CN102589995B - Method for forecasting uniaxial constitutive relation of material according to press hardness - Google Patents

Method for forecasting uniaxial constitutive relation of material according to press hardness Download PDF

Info

Publication number
CN102589995B
CN102589995B CN 201210041108 CN201210041108A CN102589995B CN 102589995 B CN102589995 B CN 102589995B CN 201210041108 CN201210041108 CN 201210041108 CN 201210041108 A CN201210041108 A CN 201210041108A CN 102589995 B CN102589995 B CN 102589995B
Authority
CN
China
Prior art keywords
theta
pressure head
sigma
penetration hardness
circular cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201210041108
Other languages
Chinese (zh)
Other versions
CN102589995A (en
Inventor
蔡力勋
包陈
姚博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN 201210041108 priority Critical patent/CN102589995B/en
Publication of CN102589995A publication Critical patent/CN102589995A/en
Application granted granted Critical
Publication of CN102589995B publication Critical patent/CN102589995B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The invention discloses a method for forecasting the uniaxial constitutive relation of material according to press hardness, comprising the following steps: in a press hardness detecting system consisting of a press head loading unit, a deformation detecting unit and a data processing unit, the press head loading unit presses material to be detected by press heads with different appearances, and the deformation detecting unit detects the corresponding deformation of the material to be detected and inputs into the data processing unit to obtain the constitutive parameters E, sigma y and n of forecasting material, so that the portable measurement of the uniaxial constitutive relation of the material and the serviced structural part can be realized by the simple method for forecasting the uniaxial constitutive relation of the material according to the press hardness.

Description

A kind of method of penetration hardness prediction material single shaft constitutive relation
Technical field:
The present invention relates to the metal material Performance Detection, especially in the field of detecting of using as a servant construction material single shaft constitutive relation.
Background technology:
Uniaxial stress-strain curve (being constitutive relation) is as the most basic material mechanical performance, plays an important role for design and the military service of engineering component.The common way of obtaining material single shaft constitutive relation is to take starting material processing or carry out tension test behind the engineering component intercepting standard tensile sample in the laboratory.Yet the military service engineering component for through damaged, problem such as aging does not allow therefrom to intercept standard sample, thereby makes that traditional stretching test method can't be used for measuring in the single shaft constitutive relation of labour member.On the other hand, for welded structure, the material single shaft constitutive relation in weld seam, heat-affected zone, mother metal district has larger difference usually, and traditional stretching test method also is not easy to realize the Study on dispersity of welding material constitutive relation and weld assembly is stressed and the explication de texte of distortion.At above-mentioned situation, still there is not the portable detection technique of the harmless or little damage that can be used for the prediction of material single shaft constitutive relation at present.
The penetration hardness test is that the certain load of a kind of usefulness is pressed into measured material with the pressure head of stipulating, compares the method for measured material soft or hard with the size of material surface local plastic deformation.Hardness number is characterized by the ratio of maximum test force with the corresponding area of indentation.Because pressure head, load and the difference of load duration, penetration hardness mainly comprises several types such as Brinell hardness, Rockwell's hardness, Vickers hardness.Traditional penetration hardness test is simple, comprise that instrumentation products such as Brinell tester, Rockwell hardometer, Vickers, microhardness testers, multi-usage sclerometer and handhold portable sclerometer continue to bring out, but this series products only can be used for the measurement of material hardness.In fact, the indentation test process has contained the abundant information of measured material bullet, plastic yield behavior, by this traditional experiment method is carried out technological innovation, maybe can realize little damage of material single shaft constitutive relation, portable measurement.Oliver and Pharr, Oliver W C, Pharr G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indention experiments[J] .Journal of Materials Research, 1992,7:1564-1583. test the ram load P-compression distance h curve that add in uninstall process by continuous recording at penetration hardness based on the Elastic Contact theory, proposed classical elasticity modulus of materials and be pressed into measuring method.The typical loading of pressing in P-degree of depth h curve that Fig. 1 obtains for the penetration hardness test.This technical scheme through type (1) is found the solution the elastic modulus E of material.
E r = π 2 β S A c 1 E r = 1 - v 2 E + 1 - v ind 2 E ind A c = f ( h c ) h c = h m - μ P m S - - - ( 1 )
Wherein, β, μ are the constant relevant with indenter shape, and S is the Elastic Contact rigidity among Fig. 1, and v is the Poisson ratio of sample, E IndAnd v IndBe respectively elastic modulus and the Poisson ratio of pressure head, A cBe the projected area of pressure head and the sample contact region of maximum load correspondence, by contact degree of depth h cContact with it.
For the material that satisfies Hollomon power law hardening Plastic, its stretching trus stress σ and true strain ε satisfy formula (2):
σ = Eϵ σ ≤ σ y σ = σ y ( 1 - n ) E n ϵ p n σ > σ y - - - ( 2 )
In the formula, E is elastic modulus, σ yBe the reference yield stress, n is the hardening Plastic index.
Be pressed into situation for the circular cone pressure head, think that it (is P=Ch that its load p-degree of depth h loading curve meets secondary power law feature 2), by seeking loading coefficient C with characterizing stress σ rSingle corresponding relation, thereby two pressure head method Bucaille J L have been proposed, Stauss S, Fellder E, Michler J.Determination of plastic properties of metals by instrumented indentation using different sharp indenters.Acta Materialia, 2003,51:1663-1678. material constitutive parameter σ y, finding the solution by formula (3) of n undertaken.
C σ r = c 1 · ( ln E r σ r ) 3 + c 2 · ( ln E r σ r ) 2 + c 3 · ln E r σ r + c 4 σ r = σ y · ( 1 + E σ y · ϵ r ) n - - - ( 3 )
Be pressed into situation for spherical indenter, attempt the load p in the indentation test and compression distance h with the stress in the uniaxial tensile test, strain facies correspondence, thereby directly from load-compression distance curve, try to achieve plasticity parameter σ y
In the prior art scheme, asking for of elastic modulus needs by complete load p-degree of depth h unloading segment calibration curve information, and particularly the precision of Elastic Contact rigidity is difficult to effective assurance.Two pressure head methods for circular cone is pressed into characterize stress σ rDetermine not only need by a large amount of numerical analyses, on the other hand, load p-degree of depth h load test curve is not in strict conformity with secondary power law feature, thus the dispersiveness that causes loading coefficient C is bigger.Be pressed into situation for sphere, it is big and precision of prediction is lower to seek the direct corresponding relation difficulty of the same drawing stress of loading of pressing in P, degree of depth h, strain, only can obtain the elastic mould value of material, the single shaft constitutive relation of unpredictable material.
Summary of the invention
Deficiency in view of the existing program of above statement, the object of the present invention is to provide a kind of method of penetration hardness prediction material single shaft constitutive relation, make it the method prediction material single shaft constitutive relation by traditional penetration hardness, Hardness Prediction meets the material single shaft constitutive relation of power law sclerosis feature, is convenient to use at portable instrument.
To achieve these goals, technical solution of the present invention is:
A kind of method of penetration hardness prediction material single shaft constitutive relation, have the pressure head loading unit, be out of shape in the penetration hardness detection system that detects unit and data processing unit formation, the pressure head loading unit adopts different profile pressure heads to be pressed into measured material, and distortion detects unit (data acquisition unit) and detects measured material and be out of shape accordingly and be input to data processing unit to obtain constitutive parameter E, the σ of prediction material y, n, and calculate to obtain the single shaft constitutive relation by following formula:
σ = Eϵ σ ≤ σ y σ = σ y ( 1 - n ) E n ϵ p n σ > σ y ,
E is elastic modulus, σ yBe the reference yield stress, n is the hardening Plastic index,
In the formula:
σ is the stretching trus stress, and ε is true strain; And:
1), when described pressure head loading unit adopts spherical indenter, the spherical indenter that described different profile pressure heads are two different-diameters, described data processing unit is according to gained spherical indenter penetration hardness H S_D/FTry to achieve material constitutive parameter E, σ by following formula y, n:
E H S _ D / F = k 1 _ D / F ( E σ y ) k 2 _ D / F k 1 _ D / F = α 11 _ D / F n + α 12 _ D / F k 2 _ D / F = α 21 _ D / F n 2 + α 22 _ D / F n + α 23 _ D / F E H S _ D / F = k 3 _ D / F ( W t W e ) 2 + k 4 _ D / F ( W t W e ) + k 5 _ D / F
In the formula: W t/ W eFor being pressed into total work W in the loading of pressing in P-degree of depth h curve continuously in the spherical indenter penetration hardness test tWith elastic unloading merit W eRatio, k 1_D/F, k 2_D/F, k 3_D/F, k 4_D/F, k 5_D/F, α 11_D/F, α 12_D/F, α 21_D/F, α 22_D/F, α 23_D/FBe the undetermined parameter corresponding to different-diameter spherical indenter different tests power.
2), when described pressure head loading unit adopts the circular cone pressure head, the circular cone pressure head that described different profile pressure heads are two different cone angle, described data processing unit is according to gained circular cone pressure head penetration hardness H C_ θTry to achieve material constitutive parameter E, σ by following formula y, n:
E H C _ θ = k 1 _ θ ( E σ y ) k 2 _ θ k 1 _ θ = β 11 _ θ n + β 12 _ θ k 2 _ θ = β 21 _ θ n + β 22 _ θ E H C _ θ = k 3 _ θ ( W t W e ) + k 4 _ θ
In the formula: θ represents the awl half-angle of circular cone pressure head, W t/ W eFor being pressed into total work W in the loading of pressing in P-degree of depth h curve continuously in the circular cone pressure head penetration hardness test tWith elastic unloading merit W eRatio, k 1_ θ, k 2_ θ, k 3_ θ, k 4_ θ, β 11_ θ, β 12_ θ, β 21_ θ, β 22_ θBe the undetermined parameter corresponding to difference awl half-angle conical indenter.
Description of drawings:
Fig. 1 is typical loading of pressing in P-degree of depth h curve map.
Fig. 2 is the synoptic diagram of implementation of the present invention.
Fig. 3 is the loading of pressing in-depth curve figure of embodiment of the invention T225NG titanium alloy sample.
Fig. 4 is this structure of embodiment of the invention T225NG titanium alloy single shaft curve prediction result schematic diagram.
Embodiment
The invention will be further described below in conjunction with accompanying drawing.
The present invention is based on finite element numerical simulation and dimensional analysis method and proposed respectively technical know-how system based on spherical indenter, circular cone pressure head penetration hardness prediction material single shaft constitutive relation.
A) spherical indenter penetration hardness prediction material single shaft constitutive relation
Finite element numerical simulation and dimensional analysis result show spherical indenter penetration hardness H S_D/FWith material constitutive parameter E, σ y, n satisfies following relation:
E H S _ D / F = k 1 _ D / F ( E σ y ) k 2 _ D / F k 1 _ D / F = α 11 _ D / F n + α 12 _ D / F k 2 _ D / F = α 21 _ D / F n 2 + α 22 _ D / F n + α 23 _ D / F E H S _ D / F = k 3 _ D / F ( W t W e ) 2 + k 4 _ D / F ( W t W e ) + k 5 _ D / F - - - ( 4 )
Because the spherical indenter penetration hardness is relevant with test power with the pressure head diameter, so D represents different pressure head diameters and test power with F in the formula (4), correspondingly, parameter
Figure BDA0000137439300000062
Be the spherical indenter penetration hardness value of different scales.W t/ W eFor being pressed into total work W in the loading of pressing in P-degree of depth h curve continuously in the spherical indenter penetration hardness test tWith elastic unloading merit W eRatio.Parameter corresponding to different-diameter spherical indenter different tests power in the formula (4) sees Table 1.
Table 1: the parameter value in the formula (4)
Figure BDA0000137439300000071
In technical solution of the present invention, the spherical indenter penetration hardness of two kinds of different scales of employing just can be doped constitutive parameter E, the σ of measured material or member by formula (4) y, n, and then determine its single shaft constitutive relation by formula (2).
B) circular cone pressure head penetration hardness prediction material single shaft constitutive relation
Finite element numerical simulation and dimensional analysis result show circular cone pressure head penetration hardness H C_ θWith material constitutive parameter E, σ y, n satisfies following relation:
E H C _ θ = k 1 _ θ ( E σ y ) k 2 _ θ k 1 _ θ = β 11 _ θ n + β 12 _ θ k 2 _ θ = β 21 _ θ n + β 22 _ θ E H C _ θ = k 3 _ θ ( W t W e ) + k 4 _ θ - - - ( 5 )
Because the circular cone pressure head has the self similarity feature, thus the be not put to the test influence of power size of circular cone pressure head penetration hardness, only the angle with the circular cone pressure head is relevant, so the middle θ of formula (5) represents the awl half-angle of circular cone pressure head, correspondingly, parameter
Figure BDA0000137439300000073
Be the circular cone pressure head penetration hardness value under the awl half-angle θ.W t/ W eFor being pressed into total work W in the loading of pressing in P-degree of depth h curve continuously in the circular cone pressure head penetration hardness test tWith elastic unloading merit W eRatio.Parameter corresponding to difference awl half-angle circular cone pressure head in the formula (5) sees Table 2.
Table 2: the parameter value in the formula (5)
Awl half-angle θ β 11_θ β 12_θ β 21_θ β 22_θ k 3_θ k 4_θ
60° 0.9299 0.6560 -0.7514 0.8730 3.0877 4.1088
70.3° 2.9748 0.1690 -0.713 0.8448 5.2813 4.7288
In technical solution of the present invention, the circular cone pressure head penetration hardness of two kinds of different angles of employing just can be doped constitutive parameter E, the σ of measured material or member by formula (5) y, n, and then determine its single shaft constitutive relation by formula (2).
Embodiment
Adopting the awl half-angle respectively is that the circular cone pressure head of 60 ° and 70.3 ° carries out penetration hardness to same T225NG titanium alloy sample and tests and ask for its this structure of single shaft curve.Fig. 3 is the loading of pressing in-depth curve of the T225NG titanium alloy sample that obtained by 60 ° and 70.3 ° of conical indenter indentation tests respectively.Flow chart of data processing is: at first by taking out maximum load P in loading of pressing in-depth curve MaxAnd corresponding maximum compression distance h Max, and try to achieve Elastic Contact rigidity S by the unloading segment curve, calculate the degree of depth that contacts of pressure head and sample then
Figure BDA0000137439300000081
Thereby the conical indenter penetration hardness corresponding to different cone angle is
Figure BDA0000137439300000082
The hardness H corresponding to two conical indenters that will obtain afterwards C_ θSubstitution formula (5) is tried to achieve constitutive parameter E, σ y, n, determined the single shaft constitutive relation of T225NG titanium alloy sample at last by formula (2).Fig. 4 is the comparison with this structure curve that is obtained by traditional tension test of this structure of T225NG titanium alloy single shaft curve of technical solution of the present invention prediction.

Claims (3)

1. the method for penetration hardness prediction material single shaft constitutive relation, have the pressure head loading unit, be out of shape in the penetration hardness detection system that detects unit and data processing unit formation, the pressure head loading unit adopts different profile pressure heads to be pressed into measured material, and distortion detects the unit and detects measured material and be out of shape accordingly and be input to data processing unit to obtain constitutive parameter E, the σ of prediction material y, n, and calculate to obtain the single shaft constitutive relation by following formula:
σ = Eϵ σ ≤ σ y σ = σ y ( 1 - n ) E n ϵ p n σ > σ y ,
E is elastic modulus, σ yBe the reference yield stress, n is the hardening Plastic index,
In the formula:
σ is the stretching trus stress, and ε is true strain; And:
1), when described pressure head loading unit adopts spherical indenter, the spherical indenter that described different profile pressure heads are two different-diameters, described data processing unit is according to gained spherical indenter penetration hardness H S_D/FTry to achieve material constitutive parameter E, σ by following formula y, n:
E H S _ D / F = k 1 _ D / F ( E σ y ) k 2 _ D / F k 1 _ D / F = α 11 _ D / F n + α 12 _ D / F k 2 _ D / F = α 21 _ D / F n 2 + α 22 _ D / F n + α 23 _ D / F E H S _ D / F = k 3 _ D / F ( W t W e ) 2 + k 4 _ D / F ( W t W e ) + k 5 _ D / F
In the formula: W t/ W eFor being pressed into total work W in the loading of pressing in P-degree of depth h curve continuously in the spherical indenter penetration hardness test tWith elastic unloading merit W eRatio, k 1_D/F, k 2_D/F, k 3_D/F, k 4_D/F, k 5_D/F, α 11_D/F, α 12_D/F, α 21_D/F, α 22_D/F, α 23_D/FBe the undetermined parameter corresponding to different-diameter spherical indenter different tests power;
2), when described pressure head loading unit adopts the circular cone pressure head, the circular cone pressure head that described different profile pressure heads are two different cone angle, described data processing unit is according to gained circular cone pressure head penetration hardness H C_ θTry to achieve material constitutive parameter E, σ by following formula y, n:
E H C _ θ = k 1 _ θ ( E σ y ) k 2 _ θ k 1 _ θ = β 11 _ θ n + β 12 _ θ k 2 _ θ = β 21 _ θ n + β 22 _ θ E H C _ θ = k 3 _ θ ( W t We ) + k 4 _ θ
In the formula: θ represents the awl half-angle of circular cone pressure head, W t/ W eFor being pressed into total work W in the loading of pressing in P-degree of depth h curve continuously in the circular cone pressure head penetration hardness test tWith elastic unloading merit W eRatio, k 1_ θ, k 2_ θ, k 3_ θ, k 4_ θ, β 11_ θ, β 12_ θ, β 21_ θ, β 22_ θBe the undetermined parameter corresponding to difference awl half-angle conical indenter.
2. the method for a kind of penetration hardness prediction material single shaft constitutive relation according to claim 1 is characterized in that the diameter of the spherical indenter of two different-diameters is respectively 2.5mm and 5mm when adopting spherical indenter.
3. the method for a kind of penetration hardness prediction material single shaft constitutive relation according to claim 1 is characterized in that the awl half-angle of the circular cone pressure head of two different cone angle is respectively 60 ° and 70.3 ° when adopting the circular cone pressure head.
CN 201210041108 2012-02-22 2012-02-22 Method for forecasting uniaxial constitutive relation of material according to press hardness Expired - Fee Related CN102589995B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210041108 CN102589995B (en) 2012-02-22 2012-02-22 Method for forecasting uniaxial constitutive relation of material according to press hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210041108 CN102589995B (en) 2012-02-22 2012-02-22 Method for forecasting uniaxial constitutive relation of material according to press hardness

Publications (2)

Publication Number Publication Date
CN102589995A CN102589995A (en) 2012-07-18
CN102589995B true CN102589995B (en) 2013-09-11

Family

ID=46478939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210041108 Expired - Fee Related CN102589995B (en) 2012-02-22 2012-02-22 Method for forecasting uniaxial constitutive relation of material according to press hardness

Country Status (1)

Country Link
CN (1) CN102589995B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175735B (en) * 2012-12-06 2015-07-08 西南交通大学 Material tensile real constitutive curve testing technology
CN104866635A (en) * 2014-02-21 2015-08-26 广州汽车集团股份有限公司 Dent resistance simulation analysis pressure head modeling method for car body outer cover part outer plate
CN104866634A (en) * 2014-02-21 2015-08-26 广州汽车集团股份有限公司 Shell plate sinking-resistance simulation analysis method of car body outer covering part
CN105716946B (en) * 2016-01-14 2018-07-31 西南交通大学 The assay method of cylindrical tack indentation prediction material single shaft constitutive relation
CN105675419B (en) * 2016-01-14 2018-05-22 西南交通大学 Biconial press-in prediction material single shaft constitutive relation assay method
CN105675420B (en) * 2016-01-14 2018-07-31 西南交通大学 Spheroidal indentation prediction material simple stress-strain stress relation assay method
CN105738238B (en) * 2016-02-24 2018-03-23 浙江工业大学 The fragile material plastic deformation fracture transition critical depth of instrument and the detection method of critical load are included in based on nanometer
CN105784481B (en) * 2016-03-23 2018-06-19 西南交通大学 The method that the compression of disk sample obtains material simple stress-strain stress relation
CN107290215B (en) * 2017-06-23 2019-05-21 中国矿业大学 A kind of prediction technique for coated fabric membrane material viscoelasticity constitutive behavior
CN107870120B (en) * 2017-10-16 2021-04-06 太原理工大学 A most advanced loading device for simulating tunnel country rock is under ore deposit pressure centralized status
CN108132193B (en) * 2017-12-21 2020-06-16 西北工业大学 Method for identifying anisotropic plastic parameters of material based on spherical indentation morphology
CN108254253A (en) * 2018-01-29 2018-07-06 成都微力特斯科技有限公司 Material or component equivalent stress-strain relation assay method
CN108414379B (en) * 2018-03-16 2020-05-15 太原理工大学 Method for extracting metal elastoplasticity parameters through in-situ press-in test
CN108458929B (en) * 2018-03-22 2020-05-12 安徽工业大学 Method for measuring true stress of material
CN108897946B (en) * 2018-06-27 2022-04-29 西南交通大学 Material equivalent stress-strain relation prediction method based on ball and cone integrated pressure head
CN109100220B (en) * 2018-07-10 2021-05-18 成都微力特斯科技有限公司 Test method for obtaining uniaxial stress-strain relation of structural element
CN109446658B (en) * 2018-10-30 2021-09-10 中国矿业大学 Method for determining titanium alloy conical indentation constraint factor and representative strain

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556387A (en) * 2004-01-06 2004-12-22 武汉大学 Portable full digital direct testing universal hardness meter
CN101038247A (en) * 2007-04-06 2007-09-19 西安交通大学 Method for measuring material mechanical performance with double-cone pressure head
CN101578511A (en) * 2006-10-17 2009-11-11 石油检测设备有限公司 Method and device for determining the degree of hardness of semisolid materials
CN101776551A (en) * 2010-02-09 2010-07-14 马德军 Method for testing uniaxial strength mean value of material through instrumented microindentation
CN102147345A (en) * 2010-01-15 2011-08-10 株式会社三丰 Hardness test method, hardness tester, and computer-readable storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556387A (en) * 2004-01-06 2004-12-22 武汉大学 Portable full digital direct testing universal hardness meter
CN101578511A (en) * 2006-10-17 2009-11-11 石油检测设备有限公司 Method and device for determining the degree of hardness of semisolid materials
CN101038247A (en) * 2007-04-06 2007-09-19 西安交通大学 Method for measuring material mechanical performance with double-cone pressure head
CN102147345A (en) * 2010-01-15 2011-08-10 株式会社三丰 Hardness test method, hardness tester, and computer-readable storage medium
CN101776551A (en) * 2010-02-09 2010-07-14 马德军 Method for testing uniaxial strength mean value of material through instrumented microindentation

Also Published As

Publication number Publication date
CN102589995A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
CN102589995B (en) Method for forecasting uniaxial constitutive relation of material according to press hardness
US9702798B1 (en) Method for evaluating fracture toughness using instrumented indentation testing
CN101975704B (en) Method for predicting vibration fatigue performance of viscoelastic material
CN105675419B (en) Biconial press-in prediction material single shaft constitutive relation assay method
CN106124293A (en) Small punch test obtains the method for bill of materials axial stress strain stress relation
CN105675420A (en) Determination method of material's uniaxial stress-strain relation through spherical indentation prediction
CN104165814B (en) Vickers indentation based material elastoplasticity instrumented indentation test method
CN104198313A (en) Residual stress detection method based on instrumented indentation technology
CN108897946A (en) Material equivalent stress-strain relation prediction technique based on ball, the integrated pressure head of cone
CN110455658A (en) A kind of dynamic load mark test method for metal material
CN104655505B (en) Instrumented-ball-pressing-technology-based residual stress detection method
CN101776551A (en) Method for testing uniaxial strength mean value of material through instrumented microindentation
Arunkumar A review of indentation theory
CN112284921A (en) Method for determining uniaxial stress-strain relation of material based on high-temperature hydraulic bulge test sample
Yang et al. Application of small punch test to investigate mechanical behaviours and deformation characteristics of Incoloy800H
CN112816553A (en) Heat-resistant steel aging grade evaluation method based on support vector machine
Zhang et al. A macro-pillar compression technique for determining true stress-strain curves of steels
RU2324918C1 (en) Method of evaluation of critical strain during local sheet stamping
Li et al. Study on mechanical properties and acoustic emission characteristics of metallic materials under the action of combined tension and torsion
RU2553829C1 (en) Method of metal mechanical testing
RU2617798C1 (en) Method for determining metals and alloys ductility
Kharchenko et al. Analysis of the methods for determination of strength characteristics of NPP main equipment metal from the results of hardness and indentation measurements
KR101655566B1 (en) Apparatus for safety assessement of glass materials and evaluation method thereof
CN108254253A (en) Material or component equivalent stress-strain relation assay method
Lu et al. Characterization and modeling of large displacement micro-/nano-indentation of polymeric solids

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130911

Termination date: 20190222