CN102545399B - Kilowatt level wireless electric energy transmission method - Google Patents

Kilowatt level wireless electric energy transmission method Download PDF

Info

Publication number
CN102545399B
CN102545399B CN201210064461.6A CN201210064461A CN102545399B CN 102545399 B CN102545399 B CN 102545399B CN 201210064461 A CN201210064461 A CN 201210064461A CN 102545399 B CN102545399 B CN 102545399B
Authority
CN
China
Prior art keywords
frequency
electric energy
multikilowatt
resonance
sinusoidal wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210064461.6A
Other languages
Chinese (zh)
Other versions
CN102545399A (en
Inventor
崔玉龙
范好亮
刘会军
杨利强
陈瑞英
范建波
王锐
李贺迁
朱金华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Long Fu Electrical Equipment Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201210064461.6A priority Critical patent/CN102545399B/en
Publication of CN102545399A publication Critical patent/CN102545399A/en
Application granted granted Critical
Publication of CN102545399B publication Critical patent/CN102545399B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The invention provides a kilowatt level wireless electric energy transmission method, which belongs to the field of wireless electric energy transmission. A kilowatt level wireless electric energy transmission device used by the method comprises a kilowatt level sine wave electric energy transmitter, a kilowatt level electric energy receiver and a frequency controller. By the kilowatt level wireless electric energy transmission method, kilowatt level sine wave generation, kilowatt level wireless electric energy transmission and kilowatt level wireless electric energy reception can be realized, and wireless electric energy sources can be provided for multiple types of equipment, or wireless charge or wireless power supply can be realized. The kilowatt level wireless electric energy transmission method is particularly suitable for special occasions on which wired power supply is inconvenient to perform.

Description

A kind of kilowatt level wireless electric energy transmission method
Technical field
The present invention relates to wireless power transmission field, it is a kind of high-power wireless method of electric energy transfer of moderate distance, be specifically related to a kind of resonant wireless power transmission method of multikilowatt, it can be applicable to, and radio car charges or the occasion of special requirement radio energy, can realize the wireless transmission of multikilowatt power electric energy within the scope of moderate distance.
Background technology
Current nearly all multikilowatt power consumption equipment is all being used tangible medium (as: plain conductor, electric wire) just can carry out electric power Energy Transfer as main connection, even short distance electric power transfer (as: robot, electric automobile), also to connect through power line, make to using electric power as the electric equipment of power, its use is subject to the impact of each charging station or cable power.If use wireless power transmission technology and device, realize and not transmitted by the active power of foreign object or surrounding environment influence, just can reach by wireless transmission means the transmission of electric power, when using these electric equipments, just convenient so.In addition, in some special application places, as inconveniences such as underwater operation, medical embedded equipment, wireless sensor networks, maybe can not use the occasion of wire power supply and all there is very actual using value.
Wireless power transmission mainly contains three kinds of modes at present: induction, and electromagentic resonance formula and electromagnetic radiation formula.Induction, general employing with the primary end of magnetic core with the transformer secondary output end of magnetic core, carries out electrical energy transfer by the close coupling of two magnetic core electromagnetic fields, and the electric energy energy grade of transmission is high, and delivery of electrical energy distance is short, in several cm range; Electromagentic resonance formula, by adopting the magnetic field loose coupling of primary coil and secondary coil to carry out electrical energy transfer, transmission range generally, between several centimetres to tens centimetres, belongs to the delivery of electrical energy of moderate distance, and the energy grade of delivery of electrical energy is higher; Electromagnetic radiation formula, the frequency level of employing is very high, is generally tens MHz, and the distance of transmission can reach meter level, conventionally can transmit tens electric energy to several hectowatts.
Chinese patent application CN200610124129.9 provides a kind of inductive coupled wireless power transfer device, it comprises energy transmitter, contactless transformer and energy receiver, described energy transmitter comprises current rectifying and wave filtering circuit, high-frequency inverter circuit and for generation of the control circuit of proper frequency and pulse width signal, first the power frequency civil power of input produces high voltage direct current supply high frequency inverter circuit through current rectifying and wave filtering circuit, and high-frequency inverter circuit converts electric energy to high-frequency alternating current and outputs to contactless transformer primary side; The primary and secondary magnetic core of contactless transformer is separate, and coil is wound on respectively on corresponding magnetic core; Energy receiver comprises compensating circuit, current rectifying and wave filtering circuit and for controlling the pwm control circuit of the stable output of curtage, the energy that compensating circuit receives contactless transformer secondary end induction coupling forms stable output by over commutation filter circuit and pwm control circuit.But its laser propagation effect is not good.In this patent, because transformer is with magnetic core, so delivery of electrical energy distance is short, can only be in several cm range electric energy transmitting, cannot realize the delivery of electrical energy of moderate distance.
Chinese patent application CN200910166188.6 provides a kind of system that Direct Conductivity contact just can electric energy transmitting that do not need, described system comprises primary unit, at least one second unit separated with described primary unit, and delivery of electrical energy face, when described delivery of electrical energy face is formed and is configured such that proper described system in use, second unit can be placed on described or near described to receive electric energy, wherein: described primary unit has a generating apparatus, be arranged in described delivery of electrical energy face place or be parallel to described delivery of electrical energy face, for generate electromagnetic field on the delivery of electrical energy region of described, described second unit or described in each second unit comprise at least one electric conductor, when described second unit is on described delivery of electrical energy face or when the described delivery of electrical energy face, described described electromagnetic field and described at least one electric conductor coupling that generating apparatus generates, and induce electric current, in described conductor, flow, described delivery of electrical energy region is greater than the region of described being covered by described second unit, described field distribution is on described delivery of electrical energy region, make on the face that second unit is placed on to the arbitrary position in delivery of electrical energy region with at least one gyrobearing of the axle about perpendicular to described or be placed on described when neighbouring along the normal of described by any such position in described delivery of electrical energy region, this second unit can receive the electric energy from described primary unit, and described generating apparatus comprises one or more conducting pieces, for generation of magnetic flux, and comprise be arranged on substantially whole described delivery of electrical energy location or under magnetic material, described magnetic material for be coupled with the magnetic flux being produced by described conducting piece and by described magnetic flux distributions for being parallel to described delivery of electrical energy face, make all there is basic size uniformly on field intensity at described the described electromagnetic field of locating or measuring in the predetermined work direction of relevant position in distance described given distance and the can be applicable to all described position substantially in described delivery of electrical energy region.This patent structure is comparatively complicated, and the electric current in transmission region is little, and the electric energy energy grade of transmission is low, cannot realize powerful delivery of electrical energy within the scope of moderate distance.
In addition, wireless power transmission technology is a kind of non-contact type electric energy transmission technology.Theoretical according to delivery of electrical energy, along with scientific and technological progress and social demand, wireless power transmission technology is greatly developed, and resonant wireless power transmission technology more and more becomes the focus that people pay close attention in recent years, and lot of domestic and foreign scholar is in this problem of research.The research group of the assistant professor Marin Soljacic of department of physics of Massachusetts Institute Technology in 2006, by being separated by, the 60W bulb of 2.16 meters is lighted.The distance of this scheme transmission is distant, but energy grade is lower.
For the needs of more convenient production and actual life, need a kind of equipment or the method that can carry high-power power transmission badly.
Summary of the invention
For the problems referred to above, the present invention proposes a kind of kilowatt level wireless electric energy transmission method, this kilowatt level wireless electric energy transmission device can be realized the sinusoidal wave generation of multikilowatt, the conveying of multikilowatt radio energy, the reception of multikilowatt radio energy.Kilowatt level wireless electric energy transmission device can provide the wireless power energy for plurality of devices, or can be used for wireless charging or wireless power, is specially adapted to the special occasions that is not suitable for powering by wire.
According to technical scheme of the present invention, a kind of kilowatt level wireless electric energy transmission method is provided, the kilowatt level wireless electric energy transmission device of its use comprises the sinusoidal wave power delivery device of multikilowatt, multikilowatt electric energy receiver and frequency controller; The method comprises the following steps:
(1) the sinusoidal wave power delivery device of multikilowatt receives electric energy from electrical network, to multikilowatt electric energy receiver wireless transmission electric energy, between the sinusoidal wave power delivery device of multikilowatt and multikilowatt electric energy receiver, is to contact by mutual inductance;
(2) frequency controller can gather the frequency of the sinusoidal wave power delivery device of multikilowatt and the frequency of multikilowatt electric energy receiver, and according to regulating flow process to regulate the sinusoidal wave power delivery device of multikilowatt or multikilowatt electric energy receiver, thereby make the frequency of the sinusoidal wave power delivery device of multikilowatt and the frequency of multikilowatt electric energy receiver reach resonance state, make described kilowatt level wireless electric energy transmission device reach optimum delivery of electrical energy;
(3) magnetic field that multikilowatt electric energy receiver produces by the sinusoidal wave power delivery device of multikilowatt obtains electric energy, for follow-up load.
Wherein, frequency controller consists of frequency sampling plate one, frequency sampling plate two and logic controller; Frequency sampling plate one is identical with frequency sampling plate two functions, for sine wave signal is converted to square-wave signal; The frequency f s of the sinusoidal wave power delivery device of logic controller metering multikilowatt.Logic controller is by the adjustment to the frequency f r of the frequency f s of the sinusoidal wave power delivery device of multikilowatt and the sinusoidal wave electric energy receiver of multikilowatt, frequency f s and fr are reached unanimity, thereby make wireless electric energy transmission device both sides reach resonance frequency state, realize the optimum transmission of radio energy.
Preferably, logic controller regulates the inductance value of turnable resonator outputting inductance L12 by the relative position of iron core and turnable resonator outputting inductance in A1 and A2 control turnable resonator outputting inductance, by A3, A4, A5, select the connecting and disconnecting of corresponding capacitance switch to regulate the capacitance of turnable resonator output capacitance C12, thereby by the adjusting of L12, C12, change the frequency f s of the sinusoidal wave power delivery device of multikilowatt; By the relative position of iron core and turnable resonator receiving inductance in A6 and A7 control turnable resonator receiving inductance, regulate the inductance value of turnable resonator receiving inductance L22, by A8, A9, A10, select the connecting and disconnecting of corresponding capacitance switch to regulate turnable resonator to receive the capacitance of capacitor C 22, thereby by the adjusting of L22, C22, change the frequency f r of the sinusoidal wave electric energy receiver of multikilowatt.
In described kilowatt level wireless electric energy transmission method, the frequency adjustment logic flow of logic controller is:
The first step: frequency preconditioning is prepared
Second step: frequency logic judgement
The 3rd step: the adjustable device course of action of frequency
The 4th step: warning processing procedure
The 5th step: frequency adjustment finishes.
More preferably, in the preconditioning of first step frequency is prepared,
1) by foreign frequency preconditioning button, carry out procedure Selection; 2) main circuit power is disconnected; 3) signal generator is accessed in loop; 4) changing cell that affects frequency is adjusted to suitable position; 5) set resonance permissible variation frequency range and electric capacity threshold values; 6) two frequencies in acquisition circuit, calculated rate error.
In the judgement of second step frequency logic,
1) when the difference of two frequencies is larger, by turnable resonator electric capacity, regulate coupling; 2) when the difference of two frequencies hour, by turnable resonator inductance, regulate coupling; 3), when the difference of two frequencies is less than resonance permissible variation, think that two frequencies are resonance condition;
4) while having the frequency that is greater than two, can first regulate related device to make outlet side frequency be less than any one frequency of receiver side, and then regulate the frequency of receiver side, make the frequency error of both sides in the scope of resonance error permission.Also can adopt contrary method or adopt to the close control method of intermediate frequency value.
In the adjustable device course of action of the 3rd synchronizing frequency,
1) adjusting to turnable resonator electric capacity: by the difference of two frequencies and the multiple relation of electric capacity threshold values, corresponding electric capacity is regulated; Regulative mode is for selecting corresponding capacitance switch to turn-off or ON Action; 2) adjusting to turnable resonator inductance: when the difference of two frequencies is less than electric capacity threshold values, while being greater than permissible variation again, turnable resonator inductance is regulated simultaneously;
3) adjustable device can be automatic regulative mode or manual adjustments mode.
In the 4th step warning processing procedure,
1) number of establishing capacitance switch is N, when the difference of two frequencies is greater than (2 of electric capacity threshold values n-1), in the time of times, frequency-splitting is too large, frequency overload alarm;
2) when having a plurality of receiver, if the frequency of outlet side cannot be adjusted to while being less than any one receiver side frequency, frequency overload alarm;
3) when moving back of controllable impedance is spacing and enter spacing action, frequency overload alarm.
At the 5th synchronizing frequency, adjust in terminal procedure 1) enter frequency while being less than permissible variation after having frequency alarm or frequency adjustment and adjust terminal procedure; 2) when having warning, device is manually adjusted, make frequency error be less than permissible error; When the frequency error after frequency adjustment is less than the deviation of permission, think in resonance condition in transmitting the state of radio energy.
The invention solves wireless transmission electric energy energy grade problem on the low side within the scope of moderate distance.Kilowatt level wireless electric energy transmission device has frequency controller, can regulate both sides oscillatory regime, make device steady operation in the advantage of optimum resonance operating state, can accurately to multikilowatt electric energy receiver, transmit the large power, electrically energy of multikilowatt, be applied at present radio car charging, the application scenarios such as relatively large mobile electromechanical equipment power supply and other relatively high power load power consumption equipment power supplies.
Accompanying drawing explanation
Fig. 1 circuit diagram;
Fig. 2 kilowatt level wireless electric energy transmission apparatus structure schematic diagram;
Fig. 3 parallel resonance equivalent circuit diagram;
Fig. 4 turnable resonator output capacitance C12 syndeton schematic diagram;
Fig. 5 resonance output winding L11 oscillogram;
Fig. 6 resonance receiving coil L21 oscillogram;
Fig. 7 frequency controller schematic diagram;
Fig. 8 frequency sampling plate schematic diagram;
Signal generator wiring schematic diagram when Fig. 9 has a multikilowatt electric energy receiver
Figure 10 frequency adjustment logic flow schematic diagram;
When Figure 11 has a multikilowatt electric energy receiver, frequency specifically regulates schematic flow sheet;
When Figure 12 has n multikilowatt electric energy receiver, frequency specifically regulates schematic flow sheet;
Figure 13 logic controller master unit wiring schematic diagram;
Figure 14 logic controller expanding element one wiring schematic diagram;
Figure 15 logic controller expanding element two wiring schematic diagrams;
Figure 16 resonance output winding and resonance receiving coil schematic diagram
Embodiment
In the present invention, described kilowatt level wireless electric energy transmission device, consists of the sinusoidal wave power delivery device of multikilowatt, multikilowatt electric energy receiver and frequency controller, can wireless transmission multikilowatt electric power energy, and they occur to contact by mutual inductance.
Circuit diagram of the present invention as shown in Figure 1.The sinusoidal wave power delivery device of described multikilowatt receives electric energy from electrical network, and to described multikilowatt electric energy receiver wireless transmission electric energy, they by mutual inductance, contact occur.The magnetic field that multikilowatt electric energy receiver produces by the sinusoidal wave power delivery device of multikilowatt obtains electric energy, for load.Frequency controller can gather the frequency of the sinusoidal wave power delivery device of multikilowatt and the frequency of multikilowatt electric energy receiver, and according to regulating flow process to regulate the sinusoidal wave power delivery device of multikilowatt or multikilowatt electric energy receiver, thereby make the frequency of the sinusoidal wave power delivery device of multikilowatt and the frequency of multikilowatt electric energy receiver reach resonance state, make described kilowatt level wireless electric energy transmission device reach optimum delivery of electrical energy.
Described kilowatt level wireless electric energy transmission device can be realized the delivery of electrical energy of multikilowatt within the scope of moderate distance.In the present invention, moderate distance scope be referred to as 1cm (centimetre) between 80cm.Use the present invention, can realize at place, 22cm left and right transmission 10KW (kilowatt) electric energy, the present invention preferably uses at 1-60cm, more preferably uses between 5-50cm.Known according to current research and art technology knowledge, if used in shorter distance, laser propagation effect is better, but electromagnetic radiation will be stronger, will greatly to surrounding environment, cause electromagnetic pollution.By experiment, between apart from 10-40cm, use technology of the present invention, not only make the electromagnetic pollution of surrounding environment be controlled under the electromagnetic pollution numerical value of national regulation, can also realize the wireless unobstructed transmission of electric energy.
The sinusoidal wave power delivery device of described multikilowatt, has current source, resonant energy supplementary circuitry and resonant energy output circuit.Resonant energy supplementary circuitry frequency and phase place in accordance with regulations supplements electric energy to resonant energy output circuit; Resonant energy output circuit is comprised of resonance output capacitance, resonance output winding, turnable resonator output capacitance, turnable resonator outputting inductance, resonance output capacitance, resonance output winding, turnable resonator output capacitance, turnable resonator outputting inductance form resonator system, be used for setting the sinusoidal wave power delivery device of multikilowatt frequency, energy exchanges with magnetic field and electric field form respectively in resonance output capacitance, resonance output winding, turnable resonator output capacitance, turnable resonator outputting inductance, produces the resonance current of assigned frequency in resonance output winding; Resonance current in resonance output winding is formed on the alternating magnetic field within the scope of delivery of electrical energy.
Described multikilowatt electric energy receiver, the magnetic field energy of coming for receiving the coupling of resonance output winding; Multikilowatt electric energy receiver receives electric capacity, resonance receiving coil, turnable resonator reception electric capacity and turnable resonator receiving inductance by resonance and forms; Resonance receives electric capacity, resonance receiving coil, turnable resonator reception electric capacity, turnable resonator receiving inductance for setting the frequency of multikilowatt electric energy receiver.
The sinusoidal wave power delivery device of described multikilowatt obtains electric energy by current source from electrical network, and energy is passed to resonant energy supplementary circuitry.Turnable resonator output capacitance and resonance output capacitance in resonant energy output circuit are to be connected in parallel, and turnable resonator outputting inductance and the employing of resonance output winding are connected in series afterwards and resonance output capacitance is connected in parallel; Turnable resonator in multikilowatt electric energy receiver receives electric capacity and resonance reception electric capacity is to be connected in parallel, and turnable resonator receiving inductance receives Capacitance parallel connection with resonance after being connected in series with the employing of resonance receiving coil and is connected.In kilowatt level wireless electric energy transmission device, can there be a plurality of multikilowatt electric energy receivers.
Frequency controller is used for adjusting frequency, and makes the frequency of the sinusoidal wave power delivery device of multikilowatt identical with the frequency of multikilowatt electric energy receiver, in regulation space, makes multikilowatt electric energy receiver receive optimum resonant energy.
In kilowatt level wireless electric energy transmission device, resonance output winding and resonance receiving coil adopt copper pipe (or copper cash) coiling, for single turn or a plurality of single turn parallel-connection structure, in resonance output winding and resonance receiving coil, single-turn circular coil is of a size of 10cm~45cm, turn-to-turn distance be 0.1-5cm (centimetre), resonance output winding and resonance receiving coil are the shapes such as circular, square, polygon; The structure of process simple deformation is within the scope of claim.In kilowatt level wireless electric energy transmission device, the sinusoidal wave power delivery device frequency of multikilowatt and multikilowatt electric energy receiver frequency range be at 50KHZ-1MHZ, the electric energy power bracket 0-30KW of transmission, space length 5-50cm between resonance output winding and resonance receiving coil.
Below in conjunction with accompanying drawing, describe kilowatt level wireless electric energy transmission device of the present invention in detail, as just example, illustrate below, know with those skilled in the art know that, as long as meet the method and system of inventive concept, all fall among the present invention; Additionally, protection scope of the present invention only should be limited to the concrete structure of kilowatt level wireless electric energy transmission device or the design parameter of parts.
Fig. 2 is kilowatt level wireless electric energy transmission apparatus structure schematic diagram.
Kilowatt level wireless electric energy transmission device, consists of the sinusoidal wave power delivery device of multikilowatt, multikilowatt electric energy receiver and frequency controller.In the sinusoidal wave power delivery device of multikilowatt, by current source, from electrical network, obtain electric energy, and energy is passed to resonant energy supplementary circuitry, the output of current source is that P point and Q point and P point and Q point are the input point of described resonant energy supplementary circuitry simultaneously.In kilowatt level wireless electric energy transmission device, can there be a plurality of multikilowatt electric energy receivers.The sinusoidal wave power delivery device of multikilowatt, comprises current source, resonant energy supplementary circuitry and resonant energy output circuit.Resonant energy supplementary circuitry consists of switch element one SW1 and switch element two SW2, and frequency in accordance with regulations and phase place supplement electric energy to resonant energy output circuit; Resonant energy output circuit is comprised of resonance output capacitance C11, resonance output winding L11, turnable resonator output capacitance C12, turnable resonator outputting inductance L12, and C11, L11, C12, L12 jointly form resonator system and set the sinusoidal wave power delivery device of multikilowatt frequency f s.Energy exchanges with magnetic field and electric field form respectively in resonator system, the generation alternating magnetic field of the resonance current in resonance output winding within the scope of delivery of electrical energy.
The sinusoidal wave power delivery device of multikilowatt will obtain electrical energy transfer to resonant energy supplementary circuitry from electrical network through current source.The output of current source is P point and Q point, and P point is connected the input of resonant energy supplementary circuitry with Q point.By the output voltage that regulates P point and Q to order, can regulate the energy size of resonant energy supplementary circuitry output electric energy.By detecting the frequency of resonance output winding L11 both sides in resonant energy output circuit, resonant energy supplementary circuitry is determined frequency and the phase place moment of makeup energy, and energy is ceaselessly carried to resonance receiving coil by resonance output winding.The output of resonant energy supplementary circuitry is connected in T and T2.
Described resonant energy supplementary circuitry is obtained electric energy by P point and Q point from current source, and resonant energy supplementary circuitry comprises switch element one SW1 and switch element two SW2.Resonant energy supplementary circuitry output is T point and T2 point, and switch element one SW1 is connected between P point and T2 point, and switch element two SW2 are connected between P point and T point.The two SW2 alternate turns work of switch element one SW1 and switch element, be nanosecond (ns) level overlapping time, overlapping time of the present invention, scope was 100-450ns.
Resonant energy supplements process: when switch element two SW2 conducting, switch element one SW1 disconnects, and now electric energy directly injects resonant energy output circuit; When switch element one SW1 conducting, switch element two SW2 disconnect, and now electric energy is back to current source through SW1.Switch element SW1 and switch element SW2 turn-on and turn-off have certain overlapping time, guarantee the normal work of current source.
Multikilowatt electric energy receiver, the magnetic field energy of coming for receiving the coupling of resonance output winding, by resonance receive capacitor C 21, resonance receiving coil L21, turnable resonator receives capacitor C 22 and turnable resonator receiving inductance L22 forms, C21, L21, C22, L22 form resonator system and for setting the frequency f r of multikilowatt electric energy receiver.
Resonant energy output circuit is comprised of resonance output capacitance C11, resonance output winding L11, turnable resonator output capacitance C12, turnable resonator outputting inductance L12.C12 in resonant energy output circuit and C11 are connected in parallel, and C12 and C11 are connected between T and T2, and L12 and L11 employing are connected in series afterwards and C11 is connected in parallel, and L12 is connected between T and T1, and L11 is connected between T1 and T2; Multikilowatt electric energy receiver, receives capacitor C 21, resonance receiving coil L21, turnable resonator reception capacitor C 22, turnable resonator receiving inductance L22 and receive frequency control circuit by resonance and forms.Wherein, the C22 in multikilowatt electric energy receiver and C21 are connected in parallel, and C22 and C21 are connected between S1 and S2, and L22 and L21 employing are connected in series afterwards and C21 is connected in parallel, and L22 is connected between S and S1, and L21 is connected between S and S2.
In LC antiresonant circuit, equivalent circuit diagram as shown in Figure 3.If R 1=R ' 1+ R l, parallel circuits resultant admittance
Y = Y L + Y C = 1 R 1 + jω 0 L + 1 R 2 - j 1 ω 0 C = ( 1 R 1 2 + ω 0 2 L 2 + 1 R 2 2 + 1 ω 0 2 C 2 ) - j ( ω 0 L R 1 2 + ω 0 2 L 2 - 1 ω 0 C R 2 2 + 1 ω 0 2 C 2 )
Condition of resonance is: ( ω 0 L R 1 2 + ω 0 2 L 2 - 1 ω 0 C R 2 2 + 1 ω 0 2 C 2 ) = 0 - - - ( 1 )
By formula (1), solved: ω 0 = 1 LC L C - R 1 2 L C - R 2 2 - - - ( 2 )
Formula (2) is actual resonance circular frequency, and from (2): R 1, R 2must be greater than (or being less than) simultaneously simultaneously for the necessary condition of parallel resonance, and only there is R 1=R 2time, resonance circular frequency is only
Due to R 2for capacity loss impedance, R lfor the impedance of inductance coil copper loss, can be similar to constant, and R 1for load reflection equiva lent impedance, R 1loss becomes with load and coupling situation, thereby ω 0always to change.Designed in the present invention frequency controller, frequency controller, by adjusting L12, C12, L22, C22, makes the frequency of the sinusoidal wave power delivery device of multikilowatt and multikilowatt electric energy receiver consistent.
At kilowatt level wireless electric energy transmission device medium frequency controller, can adjust the frequency f s of the sinusoidal wave power delivery device of multikilowatt and the frequency f r of multikilowatt electric energy receiver.Regulating principle is the fixing wherein frequency of a side, regulates opposite side inductance or electric capacity, makes it identical with fixation side frequency, and both can not adjust simultaneously.Can by frequency controller, adjust the frequency f r of multikilowatt electric energy receiver, make it to synchronize with the frequency f s of the sinusoidal wave power delivery device of multikilowatt.In like manner, also can by frequency controller, adjust the frequency f s of the sinusoidal wave power delivery device of multikilowatt, make it to synchronize with the frequency f r of multikilowatt electric energy receiver.When resonance output frequency and resonance receive frequency are when inconsistent, can first regulate turnable resonator electric capacity that two frequencies are approached, then regulate turnable resonator inductance to make it consistent.
Turnable resonator output capacitance and turnable resonator receive electric capacity and can consist of N electric capacity, in the present embodiment, turnable resonator output capacitance C12 is comprised of C121, C122, tri-Capacitance parallel connections of C123, and turnable resonator receives capacitor C 22 and is comprised of three Capacitance parallel connections such as C221, C222, C223.
Turnable resonator output capacitance is identical with principle and structure that turnable resonator receives capacitance adjustment frequency, and the output frequency control circuit of take regulates turnable resonator output capacitance C12 as example explanation frequency adjustment process, and turnable resonator output capacitance C12 syndeton as shown in Figure 4.Turnable resonator output capacitance C12 is comprised of C121, C122, tri-Capacitance parallel connections of C123, and C121, C122, C123 turn on and off switching by K1, K2, K3 respectively.C121 is connected between T and 11, and C122 is connected between T and 12, and C123 is connected between T and 13; K1 be connected in 11 and T2 between, K2 be connected in 12 and T2 between, K3 be connected in 13 and T2 between.Wherein the capacitance of C121 is unit 1, the capacitance of C122 is unit 2, the capacitance of C123 is unit 4, when needs regulate resonance output frequency, only need the connecting and disconnecting state of diverter switch K1, K2, K3 can realize the capacitance that changes C12, the grade of capacitance is 0,1,2,3,4,5,6,7, and then changes the sinusoidal wave power delivery device of multikilowatt frequency.The way that change frequency is held in this power transformation belongs to segment frequence control method, and adjustable scope is relatively large, is conventionally not more than 30%.
The control method of turnable resonator outputting inductance and turnable resonator receiving inductance is similar, turnable resonator outputting inductance and turnable resonator receiving inductance inside are cored, by regulating iron core can realize the change of inductance value with the degree that overlaps of inductance in inductance vertical direction.This inductance variation belongs to continuous regulating frequency method, and the scope of adjusting is less, is conventionally not more than 10%.
As shown in Figure 5, the upper voltage waveform of resonance output winding L11 is high_frequency sine wave, and the upper voltage waveform of the receiving coil of resonance shown in Fig. 6 L21 is also high_frequency sine wave.The voltage waveform same frequency of resonance output winding and resonance receiving coil, amplitude is different.The amplitude of resonance receiving coil voltage waveform and the distance dependent between coil, it is larger that distance more approaches amplitude, and distance is far away, and amplitude is less.
Resonance output winding L11 and resonance receiving coil L21 adopt copper pipe (or copper cash) coiling, for single turn or a plurality of single turn parallel-connection structure, in resonance output winding L11 and resonance receiving coil L21, single-turn circular coil is of a size of 10cm~45cm, turn-to-turn distance is 0.1-5cm, and resonance output winding L11 and resonance receiving coil L21 are the shapes such as circular, square, polygon; The structure of process simple deformation is within the scope of claim.In kilowatt level wireless electric energy transmission device, the frequency f s of the sinusoidal wave power delivery device of multikilowatt and the frequency f r scope of multikilowatt electric energy receiver are at 50KHZ-1MHZ, the electric energy power bracket 0-30KW of kilowatt level wireless electric energy transmission device transmission, space length 5-50cm between resonance output winding and resonance receiving coil.
The electric energy receiving in resonant energy output circuit can be used by supply load.If load R is AC load, can be connected to the position of R in Fig. 2; If load R is DC load, must be after AC/DC rectification supply load R.
The distance (after this, be called " coil-span from ") of 5cm to 50cm is set between resonance output winding and resonance receiving coil.Kilowatt level wireless electric energy transmission device is the device from resonance output winding to resonance receiving coil electric energy transmitting with wireless mode.Because the power grade transmitting is higher, adopt copper pipe coiling.With two coils of copper pipe coiling: a resonance output winding, a resonance receiving coil.
This device be take has in kilowatt level wireless electric energy transmission device a multikilowatt electric energy receiver describe as example, if there are a plurality of multikilowatt electric energy receivers, only needs to increase frequency sampling plate and corresponding adjusting controlled.
Frequency controller consists of frequency sampling plate one, frequency sampling plate two and logic controller, as shown in Figure 7.In the present embodiment, capacitor C 12, C22 consist of three electric capacity respectively.U1 represents the voltage of L11 both sides, U2 represents the voltage of R both sides, A1 represents entering of turnable resonator outputting inductance, A2 represents moving back of turnable resonator outputting inductance, A3 represents the switch of turnable resonator output capacitance one, A4 represents the switch of turnable resonator output capacitance two, A5 represents the switch of turnable resonator output capacitance three, A6 represents entering of turnable resonator receiving inductance, A7 represents moving back of turnable resonator receiving inductance, A8 represents that turnable resonator receives the switch of electric capacity one, and A9 represents that turnable resonator receives the switch of electric capacity two, and A10 represents that turnable resonator receives the switch of electric capacity three.In figure, sequence number does not define particular location, just the description of function.
Frequency sampling plate one is identical with frequency sampling plate two functions, and its function is for to be converted to square-wave signal by sine wave signal.Frequency sampling plate one has two inputs, two outputs, its input is connected in the two ends of resonance output winding L11, for detection of the voltage U 1 of L11 both sides, its output is connected to logic controller, the frequency f s of the sinusoidal wave power delivery device of logic controller metering multikilowatt.Frequency sampling plate two has two inputs, two outputs, and its input is connected in the two ends of load R, and for detection of the voltage U 2 of R both sides, its output is connected to logic controller, the frequency f r of the sinusoidal wave electric energy receiver of logic controller metering multikilowatt.The frequency sampling plate one of take describes as example, and as shown in Figure 8, input is 1 and 2, and output is 3 and 4, and the voltage U 1 at resonance output winding L11 two ends is connected to 1 and 2, and output 3 and 4 is connected to logic controller.U1, after reduction voltage circuit, is connected to freq converting circuit, and the function of freq converting circuit is for to be converted to high-frequency square-wave signal by the high-frequency sine wave signal U1 after step-down; High-frequency square-wave signal passes through frequency dividing circuit again, and frequency dividing circuit will become the square-wave signal of lower frequency after high-frequency square-wave signal frequency reducing, facilitates PLC to gather; The square-wave signal of lower frequency, after signal isolation, is connected to output 3 and 4.The user of frequency dividing circuit logic controller carry out the signals collecting of frequency.
The parameter term of reference of device in frequency sampling plate:
C1 capacitance scope is 10nf-4.7uf, and 100nf is selected in this enforcement;
C2 capacitance scope is 10pf-470pf, and 68pf is selected in this enforcement;
C3 capacitance scope is 10pf-220pf, and 33pf is selected in this enforcement;
R1 Standard resistance range is 100 Ω-500 Ω, and 250 Ω are selected in this enforcement;
R2 Standard resistance range is 47 Ω-470 Ω, and 100 Ω are selected in this enforcement;
R3 Standard resistance range is 47 Ω-470 Ω, and 100 Ω are selected in this enforcement;
R4 Standard resistance range is 47 Ω-470 Ω, and 100 Ω are selected in this enforcement;
R5 Standard resistance range is 47 Ω-470 Ω, and 100 Ω are selected in this enforcement;
R6 Standard resistance range is 470 Ω-47K Ω, and 2.2K Ω is selected in this enforcement;
R7 Standard resistance range is 470 Ω-47K Ω, and 2.2K Ω is selected in this enforcement;
R8 Standard resistance range is 100K Ω-2M Ω, and 680K Ω is selected in this enforcement;
R9 Standard resistance range is 100 Ω-8.2K Ω, and 1.1K Ω is selected in this enforcement;
R10 Standard resistance range is 1K Ω-20K Ω, and 4.7K Ω is selected in this enforcement;
R11 Standard resistance range is 330 Ω-4.7K Ω, and 1K Ω is selected in this enforcement;
R12 Standard resistance range is 330 Ω-4.7K Ω, and 1K Ω is selected in this enforcement;
R13 Standard resistance range is 82K Ω-1M Ω, and 470K Ω is selected in this enforcement;
R14 Standard resistance range is 100 Ω-4.7K Ω, and 470 Ω are selected in this enforcement;
D4-D7 is diode, and IN4148 is selected in this enforcement.
Logic controller regulates the inductance value of turnable resonator outputting inductance L12 by the relative position of iron core and turnable resonator outputting inductance in A1 and A2 control turnable resonator outputting inductance, by A3, A4, A5, select the connecting and disconnecting of corresponding capacitance switch to regulate the capacitance of turnable resonator output capacitance C12, thereby by the adjusting of L12, C12, change the frequency f s of the sinusoidal wave power delivery device of multikilowatt; By the relative position of iron core and turnable resonator receiving inductance in A6 and A7 control turnable resonator receiving inductance, regulate the inductance value of turnable resonator receiving inductance L22, by A8, A9, A10, select the connecting and disconnecting of corresponding capacitance switch to regulate turnable resonator to receive the capacitance of capacitor C 22, thereby by the adjusting of L22, C22, change the frequency f r of the sinusoidal wave electric energy receiver of multikilowatt.
Logic controller is by the adjustment to the frequency f r of the frequency f s of the sinusoidal wave power delivery device of multikilowatt and the sinusoidal wave electric energy receiver of multikilowatt, frequency f s and fr are reached unanimity, thereby make wireless electric energy transmission device both sides reach resonance frequency state, realize the optimum transmission of radio energy.
During frequency adjustment, signal generator needs in place in circuit, and while having a multikilowatt electric energy receiver, signal generator wiring is as Fig. 9.Signal generator one is connected in the two ends of L11 in the sinusoidal wave power delivery device of multikilowatt, and signal generator two is connected between S1 and S2.
The frequency adjustment logic flow schematic diagram of logic controller as shown in figure 10.
The first step: frequency preconditioning is prepared
Second step: frequency logic judgement
The 3rd step: the adjustable device course of action of frequency
The 4th step: warning processing procedure
The 5th step: frequency adjustment finishes
Above five steps is the flow process signal of frequency adjustment logic flow, and each step comprises different movement contents, and partial content is as follows:
In the preconditioning of first step frequency is prepared,
1, by foreign frequency preconditioning button, carry out procedure Selection.
2, main circuit power is disconnected.
3, signal generator is accessed in loop.
4, the changing cell that affects frequency is adjusted to suitable position.
5, set resonance permissible variation frequency range and electric capacity threshold values.
6, two frequencies in acquisition circuit, calculated rate error.
In the judgement of second step frequency logic,
1, when the difference of two frequencies is larger, by turnable resonator electric capacity, regulate coupling.
2, when the difference of two frequencies hour, by turnable resonator inductance, regulate coupling.
3,, when the difference of two frequencies is less than resonance permissible variation, think that two frequencies are resonance condition.
While 4, having the frequency that is greater than two, can first regulate related device to make outlet side frequency be less than any one frequency of receiver side, and then regulate the frequency of receiver side, make the frequency error of both sides in the scope of resonance error permission.Also can adopt contrary method or adopt to the close control method of intermediate frequency value.This link object is to formulate to take which frequency as regulating foundation, thereby determines the direction of the corresponding adjusting of frequency adjustable device.
In the adjustable device course of action of the 3rd synchronizing frequency,
1, the adjusting to turnable resonator electric capacity: by the difference of two frequencies and the multiple relation of electric capacity threshold values, corresponding electric capacity is regulated; Regulative mode is for selecting corresponding capacitance switch to turn-off or ON Action.
2, the adjusting to turnable resonator inductance: when the difference of two frequencies is less than electric capacity threshold values, while being greater than permissible variation again, turnable resonator inductance is regulated simultaneously; Control method is for to enter the relative vertical position of iron core in inductance or move back.
3, adjustable device can be automatic regulative mode or manual adjustments mode.
In the 4th step warning processing procedure,
1, the number of establishing capacitance switch is N, when the difference of two frequencies is greater than (2 of electric capacity threshold values n-1), in the time of times, report frequency-splitting is too large, frequency overload alarm.
2, when having a plurality of receiver, if the frequency of outlet side cannot be adjusted to while being less than any one receiver side frequency, frequency overload alarm.
3, when moving back of controllable impedance is spacing and enter spacing action, frequency overload alarm.
4, other are reported to the police and process.
At the 5th synchronizing frequency, adjust in terminal procedure,
While being conventionally less than permissible variation after having frequency alarm or frequency adjustment, enter frequency and adjust terminal procedure.When having warning, need to manually adjust device, make frequency error be less than permissible error; Frequency error after frequency adjustment is less than the deviation of permission to be thought, radio energy, in resonance condition, can be transmitted efficiently in both sides.
In frequency adjustment logic flow, the above functional descriptions that is described as, does not have the strict step content that indicates, and the particular content of step can regulate as the case may be.
Frequency is adjusted flow process embodiment one: take and only have in this device a multikilowatt electric energy receiver frequency adjustment flow process to be described as embodiment, as shown in figure 11.The frequency of supposing resonant energy output circuit is fs, the frequency of multikilowatt electric energy receiver is fr, K11 (also referred to as output capacitance one switch), K12 (also referred to as output capacitance two switches), K13 (also referred to as output capacitance three switches) are the capacitance switch of C12 (also referred to as output capacitance), and K21 (also referred to as receiving electric capacity one switch), K22 (also referred to as receiving electric capacity two switches), K23 (also referred to as receiving electric capacity three switches) are the capacitance switch of C22 (also referred to as receiving electric capacity).The effect of frequency controller is to make fr substantially equal fs, establishes Δ f=|fr-fs|, and F1, for setting permissible error, thinks during Δ f≤F1 that both sides frequency reaches resonance condition.F2 is for setting electric capacity threshold values, the changing value of frequency while referring to 1 unit of the every variation of switch combination logic of electric capacity.
In Figure 11, select after frequency preconditioning, current source, SW1 and SW2 all can not work, now signal generator 1 and signal generator 2 start to connect and work, again K11, K12, K13, K21, K22, K23 are all disconnected, then L12 (also referred to as outputting inductance) and the inner adjustable iron core of L22 (also referred to as receiving inductance) are all moved to coil outside, now, the frequency of both sides is peak; The highest frequency of both sides is gathered by logic controller through frequency collection plate, first carries out frequency ratio and judge the frequency of which side high, and the frequency higher position of which side regulates the position of iron core in the switch of electric capacity of which side or inductance.Suppose that fs is high, if Δ f≤F1 thinks and do not have deviation, end adjusting; If during Δ f > F2, calculate how many times that Δ f is F2, round numbers, establishing multiple is N1, when N1 is 4,5,6,7, K13 is closed, and when N1 is 2,3,6,7, K12 is closed, when N1 is 1,3,5,7, K11 is closed, and when N1 is greater than 7, frequency surpasses adjustable range and reports to the police; If F2 > Δ f > is F1, regulate the turnable resonator outputting inductance of fs side to carry out frequency adjustment, return frequency comparison after regulating, in inductance, iron core surpasses spacing (enter spacing and move back spacing) alarm.Suppose that fr is high, if Δ f≤F1 thinks and do not have deviation, end adjusting; If during Δ f > F2, calculate how many times that Δ f is F2, round numbers, establishing multiple is N2, when N2 is 4,5,6,7, K23 is closed, and when N2 is 2,3,6,7, K22 is closed, when N2 is 1,3,5,7, K21 is closed, and when N2 is greater than 7, frequency surpasses adjustable range and reports to the police; If F2 > Δ f > is F1, regulate the turnable resonator receiving inductance of fr side to carry out frequency adjustment, return frequency comparison after regulating, in inductance, iron core surpasses spacing (enter spacing and move back spacing) alarm.
Frequency is adjusted flow process embodiment two: when this device has n multikilowatt electric energy receiver, be that embodiment illustrates frequency adjustment flow process, as shown in figure 12.Suppose that the frequency in resonant energy output circuit is fs, have n its frequency of multikilowatt electric energy receiver be respectively fr1, fr2 ..., frn, suppose the capacitance switch that Ks1, Ks2, Ks3 are C12; Suppose that Kr11, Kr12, Kr13 are the capacitance switch of adjustable reception resonant capacitance in the 1st multikilowatt electric energy receiver, Krn1, Krn2, Knr3 are the capacitance switch of adjustable reception resonant capacitance in n multikilowatt electric energy receiver simultaneously.Ls2 is electric energy receiver side turnable resonator outputting inductance, and Lrn2 is n turnable resonator receiving inductance of electric energy receiver side, and resonant energy output electric energy receiver quantity is n, and its structure is identical, and its frequency phase-difference is very little.The effect of frequency controller makes frn substantially equal fs, establishes Δ fn=|frn-fs|, and F1, for setting permissible error, thinks during Δ fn≤F1 that both sides frequency reaches resonance condition.F2 is for setting electric capacity threshold values, the changing value of frequency while referring to 1 unit of the every variation of switch combination logic of electric capacity.
In Figure 12, select after frequency preconditioning, current source, SW1 and SW2 all can not work, now signal generator 1 and signal generator 2 start to connect and work, again by Ks1, Ks2, Ks3, Kr11, Kr12, Kr13 ..., Krn1, Krn2, Krn3 all disconnect, then Ls2 (electric energy outlet side controllable impedance) and the inner iron core of Lrn2 (n controllable impedance of electric energy receiver side) are all moved to coil outside, now the frequency of both sides is peak.All frequencies are gathered by logic controller through frequency collection plate, first regulating Ks1, Ks2, Ks3 and Ls2 to make fs be less than any one frn (regulates after fs, if there is frn to be greater than fs, frequency surpasses adjustable range and reports to the police), it is poor then n electric energy receiver side frequency f rn and fs to be done, i.e. Δ fn=|frn-fs|, n the electric energy receiver frn of take describes as example, if Δ fn≤F1, thinks and do not have deviation, finish to regulate; If during Δ fn > F2, calculate how many times that Δ fn is F2, round numbers, if multiple is Nn, when Nn is 4,5,6,7, Kn3 is closed, when Nn is 2,3,6,7, Kn2 is closed, when Nn is 1,3,5,7, Kn1 is closed, and when Nn is greater than 7, frequency surpasses adjustable range and reports to the police; If F2 > Δ fn > is F1, regulate the interior iron core of the turnable resonator inductance position of n electric energy receiver to carry out frequency adjustment, return frequency comparison after regulating, in inductance, iron core position surpasses spacing (enter spacing and move back spacing) alarm.
Logic controller, as core cell, carries out program composition according to frequency adjustment flow process by PLC, realizes frequency adjustment, and below to take a multikilowatt electric energy receiver be example in explanation.PLC comprises input unit and output unit.Input unit comprises frequency collection, capacitance switch hand push button, and controllable impedance limit switch and manually automatically switching, wherein each capacitance switch arranges a hand push button, and each controllable impedance has into spacing and move back limit switch; Output unit comprises that capacitance switch is opened turn-off to be controlled, the output of controlling and report to the police of the advance and retreat of controllable impedance, and wherein, each capacitance switch is controlled separately, and each controllable impedance is provided with into control and moves back control, in detail as shown in Figure 13,14,15.Automatic/hand button is used for switching frequency regulative mode.When being input as 1, be manual mode, by external capacitive and inductance hand push button, frequency regulated.When being input as 0, be auto state, logic controller automatically adjusts according to program circuit.
The specific embodiment of logic controller: take this device is example with a multikilowatt electric energy receiver, shows that the input signal of logic controller is connected with output signal, as shown in Figure 13, Figure 14, Figure 15.If there are a plurality of multikilowatt electric energy receivers, it can the present embodiment be according to carrying out similar expansion that input signal is connected with output signal.
In Figure 13, input signal: IN1 represents that output frequency counting fs enters PLC by X0 passage and carries out data acquisition; IN2 represents that output frequency counting fr enters PLC by X1 passage and carries out data acquisition; IN3 represents frequency preconditioning selection button, connects X2 terminal; IN4 represents automatic/hand selection button, is connected in X3 terminal; IN5 represents manual frequency-tracking, is connected in X4 terminal; IN6 represents the switch manual adjustments button of turnable resonator output capacitance one, is connected in X5 terminal; IN7 represents the switch manual adjustments button of turnable resonator output capacitance two, X6 terminal; IN8 represents the switch manual adjustments button of turnable resonator output capacitance three, is connected in X7 terminal.Output signal: OUT1 represents by Y0 turnable resonator outputting inductance to enter to control, OUT2 represents to control the setback of turnable resonator outputting inductance is capable by Y1, OUT3 represent by Y2 to turnable resonator receiving inductance enter to control, OUT4 represents to control the setback of turnable resonator receiving inductance is capable by Y3.
In Figure 14, what input signal: IN9 represented turnable resonator outputting inductance enters manual adjustments button, connects X10 terminal; What IN10 represented turnable resonator outputting inductance moves back manual adjustments button, connects X11 terminal; IN11 represents that turnable resonator receives the switch manual adjustments button of electric capacity one, connects X12 terminal; IN12 represents that turnable resonator receives the switch manual adjustments button of electric capacity two, connects X13 terminal; IN13 represents that turnable resonator receives the switch manual adjustments button of electric capacity three, connects X14 terminal; What IN14 represented turnable resonator receiving inductance enters manual adjustments button, connects X15 terminal, and what IN15 represented turnable resonator receiving inductance moves back manual adjustments button, connects X16 terminal.Output signal: OUT5 represents, by terminal Y10, the switch of turnable resonator output capacitance one is switched on and off to control, OUT6 represents, by terminal Y11, the switch of turnable resonator output capacitance two is switched on and off to control, OUT7 represents, by terminal Y12, the switch of turnable resonator output capacitance three is switched on and off to control, OUT8 represents that by terminal Y13, turnable resonator reception electric capacity one being driven into row switches on and off control, OUT9 represents that by terminal Y14, turnable resonator reception electric capacity two being driven into row switches on and off control, OUT10 represents that by terminal Y15, turnable resonator reception electric capacity three being driven into row switches on and off control.
In Figure 15, it is spacing that IN16 represents that turnable resonator outputting inductance enters, and is connected in X20 terminal; It is spacing that IN17 represents that turnable resonator outputting inductance moves back, and is connected in X21 terminal; It is spacing that IN18 represents that turnable resonator receiving inductance enters, and is connected in X22 terminal; It is spacing that IN19 represents that turnable resonator receiving inductance moves back, and is connected in X23 terminal.
In an embodiment, major parameter term of reference:
Switch element SW1 and SW2, can be IGBT or POWER MOSFET, and each switch element can, for only single, also can adopt many parallel connections.It is IRF460 that model is selected in this enforcement, 24 parallel connections;
Resonance output capacitance C11, can be only also many connection in series-parallel for list, parameter area 0.01 μ F-10 μ F, and 0.66 μ F is selected in this enforcement, and withstand voltage is 600V;
Turnable resonator output capacitance C12, parameter area 0.01 μ F-5 μ F, 0.33 μ F is selected in this enforcement, and withstand voltage is 600V;
Resonance outputting inductance L11, parameter area 0.01 μ H-20 μ H, 0.3 μ H is selected in this enforcement;
Turnable resonator outputting inductance L12, parameter area 0.01 μ H-20 μ H, 0.2 μ H is selected in this enforcement;
Resonance receives capacitor C 21, can be only also many connection in series-parallel for list, parameter area 0.01 μ F-10 μ F, and 0.33 μ F is selected in this enforcement, and withstand voltage is 600V;
Turnable resonator receives capacitor C 22, parameter area 0.01 μ F-5 μ F, and 0.33 μ F is selected in this enforcement, and withstand voltage is 600V;
Resonance receiving inductance L21, parameter area 0.01 μ H-20 μ H, 0.6 μ H is selected in this enforcement;
Turnable resonator receiving inductance L22, parameter area 0.01 μ H-20 μ H, 0.3 μ H is selected in this enforcement;
Application example 1
The copper pipe coiling of diameter phi 10 for resonance output winding and resonance receiving coil in this example, coil is square, and resonance output winding and resonance receiving coil are a single-turn circular coil, and the coil length of side is 25cm, coil-span is from being 20cm, and two coil planes are parallel and concentric.8 the 200W bulbs of take are load.In this example, between power converting circuit output PQ, voltage is 150V, and when resonance output winding frequency is 270KHz, bulb is normally luminous, and through-put power reaches 1.6KW.
Application example 2
The copper pipe coiling of diameter phi 10 for resonance output winding and resonance receiving coil in this example, coil is regular hexagon, resonance output winding is 2 single-turn circular coil parallel-connection structures, resonance receiving coil is 2 single-turn circular coil parallel-connection structures, turn-to-turn distance is 0.3cm, the coil length of side is 18cm, and coil-span is from being 24cm, and two coil planes are parallel and concentric.12 the 200W bulbs of take are load.In this example, between power converting circuit output PQ, voltage is 150V, and when resonance output winding frequency is 600KHz, bulb is normally luminous, and through-put power reaches 2.4KW.
Application example 3
The copper pipe coiling of diameter phi 10 for resonance output winding and resonance receiving coil in this example, coil is circular, resonance output winding and resonance receiving coil be as shown in figure 16: resonance output winding is 5 single-turn circular coil parallel-connection structures, and resonance receiving coil is 1 single-turn circular coil.Resonance output winding diameter is 26cm, and turn-to-turn is apart from being 0.4cm, and resonance receiving coil diameter is 27cm, and coil-span is from being 30cm, and two coil planes are parallel and concentric.32 the 200W bulbs of take are load.In this example, between power converting circuit output PQ, voltage is 190V, when resonance output winding frequency is 300KHz, bulb brightness is inadequate, by frequency controller, adjust after turnable resonator receiving inductance, between power converting circuit output PQ, voltage is 190V, and bulb is normally luminous, and wireless transmitted power is 6.4KW.
Application example 4
The copper pipe coiling of diameter phi 10 for resonance output winding and resonance receiving coil in this example, coil is circular, and resonance output winding is 6 single-turn circular coil parallel-connection structures, and resonance receiving coil is 1 single-turn circular coil.Resonance output winding diameter is 24.5cm, and turn-to-turn is apart from being 0.4cm, and resonance receiving coil diameter is 25.5cm, and coil-span is from being 29cm, and two coil planes are parallel and concentric.35 the 200W bulbs of take are load.In this example, between power converting circuit output PQ, voltage is 190V, when resonance output winding frequency is 300KHz, bulb brightness is inadequate, by frequency controller, adjust after turnable resonator output capacitance and turnable resonator outputting inductance, bulb is normally luminous, and electric energy received power reaches 7KW.Now apart from resonance output winding 35cm place, increase again a resonance receiving coil two, after receive frequency control circuit is adjusted turnable resonator receiving inductance and turnable resonator output capacitance, lighting 6 bulbs.
The above; be only the present invention's embodiment preferably, but protection scope of the present invention is not limited to this, is anyly familiar with in technical scope that those skilled in the art disclose in the present invention; the variation that can expect easily or replacement, within all should being encompassed in protection scope of the present invention.This area those skilled in the art are appreciated that in the situation that do not deviate from the spirit and scope of the present invention of claims definition, can in form and details, make various modifications.

Claims (5)

1. a kilowatt level wireless electric energy transmission method, the kilowatt level wireless electric energy transmission device of its use comprises the sinusoidal wave power delivery device of multikilowatt, multikilowatt electric energy receiver and frequency controller; The method comprises the following steps:
(1) the sinusoidal wave power delivery device of multikilowatt receives electric energy from electrical network, to multikilowatt electric energy receiver wireless transmission electric energy, between the sinusoidal wave power delivery device of multikilowatt and multikilowatt electric energy receiver, is to contact by mutual inductance;
(2) frequency controller can gather the frequency of the sinusoidal wave power delivery device of multikilowatt and the frequency of multikilowatt electric energy receiver, and according to regulating flow process to regulate the sinusoidal wave power delivery device of multikilowatt or multikilowatt electric energy receiver, thereby make the frequency of the sinusoidal wave power delivery device of multikilowatt and the frequency of multikilowatt electric energy receiver reach resonance state, make described kilowatt level wireless electric energy transmission device reach optimum delivery of electrical energy;
(3) magnetic field that multikilowatt electric energy receiver produces by the sinusoidal wave power delivery device of multikilowatt obtains electric energy, for follow-up load;
Wherein the frequency adjustment logic flow of logic controller is:
The first step: frequency preconditioning is prepared,
Second step: the judgement of frequency logic,
The 3rd step: the adjustable device course of action of frequency,
The 4th step: warning processing procedure,
The 5th step: frequency adjustment finishes;
Wherein, in the preconditioning of first step frequency is prepared,
1) by foreign frequency preconditioning button, carry out procedure Selection;
2) main circuit power is disconnected;
3) signal generator is accessed in loop;
4) changing cell that affects frequency is adjusted to suitable position;
5) set resonance permissible variation frequency range and electric capacity threshold values;
6) two frequencies in acquisition circuit, calculated rate error;
Wherein, frequency controller consists of frequency sampling plate one, frequency sampling plate two and logic controller; Frequency sampling plate one is identical with frequency sampling plate two functions, for sine wave signal is converted to square-wave signal; Logic controller detects the frequency f s of the sinusoidal wave power delivery device of multikilowatt and the frequency f r of multikilowatt electric energy receiver.
2. kilowatt level wireless electric energy transmission method according to claim 1, wherein logic controller is by the adjustment to the frequency f r of the frequency f s of the sinusoidal wave power delivery device of multikilowatt and multikilowatt electric energy receiver, frequency f s and fr are reached unanimity, thereby make wireless electric energy transmission device both sides reach resonance frequency state, realize the optimum transmission of radio energy.
3. kilowatt level wireless electric energy transmission method according to claim 1, wherein in the adjustable device course of action of the 3rd synchronizing frequency,
1) adjusting to turnable resonator electric capacity: by the difference of two frequencies and the multiple relation of electric capacity threshold values, corresponding electric capacity is regulated; Regulative mode is for selecting corresponding capacitance switch to turn-off or ON Action;
2) adjusting to turnable resonator inductance: when the difference of two frequencies is less than electric capacity threshold values, while being greater than permissible variation again, turnable resonator inductance is regulated simultaneously;
3) adjustable device is automatic regulative mode or manual adjustments mode.
4. kilowatt level wireless electric energy transmission method according to claim 1, wherein in the 4th step warning processing procedure,
1) number of establishing capacitance switch is N, and when the difference of two frequencies is greater than 2N-1 times of electric capacity threshold values, frequency-splitting is too large, frequency overload alarm;
2) when having a plurality of receiver, if the frequency of outlet side cannot be adjusted to while being less than any one receiver side frequency, frequency overload alarm;
3) when moving back of controllable impedance is spacing and enter spacing action, frequency overload alarm.
5. kilowatt level wireless electric energy transmission method according to claim 1, wherein adjusts in terminal procedure at the 5th synchronizing frequency,
1) while being less than permissible variation after having frequency alarm or frequency adjustment, enter frequency and adjust terminal procedure;
2) when having warning, device is manually adjusted, make frequency error be less than permissible error; When the frequency error after frequency adjustment is less than the deviation of permission, think in resonance condition in transmitting the state of radio energy.
CN201210064461.6A 2012-03-13 2012-03-13 Kilowatt level wireless electric energy transmission method Active CN102545399B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210064461.6A CN102545399B (en) 2012-03-13 2012-03-13 Kilowatt level wireless electric energy transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210064461.6A CN102545399B (en) 2012-03-13 2012-03-13 Kilowatt level wireless electric energy transmission method

Publications (2)

Publication Number Publication Date
CN102545399A CN102545399A (en) 2012-07-04
CN102545399B true CN102545399B (en) 2014-10-22

Family

ID=46351588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210064461.6A Active CN102545399B (en) 2012-03-13 2012-03-13 Kilowatt level wireless electric energy transmission method

Country Status (1)

Country Link
CN (1) CN102545399B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565176B (en) * 2012-09-28 2017-01-01 Wow Tech Corp Non-select induction transmission equipment
CN103944277A (en) * 2014-02-27 2014-07-23 广东美的生活电器制造有限公司 Transmission system for wireless energy and method for improving wireless-energy transmission efficiency
CN105137173A (en) * 2015-08-31 2015-12-09 盛世铸成科技(天津)有限公司 Wireless charging frequency monitoring device
CN107093929B (en) * 2017-03-24 2021-10-22 哈尔滨工业大学深圳研究生院 Coupling resonant underwater wireless charging device and method
CN108205857A (en) * 2017-12-05 2018-06-26 西安工程大学 A kind of electrical communication system
FR3077439B1 (en) * 2018-01-31 2020-11-20 Valeo Equip Electr Moteur CONTACTLESS POWER TRANSMISSION DEVICE BY INDUCTIVE RESONANCE COUPLING FOR CHARGING A MOTOR VEHICLE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202034798U (en) * 2011-02-24 2011-11-09 富达通科技股份有限公司 Portable wireless charging device
CN102299570A (en) * 2010-06-24 2011-12-28 海尔集团公司 Wireless transmission system
CN102299548A (en) * 2010-06-24 2011-12-28 海尔集团公司 Electronic device and power supply method thereof as well as wireless power supply system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884712B (en) * 2010-05-14 2015-08-26 株式会社丰田自动织机 Resonance type contactless power supply system and adjust the method for adaptation when resonance type contactless power supply system charges

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299570A (en) * 2010-06-24 2011-12-28 海尔集团公司 Wireless transmission system
CN102299548A (en) * 2010-06-24 2011-12-28 海尔集团公司 Electronic device and power supply method thereof as well as wireless power supply system
CN202034798U (en) * 2011-02-24 2011-11-09 富达通科技股份有限公司 Portable wireless charging device

Also Published As

Publication number Publication date
CN102545399A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102593962B (en) Device for transmitting kilowatt wireless power at moderate distance
AU2017287002B2 (en) System and method for powering on-road electric vehicles via wireless power transfer
CN102611206A (en) Kilowatt-level wireless electric energy transmitting device
Machura et al. A critical review on wireless charging for electric vehicles
CN102545399B (en) Kilowatt level wireless electric energy transmission method
JP6140220B2 (en) Wireless power transmission in electric vehicles
CN103595109B (en) A kind of electric automobile mobile charging method and apparatus
CN102882286B (en) Electric field coupling-based wireless power transmission system
KR20130084619A (en) Wireless power transmitter and wireless power receiver and method for controlling each thereof
EP2985868B1 (en) Power supply apparatus and non-contact power supply system
CN108808875B (en) Constant-current and constant-voltage wireless charging system and wireless charging method suitable for battery characteristics
CN104578236A (en) Energy conversion system, recharging assembly and methods for transmitting and receiving associated data
CN110311476A (en) Intelligent wireless charging device for mobile terminal and control method thereof
CN106911195A (en) A kind of battery truck with wireless charging device
CN214255869U (en) Relay coil type multi-load wireless power transmission system with constant output characteristic
KR101809295B1 (en) Wireless power transmitter and wireless power receiver and method for controlling each thereof
CN206211626U (en) Coupled resonance wireless charging portable power source based on frequency-tracking
CN108638893B (en) Unmanned aerial vehicle charging system based on transmission tower
CN111711284A (en) Remote power supply system
CN112564311A (en) Relay coil type multi-load wireless power transmission system with constant output characteristic
EP3478528B1 (en) System and method for powering on-road electric vehicles via wireless power transfer
CN106414156A (en) Inductive charging device for an electric vehicle
CN212909120U (en) Remote power supply system
Valtchev et al. A wireless energy transceiver based on induction heating equipment
CN203445702U (en) Wireless charging equipment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170630

Address after: Jinxiu street, 071051 Hebei city of Baoding province No. 677 Torch Industrial Park No. 2 South unit layer

Patentee after: Hebei Long Fu electrical equipment Co., Ltd.

Address before: Jinxiu street 071051 Hebei city of Baoding province No. 677 Torch Industrial Park No. 2 South unit layer

Patentee before: Cui Yulong

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180122

Address after: 215615 Jiangsu Province, Zhangjiagang City Tangqiao town branch road, Dongcheng Technology Park A building two floor West

Patentee after: Suzhou Mingyang Intelligent Technology Co., Ltd.

Address before: Jinxiu street, 071051 Hebei city of Baoding province No. 677 Torch Industrial Park No. 2 South unit layer

Patentee before: Hebei Long Fu electrical equipment Co., Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191231

Address after: 071051 general workshop 1-01, No. 2, Torch Industrial Park, No. 677, Jinxiu street, Baoding City, Hebei Province

Patentee after: Hebei Long Fu electrical equipment Co., Ltd.

Address before: 215615 Jiangsu Province, Zhangjiagang City Tangqiao town branch road, Dongcheng Technology Park A building two floor West

Patentee before: Suzhou Mingyang Intelligent Technology Co., Ltd.