CN102549376A - 应变测量仪和用于对应变测量仪进行空间定位的*** - Google Patents

应变测量仪和用于对应变测量仪进行空间定位的*** Download PDF

Info

Publication number
CN102549376A
CN102549376A CN2010800365886A CN201080036588A CN102549376A CN 102549376 A CN102549376 A CN 102549376A CN 2010800365886 A CN2010800365886 A CN 2010800365886A CN 201080036588 A CN201080036588 A CN 201080036588A CN 102549376 A CN102549376 A CN 102549376A
Authority
CN
China
Prior art keywords
strain gauge
measuring instrument
structural member
contrast
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800365886A
Other languages
English (en)
Other versions
CN102549376B (zh
Inventor
N·茨维格尔
C·博斯凯
S·迪迪埃让
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
European Aeronautic Defence and Space Company EADS France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Aeronautic Defence and Space Company EADS France filed Critical European Aeronautic Defence and Space Company EADS France
Publication of CN102549376A publication Critical patent/CN102549376A/zh
Application granted granted Critical
Publication of CN102549376B publication Critical patent/CN102549376B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0016Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明涉及一种应变测量仪,其包括用于安装一个通过施加的力可双向延长且同时显示其电阻的变化的元件(3)的基板(2),所述元件(3)使自身沿所述测量仪的测量轴延长。依照本发明,所述测量仪包括能够反射入射光束的至少一个对比目标(5、6),所述至少一个对比目标(5、6)置于所述测量仪上预定位置,使得通过检测所述至少一个对比目标(5、6)的位置而预先确定用于由所述应变测量仪(1)进行测量的轴(4)的中心。

Description

应变测量仪和用于对应变测量仪进行空间定位的***
技术领域
本发明涉及一种应变测量仪,其能够以光学的方式检测其在物体表面上的位置和取向。本发明还涉及一种用于为放置于物体(例如航空器结构体)表面上的所述应变测量仪进行空间定位的***和方法。
背景技术
已知的结构性测试在整架航空器上进行,以证明上游由计算机化的模型进行的新的航空结构体(航空器机翼等)的结构性能的预测性的计算是否有效。这些预测性的计算使制造商能够就正在研发的产品做出早期的战略决策。
这些结构性测试通常涉及两种测试:静负载测试和动态疲劳测试。在这些测试中,比如为了再创建在飞行中所遇到的某些负载,致动器产生施加于航空器结构体上的负载。
因此,所述结构体响应这些应力的行为以恒定的方式、用定位于正在被测试的所述结构体的表面上的传感器进行监测。
这些传感器是应变测量仪,也被称为应力仪,每个应变测量仪都对结构体遭受的局部变形进行测量。
因此,这些应变测量仪中的每一个都包括一个在所施加的力的作用下可双向延长同时显示其电阻变化的元件。这个延长发生在沿定义所述测量仪的测量轴的轴的方向。通过测量电阻的这一非常低的变化,便可描绘出正在被测试的结构体在测量仪的测量区域所经受的变形。
然而,对大尺寸结构体作测试需要大量的测量仪,通常多于1,000个,这涉及需要采用多通道和专门的数据采集***。
假设这些测量仪的每一个都是由合格的操作人员手动装配到结构体上的,这样的装配操作特别费力,由于每个测量仪必须要排线和校准,那便更是费力。
每个测量仪必须被放置于结构体上的精确定义的位置,以便对应于所做出的计算和被独特地识别,从而将测量结果和正在被测试的实际结构体的精确的微小(pinpoint)区域相关联。
然而,可以观察到在某些测量仪的定位方面不准确,能够导致例如在这些测量仪的测量轴的角取向上不准确,或者甚至导致它们的实际位置相对于它们的理论位置不准确。
这些不准确导致了剩余偏差从而使得在所计算出的结构性部件的强度和实际的结构性部件的强度之间所进行的比较发生畸变。
因此,使用一个可以很容易地确定测量仪在实际结构体上的确切位置和取向、从而允许实际结构体的行为和通过计算机模拟估计的值之间的比照更准确的***可能是非常有益的。
发明内容
因此,本发明的目的是提供一种应变测量仪,其设计简单、操作方便、经济实用,可以精确记录测量仪在结构体表面上的位置以及其测量轴。
本发明还涉及一种用于对放在诸如航空器结构体之类的物体的外表面上的这些应变测量仪进行空间定位的***和方法,其设计简单、操作方便、性能可靠,可以以测量仪在该物体的表面上的位置进行实时(on the fly)记录。
附图说明
图1示出了本发明的应变测量仪的俯视图。
具体实施方式
为了本发明目的,本发明涉及一种应变测量仪,其包括用于装配一个在所施加的力作用下可双向延长同时显示其电阻变化的元件的基板,该元件使自身沿所述测量仪的测量轴延长。
依照本发明,这个应变测量仪包括能够反射入射光束的至少一个对比目标,所述至少一个对比目标被放置于所述测量仪上的预定位置,使得可能通过检测所述至少一个对比目标的位置来确定所述应变测量仪的中心点和测量轴。
更好地,检测对比目标的位置因此检测测量仪的位置的这一检测操作通过将诸如激光源之类的光源发射光图案投射在这些目标的表面上以及通过检测该光图案由结构体和这些目标的反射来进行。
在该应变测量仪的不同实施例中,本发明还涉及以下特征,这些特征必须被单独地考虑或依据技术上可行的任意组合来考虑:
--所述至少一个对比目标被放置于支持所述应变测量仪的基板的外表面上,
因此所述至少一个对比目标可被直接地集成于所述应变测量仪中。
可选地,这个或这些对比目标可为附加件。仅为了图示说明的目的,这个或这些对比目标可因此被放置于诸如贴片(patch)之类的支撑件上,该支撑件包括一个用于容纳应变测量仪的开口,从而对比目标被定位在该应变测量仪的周围,因此后者与正被测量的物体的表面直接接触。因此这一支撑件在形状上可以是C、U或T形,甚或是方形或矩形,其中央开口与所述应变测量仪的尺寸匹配。
-应变测量仪包括一个单个的对比目标,该对比目标包括至少一个标记元件用以确定该应变测量仪的测量轴,
仅为了图示说明的目的,这一对比目标是含有标记应变测量仪的测量轴的凹槽的盘状物。可选地,这一对比目标可以是椭圆形或呈十字形,椭圆的一个轴或该十字形的一个分支定义应变测量仪测量轴。
因此,应变测量仪的中心点的位置被预先确定且相对于该对比目标的中心点是已知的。
-应变测量仪包括两个对比目标,所述两个对比目标沿测量轴排列成一条直线且被放置于与所述应变测量仪的中心点呈相等距离,
-应变测量仪包括三个未排成一条直线的对比目标,所述三个对比目标被放置于所述基板的外表面上以便允许通过三角测量法确定所述应变测量仪的中心点。所述对比目标之一的形状和/或尺寸不同于其它两个对比目标,且被放置于穿过所述测量仪的中心点的所述测量轴上,
-这些对比目标是圆形后向反射的目标,
-此外,应变测量仪包括识别元件,该识别元件放置在所述基板的外表面上,所述识别元件使所述应变测量仪能够独特地被识别出来。
该识别元件可以是一个标签,该标签包含明确题写的认证码,如条形码,该认证码的特征被输入数据库中,以便将所述应变测量仪的位置与其识别联系起来。更好地,因此该标签在其背面上包含可重新定位的胶面。可选地,该标签可包含一个特定的只对给定频率反应的由特定的合金成分制作的金属边沿。
最后,本发明涉及一种用于对放置于结构性元件的外表面上的应变测量仪进行空间定位的***。
依照本发明,
-所述应变测量仪是如前所述的应变测量仪,
-所述***包含光学测量***,该光学测量***用于确定在该***的观察区域内,在与该结构性元件相联系的坐标系中每个应变测量仪的对比目标的三维位置,以及
-计算单元,其用于基于放置于观察区域中的这些对比目标的三维位置,确定在与所述结构性元件相联系的坐标系中每个测量仪的中心点位置和所述测量仪的取向。
该光学测量***是非接触式测量***。
在本定位***的不同实施例中,本发明还涉及以下特征,这些特征必须被单独地考虑或依据技术上可行的任意组合来考虑:
-该光学测量***还包括用于读取每个所述识别元件的装置,以使测量仪识别元件和在与结构性元件相联系的坐标系中每个测量仪的中心点的位置及其取向相关联,
测量仪的识别元件可包含通过诸如电阻最小的线或预切割线之类的分隔线彼此相连的两个便签(tab),从而便签可被移动并贴附到测量仪的配线上。因此这些便签中的每一个都包含相同的认证码。
-该光学测量***包括自定位的手持式三维测量传感器,该自定位的手持式三维测量传感器包括激光图案投影仪、一对含有至少两个镜头和光电检测器的组合、和至少一个图像处理器。该传感器从每个光电检测器产生二维图像,所述图像处理器用于处理所述一对二维图像。
为本文件的目的,“自定位”意思为***基于所作的观察不断地计算其自身的位置和取向,同时扫描结构性元件的表面的几何形状。为了实现这一目标,所述***使用三角测量原理并集成一传感器,该传感器不仅感测源自激光图案在结构性元件的表面上的反射的二维表面点,还感测源于所做的定位元件的观察的二维定位元件。
更好地,光学测量***含有测量传感器,该测量传感器包括用于至少在所述观察区域内在所述结构性元件的表面上形成光图案的光图案投影仪,用于获得所述光图案在所述结构性元件和一组定位元件的至少一部分的表面上的一对二维图像的一对摄像机,以及测量传感器的坐标系,所述定位元件附着于所述结构性元件,从而这一结构性元件和因此所述结构性元件的所述坐标系可以在空间上被移动,而所述定位元件在所述结构性元件上却是不移动的;图像处理器,其用于从所述一对二维图像中提取源自光图案的两个系列的二维表面点和源自一系列定位元件的所述至少一部分的两个系列的二维定位元件;3D表面点计算器,用于利用所述两个系列的二维表面点来计算测量传感器的所述坐标系中的一组3D表面点;3D定位元件计算器,其用于利用所述两个系列的二维定位元件来计算测量传感器的所述坐标系中的一组3D定位元件;定位元件适配器,其通过将在测量传感器的所述坐标系中计算的所述一组3D定位元件和在结构性元件的所述坐标系中的一组参考的3D定位元件之间的对应的元件进行耦合,经计算机计算转换参数,以便描述测量传感器的所述坐标系和结构性元件的所述坐标系之间的空间转换的特征,所述一组参考的3D定位元件从之前所进行的观察中获取;3D表面点转换器,其利用所述转换参数将在测量传感器的所述坐标系中计算的一组3D表面点转换成在结构性元件的所述坐标系中的一组转换的3D表面点,3D定位元件转换器,其利用所述转换参数将在测量传感器的所述坐标系中计算的一组3D定位元件转换成在结构性元件的所述坐标系中的一组转换的3D定位元件,以及参考定位元件发生器,其用于累积所述一组转换的3D定位元件以提供和增加所述一组参考的3D定位元件。这样的光学测量***在CREAFORM股份有限公司的专利申请WO2006/094409中有所描述。
为了这个目的,加拿大魁北克G6V 6K9 Lévis Bél-air街的CREAFORM股份有限公司的3D手持式激光扫描仪,商品名称为HANDYSCAN 3D,尤其适合于实施本发明。
当然,通过投射光图案以及使得能够确定结构性元件的几何结构而获得的观察区域内的表面点尤其包括每个测量仪的对比目标。
优选地,所述定位元件是所述结构性元件的普通元件或是附加元件。
-光学测量***包括无线发射器,以将所述一对二维图像从所述三维手持式测量传感器传输至所述图像处理器,
-所述计算单元通过一个链接与存储单元连接,该存储单元包括至少一个文件,该文件接收与所述结构性元件相联系的坐标系中的每个测量仪的位置和取向,还接收其电阻的变化的测量结果以及对所述测量仪的潜在识别。
最后,本发明涉及结构性元件的力测量***,所述***包括一系列应变测量仪,所述一系列应变测量仪被放置于所述结构性元件的外表面上,使得每个应变测量仪检测施加到其接触的所述结构性元件的区域上的力作为所述应变测量仪的电阻变化;以及电路单元,其与所述应变测量仪连接且将所述电阻变化转变成输出信号。
依照本发明,
-这些应变测量仪系如前所述的应变测量仪,
-所述***包括光学测量***,所述光学测量***用于在所述坐标系的观察区域内确定每个所述应变测量仪的对比目标在与所述结构性元件联系的坐标系中的三维位置,以及
-计算单元,用于基于放置在所述观察区域中的所述对比目标的三维位置,确定在与所述结构性元件相联系的坐标系中每个测量仪的中心点的位置和所述测量仪的取向。
本发明将参照后附的单个附图更加详细地进行描述,所述附图表示依照本发明的一个优选实施例的应变测量仪的图示;
所述单个附图示出了依照本发明的一个优选实施例的应变测量仪的俯视图。该应变测量仪1包括用于安装一通过所施加的力可被双向延长同时显示其电阻的变化的元件3的基板2,该元件3使自身沿测量仪的测量轴4延长。
基板2可以是柔韧的绝缘基板,且可延展以跟随所经历的结构变形,该基板能够被涂敷在一涂层上用于保护将被延长的元件3。
测量仪1包含两个能够反射入射光束的对比目标5、6,这些对比目标5、6被放置于支撑基板2的外表面上的预定位置,使得能够通过对这些对比目标5、6的位置进行光学检测来确定应变测量仪的理论上的中心点和测量轴4。
这两个对比目标5、6沿测量仪的测量轴4排成一条直线,且以与所述应变测量仪1的理论上的中心点呈相等距离的方式放置,从而检测这些对比目标5、6使得能够很容易地确定该测量仪1的中心点的位置和测量轴。
在这个例子中,这些对比目标5、6是圆形后向反光的目标。
检测对比目标5、6的位置的检测操作优选地通过投射由手持式3D激光扫描仪发射到这些目标表面上光图案以及通过由测量仪1的结构性元件和对比目标5、6来检测该光图案的反射来进行。
此外,测量仪包含放置于基板2的外表面上的识别元件7,该识别元件7使该测量仪1能够被独特地识别。在这个例子中,识别元件7是包含条形码的标签。
安装在手持式3D激光扫描仪上的光学阅读器同时地确定对比目标5、6在与航空器的结构性元件相联系的坐标系中的位置和测量仪1的识别,以便将这些测量结果关联起来,这些测量结果是经手持式3D激光扫描仪的无线发射器被发送到处理单元,该处理单元包括用于处理由手持式3D激光扫描仪所获得的二维图像的图像处理器。
该手持式3D激光扫描仪系是自定位的,优选地使对比目标5、6的位置能够实时被确定。
仅为了图示说明的目的,由该3D激光扫描仪在结构性元件的表面上所投射的光图案可以为十字形。
本发明还涉及一种对放置于结构性元件的外表面上的应变测量仪进行空间定位的方法。这些应变测量仪的每一个都包括用于安装一通过施加的力可被双向延长且同时显示其电阻的变化的元件的基板,该元件使自身沿测量仪的测量轴延长。
这些测量仪每一个还都包含至少一个能够反射入射光束的对比目标,这些对比目标置于每个测量仪的预定位置,使得可能通过检测这些对比目标的位置确定相应的应变测量仪的中心点和测量轴。
坐标系被定义与结构性元件相联系。那么,光学测量***被在该结构性元件的外表面上移动,在该***的观察区域内确定在所述坐标系中每个所述应变测量仪的对比目标的三维位置。
基于放置在所述观察区域内的对比目标的三维位置,确定在与所述结构性元件相联系的坐标系中每个测量仪的中心点的位置以及该测量仪的取向。
更好地,放置于观察区域中的每个应变测量仪的识别元件同时也被确定。

Claims (14)

1.一种应变测量仪,包括用于安装一通过所施加的力能被双向延长且同时显示其电阻的变化的元件(3)的基板(2),该元件(3)沿所述测量仪(1)的测量轴使自身延长,其特征在于,所述应变测量仪包括能够反射入射光束的至少一个对比目标(5、6),所述至少一个对比目标(5、6)被放置于所述测量仪的预定位置,使得能够通过检测所述至少一个对比目标(5、6)的位置来确定所述应变测量仪(1)的测量轴(4)的中心,其中所述至少一个对比目标(5、6)是后向反射的目标。
2.根据权利要求1所述的测量仪,其特征在于,包括一个单个的对比目标(5、6),所述目标包括用于确定所述应变测量仪(1)的测量轴(4)的至少一个标记元件。
3.根据权利要求1所述的测量仪,其特征在于,其包括两个沿所述测量轴(4)成一条直线排列的对比目标(5、6),且以与所述应变测量仪(1)的中心点等距离的方式放置。
4.根据权利要求1所述的测量仪,其特征在于,包括被放置于所述基板(2)的外表面上的三个未排成一条直线的对比目标,以允许通过三角测量法确定所述应变测量仪(1)的中心点,所述对比目标(5、6)中的一个的形状和/或尺寸不同于其它两个对比目标(5、6)且被置于穿过所述测量仪的中心点的所述测量轴(4)上。
5.根据权利要求1-4中任何一项所述的测量仪,其特征在于,所述对比目标(5、6)是圆形后向反射的目标。
6.根据权利要求1-5中任何一项所述的测量仪,其特征在于,还包括被放置于所述基板(2)的外表面上的识别元件(7),所述识别元件(7)使所述测量仪能够被独特地识别。
7.一种对放置于结构性元件的外表面上的应变测量仪进行空间定位的***,其特征在于,
所述应变测量仪为权利要求1-6中任何一项所述的应变测量仪,
所述***包括光学测量***,所述光学测量***用于确定在所述***的观察区域内在与所述结构性元件相联系的坐标系中每个所述应变测量仪的对比目标(5、6)的三维位置,以及
计算单元用于基于被放置于所述观察区域中的所述对比目标(5、6)的三维位置,确定在与所述结构性元件相联系的坐标系中每个测量仪的中心点位置和所述测量仪的取向。
8.根据权利要求7所述的***,其特征在于,所述光学测量***还包括用于读取每个所述识别元件(7)的阅读器,以便将测量仪识别元件和在与所述结构性元件相联系的坐标系中每个测量仪(1)的中心点位置及其取向关联起来。
9.根据权利要求7或8所述的***,其特征在于,所述光学测量***包括自定位手持式三维测量传感器,该自定位手持式三维测量传感器包括激光图案投影仪、一对由至少两个透镜和光电检测器形成的组合、和至少一个图像处理器,该传感器从每个光电检测器产生二维图像,所述至少一个图像处理器用于处理所述一对二维图像。
10.根据权利要求9所述的***,其特征在于,所述光学测量***包括无线发射器,以将所述一对二维图像从所述三维手持式测量传感器传输至所述图像处理器。
11.根据权利要求7-10中任何一项所述的***,其特征在于,所述计算单元通过一个链接与存储单元连接,该存储单元包括至少一个文件,该文件接收在与所述结构性元件相联系的坐标系中每个测量仪的位置和取向,还接收其电阻变化的测量结果以及对所述测量仪的潜在识别。
12.一种对放置在结构性元件的外表面上的应变测量仪进行空间定位的方法,其特征在于,
--所述应变测量仪为权利要求1-6中任何一项所述的应变测量仪,
--坐标系被定义与所述结构性元件相联系,
--在所述结构性元件的外表面上移动光学测量***,在所述***的观察区域内确定每个所述应变测量仪的对比目标(5、6)在所述坐标系中的三维位置,以及
--基于被放置在所述观察区域中的对比目标(5、6)的三维位置,确定在与所述结构性元件相联系的坐标系中每个测量仪的中心点的位置以及所述测量仪的取向。
13.根据权利要求12所述的定位方法,其特征在于,被放置在所述观察区域内的每个所述应变测量仪的识别元件(7)亦同时确定。
14.一种结构性元件的力测量***,所述***包括一系列应变测量仪,所述一系列应变测量仪被放置于所述结构性元件的外表面上,使得每个应变测量仪检测施加到其接触的所述结构性元件的区域的变形作为所述应变测量仪的电阻变化;以及电路单元,其与所述应变测量仪连接且将所述电阻的变化转变成输出信号,其特征在于,
--所述应变测量仪为权利要求1-6中任何一项所述的应变测量仪,
--所述***包括光学测量***,所述光学测量***用于在所述***的观察区域内确定每个所述应变测量仪的对比目标(5、6)在与所述结构性元件相联系的坐标系中的三维位置,以及
--计算单元,用于基于放置在所述观察区域中的所述对比目标(5、6)的三维位置确定在与所述结构性元件相联系的坐标系中每个测量仪的中心点的位置和所述测量仪的取向。
CN201080036588.6A 2009-08-17 2010-08-12 应变测量仪和用于对应变测量仪进行空间定位的*** Expired - Fee Related CN102549376B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0955694 2009-08-17
FR0955694A FR2949152A1 (fr) 2009-08-17 2009-08-17 Jauge de deformation et systeme de localisation spatiale de telles jauges
PCT/FR2010/051708 WO2011020968A1 (fr) 2009-08-17 2010-08-12 Jauge de déformation et système de localisation spatiale de telles jauges

Publications (2)

Publication Number Publication Date
CN102549376A true CN102549376A (zh) 2012-07-04
CN102549376B CN102549376B (zh) 2016-08-17

Family

ID=41478478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080036588.6A Expired - Fee Related CN102549376B (zh) 2009-08-17 2010-08-12 应变测量仪和用于对应变测量仪进行空间定位的***

Country Status (10)

Country Link
US (1) US9200889B2 (zh)
EP (1) EP2467671B1 (zh)
CN (1) CN102549376B (zh)
BR (1) BR112012003736A2 (zh)
CA (1) CA2770597A1 (zh)
ES (1) ES2469851T3 (zh)
FR (1) FR2949152A1 (zh)
IN (1) IN2012DN01294A (zh)
RU (1) RU2596064C2 (zh)
WO (1) WO2011020968A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677531A (zh) * 2015-03-05 2015-06-03 西安电子科技大学 基于混合特征选择算法的飞机机翼载荷实测方法
CN105136345A (zh) * 2015-08-21 2015-12-09 河海大学 一种手持式应力检测仪及其检测方法
CN108463689A (zh) * 2015-11-02 2018-08-28 3D测量***公司 用于对涡轮机,尤其是飞行器涡轮机或喷气发动机,的叶片进行非接触式三维检测的装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9631923B2 (en) * 2014-09-22 2017-04-25 The Boeing Company Real-time non-linear optical strain gauge system
CN104634249B (zh) * 2015-02-06 2017-08-29 南京理工大学 推进剂加注过程中运载火箭运动信号探测定位方法
US9557164B2 (en) 2015-04-15 2017-01-31 General Electric Company Data acquisition devices, systems and method for analyzing strain sensors and monitoring turbine component strain
US9909860B2 (en) 2015-04-15 2018-03-06 General Electric Company Systems and methods for monitoring component deformation
US10697760B2 (en) 2015-04-15 2020-06-30 General Electric Company Data acquisition devices, systems and method for analyzing strain sensors and monitoring component strain
US9932853B2 (en) 2015-04-28 2018-04-03 General Electric Company Assemblies and methods for monitoring turbine component strain
US10641672B2 (en) 2015-09-24 2020-05-05 Silicon Microstructures, Inc. Manufacturing catheter sensors
US10682498B2 (en) 2015-09-24 2020-06-16 Silicon Microstructures, Inc. Light shields for catheter sensors
US10041851B2 (en) * 2015-09-24 2018-08-07 Silicon Microstructures, Inc. Manufacturing catheter sensors
US9953408B2 (en) 2015-11-16 2018-04-24 General Electric Company Methods for monitoring components
US9846933B2 (en) 2015-11-16 2017-12-19 General Electric Company Systems and methods for monitoring components
US10012552B2 (en) 2015-11-23 2018-07-03 General Electric Company Systems and methods for monitoring component strain
CN105424721B (zh) * 2015-12-11 2018-07-13 南京神源生智能科技有限公司 一种金属应变计缺陷自动检测***
US9967523B2 (en) 2015-12-16 2018-05-08 General Electric Company Locating systems and methods for components
US9879981B1 (en) 2016-12-02 2018-01-30 General Electric Company Systems and methods for evaluating component strain
US10132615B2 (en) 2016-12-20 2018-11-20 General Electric Company Data acquisition devices, systems and method for analyzing passive strain indicators and monitoring turbine component strain
US10126119B2 (en) 2017-01-17 2018-11-13 General Electric Company Methods of forming a passive strain indicator on a preexisting component
US10872176B2 (en) 2017-01-23 2020-12-22 General Electric Company Methods of making and monitoring a component with an integral strain indicator
US11313673B2 (en) 2017-01-24 2022-04-26 General Electric Company Methods of making a component with an integral strain indicator
US10345179B2 (en) 2017-02-14 2019-07-09 General Electric Company Passive strain indicator
US20180238755A1 (en) * 2017-02-21 2018-08-23 General Electric Company Methods of Making and Monitoring Components with Integral Strain Indicators
US10502551B2 (en) 2017-03-06 2019-12-10 General Electric Company Methods for monitoring components using micro and macro three-dimensional analysis
US10451499B2 (en) 2017-04-06 2019-10-22 General Electric Company Methods for applying passive strain indicators to components
CN114616306A (zh) 2019-10-31 2022-06-10 雪佛龙奥伦耐有限责任公司 官能化的烯烃低聚物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095013A (ja) * 1995-06-22 1997-01-10 Ishikawajima Harima Heavy Ind Co Ltd 定点目盛付きひずみゲージ
US6724930B1 (en) * 1999-02-04 2004-04-20 Olympus Corporation Three-dimensional position and orientation sensing system
US20080223152A1 (en) * 2005-12-14 2008-09-18 The Boeing Company Methods and systems for using active surface coverings for structural assessment and monitoring
JP2009047501A (ja) * 2007-08-17 2009-03-05 Ricoh Co Ltd 光学式歪測定素子、装置、システムおよび方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1414145A (en) * 1972-05-11 1975-11-19 Vickers Ltd Optical devices
US4123158A (en) * 1975-05-09 1978-10-31 Reytblatt Zinovy V Photoelastic strain gauge
DE4204521C1 (zh) * 1992-02-15 1993-06-24 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
FR2706045B1 (fr) * 1993-06-04 1995-08-11 Espace Ind Controles Cible rétro-réfléchissante et son procédé de fabrication.
DE10038450A1 (de) * 2000-08-07 2002-02-21 Hbm Mes Und Systemtechnik Gmbh Dehnungsmeßstreifen und Verfahren zum Positionieren von Dehnungsmeßstreifen auf einem Dehnungskörper
JP4871352B2 (ja) * 2005-03-11 2012-02-08 クリアフォーム インク. 3次元スキャンの自動参照システム及び装置
EP1914684A1 (en) * 2006-10-17 2008-04-23 Jose Maria De Espona Delgado Identification label containing graphic and/or electromagnetic references for relating a tridimensional shape to a real world object, and method for use thereof
CN102498368B (zh) * 2009-09-18 2016-11-02 伊利诺斯工具制品有限公司 包括光学应变仪的远程位移传感器的装置及其***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095013A (ja) * 1995-06-22 1997-01-10 Ishikawajima Harima Heavy Ind Co Ltd 定点目盛付きひずみゲージ
US6724930B1 (en) * 1999-02-04 2004-04-20 Olympus Corporation Three-dimensional position and orientation sensing system
US20080223152A1 (en) * 2005-12-14 2008-09-18 The Boeing Company Methods and systems for using active surface coverings for structural assessment and monitoring
JP2009047501A (ja) * 2007-08-17 2009-03-05 Ricoh Co Ltd 光学式歪測定素子、装置、システムおよび方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677531A (zh) * 2015-03-05 2015-06-03 西安电子科技大学 基于混合特征选择算法的飞机机翼载荷实测方法
CN104677531B (zh) * 2015-03-05 2017-03-01 西安电子科技大学 基于混合特征选择算法的飞机机翼载荷实测方法
CN105136345A (zh) * 2015-08-21 2015-12-09 河海大学 一种手持式应力检测仪及其检测方法
CN108463689A (zh) * 2015-11-02 2018-08-28 3D测量***公司 用于对涡轮机,尤其是飞行器涡轮机或喷气发动机,的叶片进行非接触式三维检测的装置
CN108463689B (zh) * 2015-11-02 2024-05-07 Dw弗里茨自动化股份有限公司 用于对涡轮机,尤其是飞行器涡轮机或喷气发动机,的叶片进行非接触式三维检测的装置

Also Published As

Publication number Publication date
EP2467671B1 (fr) 2014-03-05
CN102549376B (zh) 2016-08-17
WO2011020968A1 (fr) 2011-02-24
CA2770597A1 (fr) 2011-02-24
RU2012105634A (ru) 2013-10-27
FR2949152A1 (fr) 2011-02-18
BR112012003736A2 (pt) 2016-04-12
US9200889B2 (en) 2015-12-01
RU2596064C2 (ru) 2016-08-27
ES2469851T3 (es) 2014-06-20
IN2012DN01294A (zh) 2015-06-05
EP2467671A1 (fr) 2012-06-27
US20120147384A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
CN102549376A (zh) 应变测量仪和用于对应变测量仪进行空间定位的***
KR101632227B1 (ko) 간섭 측정을 이용한 거리 변화 판단 방법
US10962361B2 (en) Machine geometry monitoring
CN101523154B (zh) 用于确定细长物体的定向参数的装置和方法
EP3100266B1 (en) Positioning device for an optical triangulation sensor
CN102656425A (zh) 利用移动数据的方位和取向确定
JP2014511480A (ja) 対象の位置および移動を測定するシステム
CN101120230A (zh) 薄膜厚度的测量方法和设备
JP2011227081A (ja) 光学式測定システム
CN104180792A (zh) 具有运动补偿的激光投影***及方法
Ehrhart et al. Image-based dynamic deformation monitoring of civil engineering structures from long ranges
CN109855554A (zh) 用于工程车辆机械臂的挠度测量装置及方法
EP2743638A1 (en) An apparatus for optical measurement and/or optical calibration of a position of an object in space
CN103968763A (zh) 光学独立点测量
US20140176935A1 (en) Measuring Method And System For Measuring Positions Of Elements Of A Structure
Korotaev et al. The choice of marks for systems with noncontact position control
US6655215B2 (en) Inverse corner cube for non-intrusive three axis vibration measurement
Franceschini et al. Mobile spatial coordinate measuring system (MScMS) and CMMs: a structured comparison
Harding Large part metrology challenges and lessons learned
Gao et al. Review on hull deformation measurement methods
TW200842307A (en) One optoelectronic 6 degree of freedom measurement system
Nogin et al. Smart image selection algorithm in analysis plane of the optical-electronic angle measuring sensor
Sandwith et al. Laser tracking systems
Metzner et al. Extension of the registration possibilities and determination of the positioning precision of a multi-scale fringe projection system
Nogin et al. Hough transform-based image processing algorithm in the optical-electronic angle measuring device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20170812