CN102587517A - 一种真空绝热板及其制备和应用 - Google Patents

一种真空绝热板及其制备和应用 Download PDF

Info

Publication number
CN102587517A
CN102587517A CN2012100168785A CN201210016878A CN102587517A CN 102587517 A CN102587517 A CN 102587517A CN 2012100168785 A CN2012100168785 A CN 2012100168785A CN 201210016878 A CN201210016878 A CN 201210016878A CN 102587517 A CN102587517 A CN 102587517A
Authority
CN
China
Prior art keywords
insulating plate
vacuum heat
heat insulating
core
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100168785A
Other languages
English (en)
Other versions
CN102587517B (zh
Inventor
陈惠苏
司坤
刘琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201210016878.5A priority Critical patent/CN102587517B/zh
Publication of CN102587517A publication Critical patent/CN102587517A/zh
Application granted granted Critical
Publication of CN102587517B publication Critical patent/CN102587517B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Thermal Insulation (AREA)
  • Building Environments (AREA)

Abstract

本发明提供了一种真空绝热板及其制备和应用,包括绝热芯材和包裹绝热芯材的膜材,绝热芯材包括纳米级二氧化硅,所述的绝热芯材为纳米级二氧化硅与多尺度的膨胀珍珠岩和短切纤维按质量比为10∶5~30∶1的比例混合复配。所述的纳米级二氧化硅的比表面积为100-400m2/g,所述多尺度的膨胀珍珠岩的松散堆积密度低于350kg/m3,所述的短切纤维长度小于10mm,直径小于20μm。通过将原料混合均匀后装入模具中压制成型,然后取出成型的芯材干燥至恒重后放入由膜材预先制备的袋子中,抽真空至真空度低于0.1Pa后热封得到真空绝热板。真空绝热板强度大,保温效果好,可应用于建筑墙体保温。

Description

一种真空绝热板及其制备和应用
技术领域
本发明主要涉及一种应用于建筑保温材料制备方法。特别涉及一种轻质、阻燃、成本低、保温隔热效果是传统保温材料的5-10倍,可用于建筑行业的真空绝热板的制备方法。
背景技术
随着经济的快速发展和人民生活水平的提高,人们对建筑的需求也越来越高。21世纪是能量消耗的非常大的发展时期,建筑行业的高能耗问题也日趋凸显。1998年实施的《中华人民共和国节约能源法》对建筑节能做出了规定,要求建筑物提高保温隔热性能,减少采暖、制冷、照明的能耗。2005年***发布了第143号部长令《民用建筑节能管理规定》。《民用建筑外保温***及外墙装饰防火暂行规定》(公通字[2009]46号)第二条规定,民用建筑外保温材料采用燃烧性能为A级的材料。2010年,我国建筑使用的能耗约占全国社会终端总能耗的28%,预测20年后,我国建筑能耗占全国社会总能耗的比例将会上升到35%。因此加强对新型材料的研究推动建筑业的可持续发展,具有非常重要的意义。
保温材料最先是在20世纪五十年代产生的,保温材料的广泛应用始于1973年。现代建筑对保温材料的要求越来越高,GB50189-2005规定对于体形系数0.3<体形系数≤0.4的屋面,其传热系数≤0.30,对于传统保温材料,如发泡混凝土(λ=70mW/m·K),其厚度要达到230mm以上。2010年,挪威的建筑墙体的传热系数要求达到0.18W/m2·K,对于传统的保温材料,如矿物棉,其厚度要达到250mm。因此,开发一种新型的材料取代传统保温材料已势在必行。
真空绝热板最早由美国航空航天局提出,德国和瑞士是最先将VIP应用到建筑行业的国家。随后一些组织和科研机构开始探索对VIP不同芯材和膜材进行了研究。Jeffert等(1988),Rusek等(1992)使用玻璃纤维为芯材制备了真空绝热板,并提出纤维的最佳直径为几个微米。由于纤维作为真空绝热板芯材对真空度要求特别高,因此纤维为芯材的真空绝热板当前主要应用于冰箱、食物冷藏等。Vos等(1996),Manini(1999),Malone(1999),Stroobants(2001)等学者以聚合物为芯材制备了真空绝热板,但芯材存在四个缺点:1)真空度要求高;2)发泡剂对环境不利;3)易燃;4)很难达到高的发泡孔隙率。2005年,IEA/ECBCS Annex39对芯材为气相二氧化硅的真空绝热板进行了研究,虽然该真空绝热板的导热系数可以达到4mW/m·K,然而其价格的高昂限制了其应用的广泛性。因此,本专利根据国内外真空绝热板的局限性,制备一种轻质、阻燃、成本低、保温隔热效果是传统保温材料的5-10倍、一种可用于建筑行业的真空绝热板。
发明内容
为了解决上述真空绝热板的局限性,本发明公开了一种真空绝热板及其制备和应用,产品具有轻质、阻燃、成本低、保温隔热效果是传统保温材料的5-10倍的优点,可用于建筑行业。
本发明的技术方案为:一种真空绝热板,包括绝热芯材和包裹绝热芯材的膜材,绝热芯材包括纳米级二氧化硅,所述的绝热芯材为纳米级二氧化硅与多尺度的膨胀珍珠岩和短切纤维按质量比为10∶5~30∶1的比例混合复配。所述的纳米级二氧化硅的比表面积为100-400m2/g,所述多尺度的膨胀珍珠岩的松散堆积密度低于350kg/m3,所述的短切纤维长度小于10mm,直径小于20μm。
所述的纳米级二氧化硅为气相二氧化硅或沉淀二氧化硅中的任意一种或任意两种按一定比例混合。
所述的短切纤维为聚丙烯纤维、玻璃纤维或植物纤维中的任意一种或任意几种的混合物。
所述包裹绝热芯材的膜材为多层聚合物膜、铝箔膜或聚合物与铝箔复合膜中的任意一种。
为施工方便,所述的真空绝热板在膜材最外层可以包覆一层玻璃纤维网格布。
所述的纳米级二氧化硅的粒径为7-40nm,所述的多尺度的膨胀珍珠岩的最大粒径小于0.1mm。
制备所述真空绝热板的方法,将原料混合均匀后装入模具中压制成型,然后取出成型的芯材干燥至恒重后放入由膜材预先制备的袋子中,抽真空至真空度低于0.1Pa后热封得到真空绝热板。
压制成型时所使用的荷载为0.1~1MPa。
所述的真空绝热板作为建筑墙体保温材料的应用。
有益效果:
1所采用纳米级二氧化硅和多尺度的膨胀珍珠岩均是无机不燃材料。其中纳米级二氧化硅导热系数低,极限真空压力高,对真空度的要求不太高;膨胀珍珠岩的松散堆积密度低于350kg/m3,成本低,导热系数低。
2采用纳米级二氧化硅与粒径小于0.1mm的多尺度的膨胀珍珠岩复合,纳米级二氧化硅可以有效填充膨胀珍珠岩粉末颗粒之间的孔隙,进一步降低了气体的传热,有效的降低了的绝热芯材的导热系数。
3采用模压成型不同类型多尺度粉体颗粒,其容重可以根据性能要求而进行人为很好的控制。
4采用纤维质材料掺加到不同类型多尺度粉体颗粒中可以有效的提高材料的韧性,有利于芯材的成型。
5所制备的芯材的抗压强度能够抵抗一个大气压的压力,真空封装后板的平整度好。
6制备工艺简单,节省人力,易于自动化生产,材料成本低。
具体实施方式
一种阻燃、成本低、保温隔热效果是传统保温材料的5-10倍、一种可用于建筑行业的真空绝热板,制备步骤为:
第一步:将纳米级二氧化硅与多尺度膨胀珍珠岩颗粒混合,然后通过一定的方法将粉体材料混合均匀。所述纳米级二氧化硅比表面积为100-400m2/g,所采用的材料可以为气相二氧化硅和沉淀二氧化硅中的一种或两种按一定的比例混合。所述膨胀珍珠岩颗粒松散堆积密度低于350kg/m3,粒径小于0.1mm。
第二步:将混合均匀的粉末掺加一定量的纤维质材料,通过一定的工艺将纤维均匀的分散在混合均匀的多尺度粉末材料中。所述纤维为短切纤维,其长度小于10mm,直径小于20μm。所述纤维可以为一种,也可以为一种以上纤维。
第三步:将第二步均匀混合材料放置在预先制备的模具中,进行模具压制成型,制备出具有一定形状、能承受一个大气压力的板状结构。所使用的荷载大小为0.1-1MPa之间,荷载大小随材料的不同而发生变化。
第四步将第三步制备的芯材进行干燥处理,干燥至恒重,温度为100-300℃,干燥时间随着干燥温度确定。
第五步:将第四步制备出的具有一定形状、能承受一个大气压力的芯材置于预先制备的可阻隔气体渗透的多层结构的膜材三边封口,一边可供芯材放入的袋子中,当真空室的真空度低于0.1Pa,进行内部减压热封,得到了一种成本低、保温隔热效果是传统保温材料的5-10倍、一种可用于建筑行业的真空绝热板。所述的膜材可以是铝塑复合膜,比如由LLDPE、PET和铝复合而成的复合膜。
实施例1
将比表面积为100-400m2/g的纳米级二氧化硅与颗粒松散堆积密度低于350kg/m3的膨胀珍珠岩混合,本实施选用比表面积为200m2/g的纳米级气相二氧化硅和颗粒松散堆积密度为60kg/m3的膨胀珍珠岩,气相二氧化硅的平均粒径为7-40nm,膨胀珍珠岩颗粒的平均粒径<0.01mm。气相二氧化硅和膨胀珍珠的质量比为1∶1,将二者混合均匀,然后添加短切纤维质材料,本实施选用的纤维质材料为聚丙烯纤维,其长度为7-8mm,气相二氧化硅∶膨胀珍珠岩∶聚丙烯纤维=10∶10∶1(质量比)。将掺加纤维的粉体搅拌均匀,然后将混合均匀的材料放入预先制备的模具中,进行加压成型。本实施选用的模具为300mm×300mm×30mm,加压的最大荷载为0.4MPa,保压2mm。然后将制备的芯材放在温度105℃的环境中干燥2小时,测量芯材的容重为205kg/m3。将干燥的芯材放入预先制备的三边封口,一边可供芯材放入、可阻隔气体渗透的多层结构的铝塑复合膜制成的袋子中,当袋内的真空度低于0.1Pa,进行内部减压密封,得到我们所需制备的真空绝热板。采用双板法测试真空绝热板的导热系数为10.1mW/m-K(热板设定温度为35℃,冷板设定温度为15℃)。
实施例2
将比表面积为100-400m2/g的纳米级二氧化硅与颗粒松散堆积密度低于350kg/m3的膨胀珍珠岩混合,本实施选用比表面积为200m2/g的纳米级气相二氧化硅和颗粒松散堆积密度为72kg/m3的膨胀珍珠岩,颗粒的平均粒径为0.03-0.04mm。气相二氧化硅和膨胀珍珠的质量比为1∶1.5,将二者混合均匀,然后添加短切纤维质材料,本实施选用的纤维质材料为玻璃纤维,其长度为7-8mm,气相二氧化硅∶膨胀珍珠岩∶玻璃纤维=10∶15∶1(质量比)。采用实施例1方式,加压的最大荷载为0.45MPa,保压3min。然后将制备的芯材放在温度105℃的环境中干燥2小时,测量芯材的容重为218kg/m3。将干燥的芯材放入预先制备的三边封口,一边可供芯材放入、可阻隔气体渗透的多层结构的袋子中,当袋内的真空度低于0.1Pa,进行内部减压密封。得到我们所需制备的真空绝热板。采用双板法测试真空绝热板的导热系数为14.1mW/m·K(热板设定温度为35℃,冷板设定温度为15℃)。
实施例3
将比表面积为100-400m2/g的纳米级二氧化硅与颗粒松散堆积密度低于350kg/m3的膨胀珍珠岩混合,本实施选用比表面积为200m2/g的纳米级气相二氧化硅,选用颗粒松散堆积密度为326kg/m3的膨胀珍珠岩,气相二氧化硅的平均粒径为7-40nm,膨胀珍珠岩的平均粒径<0.01mm。气相二氧化硅和膨胀珍珠的质量比为1∶2,将二者混合均匀,然后添加短切纤维质材料,本实施选用的纤维质材料为玻璃纤维和木质纤维素,气相二氧化硅∶膨胀珍珠岩∶木质纤维=10∶20∶1(质量比)。采用实施例1方式,加压的最大荷载为0.4MPa,保压5min。然后将制备的芯材放在温度105℃的环境中干燥2小时,测量芯材的容重为360kg/m3。将干燥的芯材放入预先制备的三边封口,一边可供芯材放入、可阻隔气体渗透的多层结构的袋子中,当袋内的真空度低于0.1Pa,进行内部减压密封,得到我们所需制备的真空绝热板。采用双板法测试真空绝热板的导热系数为9.1mW/m·K(热板设定温度为35℃,冷板设定温度为15℃)
上述具体实施不是对本发明保护范围的限定,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型均为等同变化的等效实施例。对本发明的掺量比的变化及加压成型的荷载变化,都是对本发明的复制。根据本发明的发明主旨,具体实施方式可做相应变化。

Claims (8)

1.一种真空绝热板,包括绝热芯材和包裹绝热芯材的膜材,绝热芯材包括纳米级二氧化硅,其特征在于,所述的绝热芯材为纳米级二氧化硅与多尺度的膨胀珍珠岩和短切纤维按质量比为10∶5~30∶1的比例混合复配,所述的纳米级二氧化硅的比表面积为100-400m2/g,所述多尺度的膨胀珍珠岩的松散堆积密度低于350kg/m3,所述的短切纤维长度小于10mm,直径小于20μm;
所述的纳米级二氧化硅为气相二氧化硅或沉淀二氧化硅中的任意一种或两种混合。
2.如权利要求1所述的真空绝热板,其特征在于,所述的短切纤维为聚丙烯纤维、玻璃纤维或植物纤维中的任意一种或任意几种的混合。
3.如权利要求1所述的真空绝热板,其特征在于,所述包裹绝热芯材的膜材为多层聚合物膜、铝箔膜或聚合物与铝箔复合膜中的任意一种。
4.如权利要求1所述的真空绝热板,其特征在于,所述的真空绝热板在膜材外包覆一层玻璃纤维网格布。
5.如权利要求1所述的真空绝热板,其特征在于,所述的纳米级二氧化硅的粒径为7-40nm,所述的多尺度的膨胀珍珠岩的最大粒径小于0.1mm。
6.制备权利要求1~5任一所述的真空绝热板的方法,其特征在于,将原料混合均匀后装入模具中压制成型,然后取出成型的芯材干燥至恒重后放入由膜材预先制备的袋子中,抽真空至真空度低于0.1Pa后热封得到真空绝热板。
7.如权利要求6所述的制备真空绝热板的方法,其特征在于,压制成型时所使用的荷载为0.1~1MPa。
8.权利要求1~5所述的真空绝热板作为建筑墙体保温材料的应用。
CN201210016878.5A 2012-01-19 2012-01-19 一种真空绝热板及其制备和应用 Expired - Fee Related CN102587517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210016878.5A CN102587517B (zh) 2012-01-19 2012-01-19 一种真空绝热板及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210016878.5A CN102587517B (zh) 2012-01-19 2012-01-19 一种真空绝热板及其制备和应用

Publications (2)

Publication Number Publication Date
CN102587517A true CN102587517A (zh) 2012-07-18
CN102587517B CN102587517B (zh) 2014-05-28

Family

ID=46476704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210016878.5A Expired - Fee Related CN102587517B (zh) 2012-01-19 2012-01-19 一种真空绝热板及其制备和应用

Country Status (1)

Country Link
CN (1) CN102587517B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343580A (zh) * 2013-07-11 2013-10-09 陈秀凯 一种利用粉煤灰和稻壳灰制作真空绝热板的方法
CN103422584A (zh) * 2013-08-21 2013-12-04 陈秀凯 利用透气棉条热合封口制作真空绝热保温板的方法
CN105058541A (zh) * 2015-07-28 2015-11-18 福建农林大学 一种软木粉基多孔复合材料及其制备方法和应用
CN107542175A (zh) * 2017-08-10 2018-01-05 滁州银兴新材料科技有限公司 一种高性能超薄型建筑真空绝热板及其制造方法
CN109140124A (zh) * 2017-06-19 2019-01-04 威赫热能技术(上海)有限公司 一种纳米真空绝热板及其制作方法
CN111578045A (zh) * 2020-05-22 2020-08-25 上海海事大学 一种多功能复合真空绝热板及其制作封装方法
CN111943719A (zh) * 2020-08-31 2020-11-17 江南大学 一种絮状纤维粉末混杂芯材及其制备方法
CN113290893A (zh) * 2021-06-25 2021-08-24 天长市康美达新型绝热材料有限公司 一种阻燃型复合绝热板及其制备方法
CN115368048A (zh) * 2022-09-19 2022-11-22 河南建筑材料研究设计院有限责任公司 一种改性膨胀珍珠岩及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308691A (ja) * 2003-04-02 2004-11-04 Nisshinbo Ind Inc 真空断熱材及びその製造方法
CN101149209A (zh) * 2007-10-31 2008-03-26 英德市埃力生亚太电子有限公司 一种真空绝热板用的复合芯材及其制备方法
CN101671158A (zh) * 2008-09-10 2010-03-17 上海船舶工艺研究所 一种二氧化硅绝热体及其制备方法
CN102040390A (zh) * 2010-11-18 2011-05-04 郑州大学 一种SiO2纳米/微米粉复合低维隔热材料及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308691A (ja) * 2003-04-02 2004-11-04 Nisshinbo Ind Inc 真空断熱材及びその製造方法
CN101149209A (zh) * 2007-10-31 2008-03-26 英德市埃力生亚太电子有限公司 一种真空绝热板用的复合芯材及其制备方法
CN101671158A (zh) * 2008-09-10 2010-03-17 上海船舶工艺研究所 一种二氧化硅绝热体及其制备方法
CN102040390A (zh) * 2010-11-18 2011-05-04 郑州大学 一种SiO2纳米/微米粉复合低维隔热材料及制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343580A (zh) * 2013-07-11 2013-10-09 陈秀凯 一种利用粉煤灰和稻壳灰制作真空绝热板的方法
CN103422584A (zh) * 2013-08-21 2013-12-04 陈秀凯 利用透气棉条热合封口制作真空绝热保温板的方法
CN103422584B (zh) * 2013-08-21 2016-01-20 陈秀凯 利用透气棉条热合封口制作真空绝热保温板的方法
CN105058541A (zh) * 2015-07-28 2015-11-18 福建农林大学 一种软木粉基多孔复合材料及其制备方法和应用
CN109140124A (zh) * 2017-06-19 2019-01-04 威赫热能技术(上海)有限公司 一种纳米真空绝热板及其制作方法
CN107542175A (zh) * 2017-08-10 2018-01-05 滁州银兴新材料科技有限公司 一种高性能超薄型建筑真空绝热板及其制造方法
CN111578045A (zh) * 2020-05-22 2020-08-25 上海海事大学 一种多功能复合真空绝热板及其制作封装方法
CN111943719A (zh) * 2020-08-31 2020-11-17 江南大学 一种絮状纤维粉末混杂芯材及其制备方法
CN113290893A (zh) * 2021-06-25 2021-08-24 天长市康美达新型绝热材料有限公司 一种阻燃型复合绝热板及其制备方法
CN115368048A (zh) * 2022-09-19 2022-11-22 河南建筑材料研究设计院有限责任公司 一种改性膨胀珍珠岩及其制备方法和应用

Also Published As

Publication number Publication date
CN102587517B (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
CN102587517B (zh) 一种真空绝热板及其制备和应用
CN102587516A (zh) 一种建筑墙体用真空绝热板及其制备方法
CN101504105B (zh) 玻璃钢整体复合真空绝热板及其制造方法和应用
CN103104044B (zh) 一种墙体真空保温板及其制备方法
CN102850032A (zh) 一种包含纤维材料的防渗水保温墙体材料
CN203319875U (zh) 一种微孔氯氧镁复合防火保温板
CN103664122A (zh) 一种新型轻质多孔保温材料及其制备方法
CN102838374A (zh) 一种外墙用发泡水泥保温材料及其制备方法
CN101333111A (zh) 一种可耐高温、高效保温墙体材料及其制造方法
CN106013482A (zh) 无机复合保温板的制备方法
CN201487482U (zh) 玻璃钢复合真空绝热板
CN103274756A (zh) 一种微粉气泡水泥防火保温板及生产工艺
CN101774207A (zh) 纤维水泥粉煤灰泡沫夹芯板的制备方法
CN110181876A (zh) 纸蜂窝板及其制造方法
CN103626437B (zh) 一种保温板及其制备方法
CN102924036A (zh) 镁基气凝胶复合防火保温板及其制备方法
CN102493564A (zh) 一种建筑外墙用真空保温板及其生产方法
CN103669769A (zh) 一种自调温相变储能保温装饰复合板
CN102807352A (zh) 一种抗紫外线防火节能保温板的制备工艺
CN207808664U (zh) 一种stp用的低成本阻燃膜
CN102400531A (zh) 具有真空囊泡结构的低碳防火保温装饰板及其制备方法
CN102758553B (zh) 一种燕麦仓储装置及方法
CN106801478B (zh) 水泥纤维毡复合真空绝热保温板及其制备方法
CN205688600U (zh) 有机材料复合挤塑保温板
CN205955071U (zh) 一种pu后置竖丝岩棉复合板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140528

Termination date: 20170119