CN102534383B - 高韧性海洋工程用钢板及其制造方法 - Google Patents

高韧性海洋工程用钢板及其制造方法 Download PDF

Info

Publication number
CN102534383B
CN102534383B CN2012100520115A CN201210052011A CN102534383B CN 102534383 B CN102534383 B CN 102534383B CN 2012100520115 A CN2012100520115 A CN 2012100520115A CN 201210052011 A CN201210052011 A CN 201210052011A CN 102534383 B CN102534383 B CN 102534383B
Authority
CN
China
Prior art keywords
steel plate
rolling
steel
temperature
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2012100520115A
Other languages
English (en)
Other versions
CN102534383A (zh
Inventor
狄国标
王彦锋
麻庆申
沈钦义
杨永达
姜中行
杨春卫
王文军
王龙和
张苏渊
白学军
何元春
吴斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shougang Group Co Ltd
Original Assignee
Shougang Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shougang Corp filed Critical Shougang Corp
Priority to CN2012100520115A priority Critical patent/CN102534383B/zh
Publication of CN102534383A publication Critical patent/CN102534383A/zh
Application granted granted Critical
Publication of CN102534383B publication Critical patent/CN102534383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

一种高韧性海洋工程用钢板及其制造方法,明属于海洋工程用钢技术领域。化学成分重量百分数为:C 0.03-0.08%,Si 0.10-0.30%,Mn 1.0-1.60%,Alt 0.03-0.04%,Nb 0.03-0.06%,V 0.05-0.09%,Ti 0.010-0.02%,Mo 0.1-0.4%,Ni 0.1-0.4%,Cu 0.1-0.4%,P<0.01%,S<0.005%,Nb+V+Ti≤0.12%,其余为Fe和不可避免杂质。通过添加少量Ni,并采用合理的控轧控冷工艺,保证钢板低温韧性,省略热处理工艺,降低生产成本,所得10-50mm钢板具有良好的强塑性、可焊性、抗层状撕裂性能以及落锤等综合力学性能优异;并且,工艺简单,可广泛应用于固定式、自升式以及半潜式海洋平台的关键部位。

Description

高韧性海洋工程用钢板及其制造方法
技术领域
本发明属于海洋工程用钢技术领域,特别是涉及一种高韧性海洋工程用钢板及其制造方法,成本低、塑性强、焊接性、抗层状撕裂以及落锤等综合力学性能优良。
背景技术
随着我国对石油等不可再生资源的需求不断增长,海洋成为满足石油需求的希望所在。海洋开发进程不断加快,海洋油气业异军突起,年均增长率达到32.3%,迅速成长为中国海洋经济的支柱产业。海洋石油是我国未来二十年能源战略的重点。
由于石油天然气开发由陆地向浅海直至温度在-40~-60℃的寒冷地带推进,为保证海洋平台经受住冰块等飘浮物的撞击作用,要求海洋平台结构用钢具有良好的低温韧性。而自升式平台和半潜式平台等高等级海洋平台对超高强海洋工程用钢的需求量日益增多,当自升式平台的桩腿采用低级别钢板容易造成桩腿升起时,重心提高,平台稳定性降低,因此有必要提高强度,减轻桩腿的重量,降低重心,保证平台安全。
海洋平台为大型焊接结构设备,焊接部位多,焊接性能优劣直接影响到焊接效率。提高焊接线能量,免除焊后热处理对于缩短海洋平台的制造周期和降低成本具有重要意义。海洋平台用钢要求厚度方向有良好的抗层状撕裂性能,而层状撕裂在外观上没有任何迹象,现有的无损检测手段又难以发现,即使能判断结构中有层状撕裂,也很难修复,造成巨大的经济损失。因此,保证海洋平台用钢具有良好的抗层状撕裂性能是必要的。研发低成本高韧性海洋平台用厚板具有重要现实意义。
公开号为CN1218115A发明专利提出铜硼系低碳及超低碳贝氏体高强钢的生产方法,但其厚度较低仅为6-16mm,并未研究焊接性能等性能。
公开号为CN101165202A发明专利提出具有高焊接热影响区韧性的高强钢及其制造方法,其生产工艺为TMCP+回火工艺,增加了生产工序,成本增加。
公开号为CN101812642A发明专利提出一种超细晶贝氏体高强钢及其制造方法,其强度较高,达到690MPa,但低温韧性较低,仅能满足-20℃,未研究层状撕裂性能。
公开号为CN101818304A和CN101255528A发明专利提出一种超大线能量焊接高强钢及以及超低温韧性优异的含铌钢板,但其屈服强度分别为460MPa和480MPa,强度级别较低。
公开号为CN101984119A以及CN101845597发明专利提出的专利强度级别达到690MPa,但其生产工艺均为调质,热处理工艺增加了生产成本。
公开号为CN101781742A发明专利提出了采用TMCP工艺生产超高强度和低温冲击韧性的中厚板钢,其工艺简单,强度级别达到550MPa,-60℃冲击大于37J,但是其添加了Cr元素,成本增加,而且其厚度为18~40mm,厚度较薄,未研究焊接、抗层状撕裂等海洋工程用钢需要的性能。
公开号为CN101418417A发明专利提出宽厚规格高强度船板钢的及生产工艺,但其强度级别较低,为390MPa。
公开号为CN101705434A发明专利提出具有超高强度和冲击韧性的船板钢及制备方法,钢板屈服强度为620MPa,抗拉强度为720-890MPa,-60℃冲击功大于41J,但其Cu、Cr、Mo、Ni含量较高并采用淬火和回火工艺,成本较高。
公开号为CN101906591A和CN101775559A发明专利提出一种超高强船板钢及其生产方法。其Re>550MPa,Rm>670MPa,伸长率>20%,-60℃冲击功>60J或200J,Z向断面收缩率>35%,但其采用TMCP+回火工艺,并且Cu、Cr、Mo、Ni含量较高,生产成本较高。
发明内容
本发明的目的在于提供一种高韧性海洋工程用钢板及其制造方法,钢板的厚度范围10-50mm;采用TMCP工艺技术生产高强度高韧性、易焊接并具有良好抗层状撕裂性能的海洋工程用钢,满足了目前国内市场对高等级海工用钢的需求。
本发明的海洋工程用钢板的成分重量百分含量为:C 0.03-0.08%,Si0.10-0.30%,Mn1.0-1.60%,Alt0.03-0.04%,Nb0.03-0.06%,V0.05-0.09%,Ti0.010-0.02%,Mo0.1-0.4%,Ni0.1-0.4%,Cu0.1-0.4%,P<0.01%,S<0.005%,Nb+V+Ti≤0.12%,其余为Fe和不可避免杂质。
尽量采用宽铸坯,降低展宽比(展宽比≤1.6),严格控制终冷温度,生产钢板厚度规格为10~50mm,钢板微观组织为块状铁素体、针状铁素体和少量珠光体。
性能指标为:屈服强度≥500MPa,抗拉强度610-770MPa,延伸率≥18%,-60℃的1/4处和心部常规冲击功均值≥100J,-40℃时效冲击功超过200J的钢板,Z向断面收缩率超过35%。
成分设计特点:严格控制钢水纯净度,降低杂质元素对力学性能的不利影响,保证P低于0.01%,S低于0.005%;严格控制铸坯内部质量,要求铸坯低倍检验中心偏析低于C类1.0,针对海洋工程用钢对低温韧性要求较高,采用低碳和低碳当量的成分设计,C含量控制在0.06%以下,在提高韧性的基础上保证焊接性能;添加少量Ni进一步提高低温韧性,利用微合金元素Nb、V、Ti的细晶强化和析出强化作用以及Mn的固溶强化作用提高强度,弥补低碳导致的钢板强度不足的问题;添加Mo元素抑制铁素体相变,促进针状铁素体相变,保证强韧性。
其中,各化学成分及含量在本发明中的作用是:
C 0.03-0.08%:碳是钢中的主要元素,对钢板强塑性、韧性以及焊接性能产生直接影响。提高碳含量容易导致强度增加而低温韧性下降,焊接接头性能降低,而碳含量过低则导致冶炼困难,控制难度增加,也利于钢板强度满足要求。为保证厚规格钢板的心部低温韧性,碳含量定为0.03-0.08%。
Si 0.10-0.30%:硅为炼钢脱氧的必要元素,其作用是强烈抑制和延缓过冷奥氏体的碳化物分解,提高奥氏体稳定性,促进针状铁素体,提高钢板强度,过低则影响低温韧性。
Mn 1.0-1.60%:锰的成本低廉,能增加钢的强韧性和硬度,是强烈稳定奥氏体的元素。通过Mn的固溶强化作用有利于保证钢板的强度,改善焊接热影响区组织。
P≤0.01%,S≤0.005%:由于磷和硫是钢中有害元素,对塑性、低温韧性以及焊接性能带来不利影响。为保证钢板的综合力学性能,严格控制S、P含量低于一定水平。
Nb0.03-0.06%:Nb作为重要的微合金元素之一,在控轧过程中未溶粒子阻止加热时奥氏体晶粒粗化,Nb在位错、亚晶界、晶界上应变诱导析出碳氮化物,抑制了奥氏体的再结晶,使再结晶过程在高温区进行;另一方面加大了未再结晶区的温度范围,从而实现了高温控制轧制,降低了轧制力,在相变前对奥氏体进行多道次的变形积累,为细化铁素体晶粒创造条件,最终保证钢板的强塑性和低温韧性,而且细小弥散的析出物有利于提高钢板强度。
V0.05-0.09%:微合金元素V在层流冷却过程中和层流冷却后的细小析出物有利于提高钢板强度,而对低温韧性的不利影响较低。
Ti0.010-0.02%:微量的Ti在凝固后析出的TiN较为细小,加热阶段能够有效阻止奥氏体晶粒长大,有利于保证奥氏体晶粒细小均匀。Ti的氮化物颗粒可抑制焊接热影响区晶粒长大,改善焊接接头的低温韧性。Ti控制在0.010-0.02%,过高的Ti损害焊接性能。
Mo0.1-0.4%:Mo的添加抑制了多边形铁素体相变,保证钢板的最终组织为针状铁素体,有利于提高强度。
Ni0.1-0.4%:Ni可降低位错运动阻力,使应力松弛,提高钢的低温韧性。Ni对多边形铁素体相变抑制作用较强,M/A岛含量增加,提高钢板强度,另外,Ni可以防止含Cu铸坯加热轧制过程中产生裂纹。
Cu0.1-0.4%:Cu在位错、晶界以及亚晶界上的弥散析出物有利于提高钢板的强度,在一定程度上Cu可以提高钢板耐腐蚀性能。
本发明的生产方法包括高洁净钢冶炼-铁水脱硫-转炉顶底复合吹炼-真空处理-铸坯-板坯加热-轧制-水冷;在板坯加热-粗轧-精轧的工艺中控制的技术参数如下:
1、板坯加热阶段,为了使微合金元素充分溶解,同时保证一定的奥氏体晶粒度,将钢坯加热到1150~1200℃,保证钢坯在炉时间250~400min,既保证钢坯加热充分又抑制奥氏体晶粒过分长大;
2、轧制分两阶段轧制,即再结晶区轧制和未再结晶区轧制;再结晶区轧制阶段开轧温度950~1100℃,再结晶区轧制道次压下率至少保证两道次稳定20~35%,中间待温厚度控制在成品厚度的2.0~4.0倍,控制未再结晶区开轧温度≤910℃,终轧温度在790~840℃。再结晶轧制阶段采用高温低速大压下,保证至少两道次压下率为20~35%,保证钢板心部的晶粒得以细化,有利于钢板厚度方向上组织的均匀;
3、水冷工艺:为保证轧后钢板强度以及板形,严格控制层流冷却的终冷温度和冷却速度;温度过低影响板型,过高则影响钢板强度;针对不同厚度规格,终冷温度控制为400~600℃,冷却速度控制在10~15℃/s;
生产工艺优点在于:选用较大宽度铸坯,提高再结晶区轧制阶段压下率,保证至少两道次压下率为20~35%,保证抗层状撕裂性能和低温韧性;合理控制控轧控冷工艺保证钢板强度和低温韧性,提高水冷速度,降低终冷温度,保证针状铁素体相变和细小弥散的析出相,达到细晶强化和析出强化的目的,但终冷温度不宜过低,否则容易导致板形不良,影响产品合格率。
本发明生产的钢板较同等级钢板相比较,严格控制碳含量,添加少量Ni,合金元素少,省略热处理工艺,成本较低,适于工业化大生产,可行性较强,综合力学性能满足海洋工程用钢对各项力学性能的要求:屈服强度≥500MPa,抗拉强度610-770MPa,延伸率≥18%,-60℃的1/4处和心部常规冲击功均值≥100J,-40℃时效冲击功超过200J的钢板,Z向断面收缩率超过35%,钢板具有高强度高韧性和抗层状撕裂性能;当焊接线能量为50kJ/cm时,焊接接头焊缝、熔合线、以及熔合线+2mm、熔合线+5mm以及熔合线+20mm的低温韧性良好。
附图说明
图1为30mm厚钢板轧制规程图。
图2为30mm厚钢板横断面的表面显微组织图。
图3为30mm厚钢板横断面1/4位置显微组织图。
图4为30mm厚钢板横断面的心部显微组织图。
图5为30mm厚钢板的压下规程图。
图6为50mm厚钢板横断面的表面显微组织图。
图7为50mm厚钢板横断面1/4位置显微组织图。
图8为50mm厚钢板横断面的心部显微组织图。
图9为50mm钢板-50℃的落锤实验结果。
图10为50mm厚钢板韧脆转变温度曲线。
具体实施方式
以下具体实例来说明本发明的技术方案,但是本发明的保护范围不限于此:
实施例1
低成本高强度海洋工程用钢板厚度30mm,其化学成分组成为:C 0.04%,Si0.24%,Mn1.52%,Alt0.034%,Nb0.048%,V0.052%,Ti0.015%,Mo0.33%,Ni0.3%,Cu0.21%,P0.01%,S0.0029%,其余为铁Fe和不可避免的杂质。坯料尺寸为300*2400*2700mm,钢板尺寸为30*2600*24900mm,铸坯低倍检验中心偏析为C类0.5,表1是在此成分下的控轧控冷工艺参数,表2是在该工艺参数下得到的力学性能。表3钢板时效冲击性能及Z向性能。附图1为30mm厚钢板轧制规程,附图2、附图3和附图4为30mm厚钢板的显微组织。可以看出,钢板组织主要以块状铁素体、针状铁素体及少量珠光体组成,且显微组织在厚度方向上差别不大。
表1轧制工艺参数
  板厚/mm   板坯加热温度/℃   开轧温度/℃   精轧开轧温度/℃   终轧温度/℃   终冷温度/℃
  30   1200   1079   820   790   544
表2钢板拉伸及常规冲击性能
Figure BDA0000139797230000051
表3钢板时效冲击性能及Z向性能
实施例2
低成本高强度海洋工程用钢板厚度50mm,其化学成分组成为:C 0.06%,Si0.18%,Mn1.49%,Alt0.039%,Nb0.046%,V0.05%,Ti0.014%,Mo0.36%,Cu0.22%,Ni0.4%,P0.009%,S0.0024%,其余为铁Fe和不可避免的杂质。坯料尺寸为300*2400*3550mm,钢板尺寸为50*2500*20448mm,铸坯低倍检验中心偏析为C类0.5,表4是在此成分下的控轧控冷工艺参数,表5是在该工艺参数下得到的力学性能。表6钢板时效冲击性能及Z向性能。表7为钢板落锤实验结果,测定的50mm厚钢板无塑性转变温度TNDT为-60℃。表8线能量为50kJ/cm时焊接接头的-40℃冲击功。附图5为50mm厚钢板轧制规程,附图6、附图7和附图8为50mm厚钢板的显微组织。可以看出,钢板主要以块状铁素体、针状铁素体及少量珠光体组成,其中针状铁素体较均匀有利于保证钢板的低温韧性。附图9为-50℃的落锤实验结果。附图10为测定钢板的韧脆转变温度曲线,其心部韧脆转变温度为-65℃,1/4处韧脆转变温度为-80℃。
表4轧制工艺参数
  板厚/mm   板坯加热温度/℃   开轧温度/℃   精轧开轧温度/℃   终轧温度/℃   终冷温度/℃
  50   1200   1049   820   800   484
表5钢板拉伸性能及常规冲击性能
Figure BDA0000139797230000053
Figure BDA0000139797230000061
表6钢板时效冲击性能及Z向性能
Figure BDA0000139797230000062
表7落锤实验结果
Figure BDA0000139797230000063
其中○表示未断裂,×表示断裂
表8线能量为50kJ/cm时焊接接头接头的-40℃冲击功
Figure BDA0000139797230000064

Claims (3)

1.一种高韧性海洋工程用钢板,其特征在于,钢板的成分重量百分含量为:C 0.03-0.08%,Si0.10-0.30%,Mn1.0-1.60%,Alt0.03-0.04%,Nb0.03-0.06%,V0.05-0.09%,Ti0.010-0.02%,Mo0.1-0.4%,Ni0.1-0.4%,Cu0.1-0.4%,P<0.01%, S<0.005%, Nb+V+Ti≤0.12%,其余为Fe和不可避免杂质;
钢板厚度规格为10~50mm,钢板微观组织为块状铁素体、针状铁素体和少量珠光体;
性能指标为:屈服强度≥500MPa,抗拉强度610-770MPa,延伸率≥18%,-60℃的1/4处和心部常规冲击功均值≥100J,-40℃时效冲击功超过200J的钢板,Z向断面收缩率超过35%;
2.一种权利要求1所述的海洋工程用钢板的制造方法,包括高洁净钢冶炼—铁水脱硫—转炉顶底复合吹炼—真空处理—铸坯—板坯加热—粗轧—精轧—水冷;其特征在于,在板坯加热—粗轧—精轧的工艺中控制的技术参数为:
(1)将钢坯加热到1150~1200℃,保证钢坯在炉时间250~400min;
(2)轧制分两阶段轧制,即再结晶区轧制和未再结晶区轧制;再结晶区轧制阶段开轧温度950~1100℃,再结晶区轧制道次压下率至少保证两道次稳定20~35%,中间待温厚度控制在成品厚度的2.0~4.0倍,控制未再结晶区开轧温度≤910℃,终轧温度在790~840℃;
(3)水冷工艺:终冷温度控制为400~600℃,冷却速度控制在10~15℃/s。
3.根据权利要求2所述的方法,其特征在于,所述的海洋工程用钢板的成分重量百分含量为:C 0.03-0.08%,Si0.10-0.30%,Mn1.0-1.60%,Alt0.03-0.04%,Nb0.03-0.06%,V0.05-0.09%,Ti0.010-0.02%,Mo0.1-0.4%,Ni0.1-0.4%,Cu0.1-0.4%,P<0.01%, S<0.005%, Nb+V+Ti≤0.12%,其余为Fe和不可避免杂质。
CN2012100520115A 2012-03-01 2012-03-01 高韧性海洋工程用钢板及其制造方法 Active CN102534383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100520115A CN102534383B (zh) 2012-03-01 2012-03-01 高韧性海洋工程用钢板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100520115A CN102534383B (zh) 2012-03-01 2012-03-01 高韧性海洋工程用钢板及其制造方法

Publications (2)

Publication Number Publication Date
CN102534383A CN102534383A (zh) 2012-07-04
CN102534383B true CN102534383B (zh) 2013-11-27

Family

ID=46342397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100520115A Active CN102534383B (zh) 2012-03-01 2012-03-01 高韧性海洋工程用钢板及其制造方法

Country Status (1)

Country Link
CN (1) CN102534383B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747285A (zh) * 2012-07-11 2012-10-24 秦皇岛首秦金属材料有限公司 一种特厚船舶及海洋平台用钢板及其生产方法
CN103741079A (zh) * 2014-01-09 2014-04-23 鞍钢股份有限公司 一种超高强度海洋工程用钢板及其生产方法
CN103866199B (zh) * 2014-03-24 2016-06-08 济钢集团有限公司 一种用于海洋能源设备的钢板及其制备工艺
CN104492827B (zh) * 2014-12-24 2017-03-08 安阳钢铁股份有限公司 一种采用层流冷却设备进行中间待温的生产方法
CN106282794B (zh) * 2016-08-30 2018-10-16 南阳汉冶特钢有限公司 一种高强度船板钢eq51厚板及生产方法
CN106544587A (zh) * 2016-10-26 2017-03-29 首钢总公司 连铸坯大壁厚深海管线用热轧钢板及其生产方法
CN106566991B (zh) * 2016-10-26 2018-06-26 首钢总公司 一种抗酸性海底管线钢及其制备方法
CN108085604A (zh) * 2017-11-29 2018-05-29 南京钢铁股份有限公司 海洋工程用低温韧性s355g10+m宽厚钢板及其生产方法
CN109112399A (zh) * 2018-08-30 2019-01-01 南京钢铁股份有限公司 一种心部低温冲击韧性优良的e420海工钢板及其制造方法
CN110129539B (zh) * 2019-05-31 2021-03-23 东北大学 一种500MPa级海洋工程用H型钢的生产工艺
CN110592469A (zh) * 2019-06-13 2019-12-20 首钢集团有限公司 一种550MPa级无预热焊接厚规格海洋工程用钢板及其制备方法
CN112522566B (zh) * 2019-09-19 2022-10-21 宝山钢铁股份有限公司 一种薄规格花纹钢板/带及其制造方法
CN112048665B (zh) * 2020-08-17 2022-03-22 莱芜钢铁集团银山型钢有限公司 一种极地海洋工程用钢板及其制备方法
CN112921248A (zh) * 2021-02-08 2021-06-08 新疆八一钢铁股份有限公司 一种厚度为50mm的高韧性抗层撕裂Z向钢生产方法
CN114134432B (zh) * 2021-05-06 2022-12-06 江阴兴澄特种钢铁有限公司 一种tmcp工艺生产的高抗回火稳定性的高强度钢板及其制造方法
CN115896630A (zh) * 2022-12-05 2023-04-04 江苏省沙钢钢铁研究院有限公司 海洋工程用低温钢及其生产方法
CN117165857A (zh) * 2023-09-23 2023-12-05 湖南华菱湘潭钢铁有限公司 一种大厚度超高强韧性海洋工程用钢板及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200334A (ja) * 2000-01-17 2001-07-24 Nkk Corp 溶接性および靭性に優れた60キロ級高張力鋼
JP2006241508A (ja) * 2005-03-02 2006-09-14 Nippon Steel Corp 溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼とその製造方法
CN101045976A (zh) * 2006-03-27 2007-10-03 宝山钢铁股份有限公司 可超大线能量焊接低温用厚钢板及其制造方法
CN101876032A (zh) * 2009-12-26 2010-11-03 舞阳钢铁有限责任公司 一种耐候桥梁用高强度钢板及其生产方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520119B2 (ja) * 1993-10-04 2004-04-19 新日本製鐵株式会社 加工性、疲労特性及び低温靭性に優れた高強度熱延薄鋼板及びその製造方法
CN101781742B (zh) * 2009-12-31 2012-07-11 江苏省沙钢钢铁研究院有限公司 具有超高强度和低温冲击韧性的中厚船板钢及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200334A (ja) * 2000-01-17 2001-07-24 Nkk Corp 溶接性および靭性に優れた60キロ級高張力鋼
JP2006241508A (ja) * 2005-03-02 2006-09-14 Nippon Steel Corp 溶接部の耐亜鉛めっき割れ性に優れたHT490MPa級溶接構造用耐火鋼とその製造方法
CN101045976A (zh) * 2006-03-27 2007-10-03 宝山钢铁股份有限公司 可超大线能量焊接低温用厚钢板及其制造方法
CN101876032A (zh) * 2009-12-26 2010-11-03 舞阳钢铁有限责任公司 一种耐候桥梁用高强度钢板及其生产方法

Also Published As

Publication number Publication date
CN102534383A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102534383B (zh) 高韧性海洋工程用钢板及其制造方法
CN103352167B (zh) 一种低屈强比高强度桥梁用钢及其制造方法
CN102337460B (zh) 一种超高强度海洋工程结构用钢板及其生产方法
CN106636961B (zh) 一种含Cu纳米相强化易焊接钢及制备方法
CN103014541A (zh) 一种690MPa级厚规格海洋工程用钢及其制造方法
KR102222958B1 (ko) 저온인성이 우수한 고강도 선박용 철강 및 이의 일강다단 열처리 공정
CN102877007B (zh) 厚度大于等于80mm低裂纹敏感性压力容器用钢板及制备方法
CN103014539B (zh) 一种屈服强度700MPa级高强度高韧性钢板及其制造方法
CN103225047B (zh) 厚度≥26.5mm的X80管线用钢及其生产方法
CN106319380A (zh) 一种低压缩比690MPa级特厚钢板及其生产方法
CN102747303A (zh) 一种屈服强度1100MPa级高强度钢板及其制造方法
CN103422021B (zh) 一种屈服强度≥550MPa的低屈强比结构用钢及其生产方法
CN102851589B (zh) 低屈强比可超大热输入焊接低温结构用钢及其制造方法
CN104513937A (zh) 一种屈服强度800MPa级别高强钢及其生产方法
CN103276314A (zh) 一种低屈强比高韧性x80管线钢板及其制造方法
CN103882330A (zh) 一种低屈强比超高强度非调质钢板及其生产方法
CN103422025A (zh) 屈服强度≥690MPa的低屈强比结构用钢及其生产方法
CN103484768B (zh) 一种长度≥30m的高强工程用钢板及生产方法
CN102691018A (zh) 一种低压缩比超高强度海洋工程用钢板及其生产方法
CN103243278B (zh) 一种x90管线用钢及其生产方法
CN102011061A (zh) 一种高性能含Cu钢及其热处理工艺
CN109266967A (zh) 一种超低压缩比超厚调质水电钢板及其生产方法
CN103276315B (zh) 一种900MPa级超高强高韧性管线钢板及其制造方法
CN110358970B (zh) 屈服强度1100MPa级的焊接结构贝氏体高强钢及其制备方法
CN104532159A (zh) 一种屈服强度700MPa级调质高强钢及其生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 100041 Shijingshan Road, Shijingshan District, Shijingshan District, Beijing

Patentee after: Shougang Group Co. Ltd.

Address before: 100041 Shijingshan Road, Shijingshan District, Shijingshan District, Beijing

Patentee before: Capital Iron & Steel General Company

CP01 Change in the name or title of a patent holder