CN202978175U (zh) 一种多功能六脉动直流融冰自动转换电路
CN202663067U (zh) 一种多功能十二脉动直流融冰自动转换电路
CN202749783U (zh) 一种直流融冰兼静止无功补偿装置
CN204179673U (zh) 一种动态无功补偿及直流融冰复用装置
CN103457225B (zh) 基于液流电池的交流融冰方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant