CN102527813A - 一种激光微冲击无模成形的装置及其方法 - Google Patents

一种激光微冲击无模成形的装置及其方法 Download PDF

Info

Publication number
CN102527813A
CN102527813A CN2012100559929A CN201210055992A CN102527813A CN 102527813 A CN102527813 A CN 102527813A CN 2012100559929 A CN2012100559929 A CN 2012100559929A CN 201210055992 A CN201210055992 A CN 201210055992A CN 102527813 A CN102527813 A CN 102527813A
Authority
CN
China
Prior art keywords
laser
impact
pulse
control system
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100559929A
Other languages
English (en)
Inventor
汪帮富
朱学莉
宋娟
李江澜
祝勇俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN2012100559929A priority Critical patent/CN102527813A/zh
Publication of CN102527813A publication Critical patent/CN102527813A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种激光微冲击无模成形的装置,包括激光器、光路引导***、工装夹具***、检测***和控制***;所述激光器发出的激光束通过光路引导***传输到安装在工装夹具***中粘贴有柔性吸收层的工件表面,吸收层受到激光诱导产生高温高压的等离子体,等离子体急剧膨胀***产生强冲击波压向工件表层及内部组织结构,使工件产生快速的塑性变形,检测***对工件上的冲击区进行检测,将检测的数据传输给控制***,控制***接受数据后进行分析计算,再将分析计算结果与该点理论变形进行比对,由比对结果分析得出下次激光冲击所需要的能量,控制激光器下次发出的激光束的能量,同时控制工装夹具***向下一次冲击位置作三维运动。本发明适合于常规方法难以成形或根本无法成形的材料微成形。

Description

一种激光微冲击无模成形的装置及其方法
技术领域
本发明涉及是微机电***(Micro-Electro-Mechanical Systems,MEMS)制造领域,特指一种激光微冲击无模成形的装置和方法置,其适用于MEMS中金属薄膜的微成形,特别适合于常规方法难以微成形或根本无法成形的材料微成形。
背景技术
20世纪90年代出现了将传统的塑性加工工艺应用于大批量微型金属元件制造的微塑性成形。所谓微成形,微成形是指以塑性加工的方法生产至少在二维方向上尺寸处于亚毫米级的零件或结构技术[2]。随着大规模集成电路制造技术和以计算机为代表的微电子工业的发展,越来越多的电子原件、电气组件、计算机配件等相关零部件及其包装容器开始采用这一工艺方法进行生产。传统的微塑性成形需要模具,由于微小尺度的原因和模具制造困难,传统的模具设计、制造方法不再适用。微成形时所需工作环境、设备、相关测试仪器和测试方法发生了变化。微成形时被加工材料需要处于真空或在惰性气体保护环境下;加工过程中对成形设备的精度要求远远高于传统。由于坯料的重量较轻(典型的只几毫克),坯料受表面力影响较大,但是实际生产中对坯料的传送速度和放置精度要求却很高,由此造成对坯料夹持和定位的传统方法不再可用;与成形相关的数据如应变率、温度场等的测试方法和测试仪器在微小尺度下也变得十分特殊,传统的测试理论、方法和设备已经不再适用。
发明内容
发明目的:本发明的目的是为了解决现有技术中的问题,提供了一种采用常规方法难以制作的微成形零件的激光冲击精密成形装置及方法。
技术方案:为了实现以上目的,本发明提供了一种激光微冲击无模成形的装置,包括激光器、光路引导***、工装夹具***、检测***和控制***;所述激光器发出的激光束通过光路引导***传输到安装在工装夹具***中粘贴有柔性吸收层的工件表面,吸收层受到激光诱导产生高温高压的等离子体,等离子体急剧膨胀***产生强冲击波压向工件表层及内部组织结构,使工件产生快速的塑性变形,检测***对工件的冲击区进行检测,将检测的数据传输给控制***,控制***接受数据后进行分析计算,再将分析计算结果与该点理论变形进行比对,由比对结果分析得出下次激光冲击所需要的能量,控制激光器下次发出的激光束的能量,同时控制工装夹具***向下一次冲击位置作三维运动。
本发明中所述光路引导***包括:第一反射镜、准直器和激光冲击头;所述激光冲击头中从光线进入次序为排列顺序,依次包括:第二反射镜、三棱镜和聚焦镜;通过准直器距聚焦镜的距离,以及所选准直器中心孔尺寸,计算激光光斑尺寸;反之通过调节准直器与聚焦镜之间的距离来实现激光光斑在微米级,从而达到对工件的微成形。
本发明中所述工装夹具***包括:三维工作台、夹具,夹具座;所述三维工作台上设有夹具座,所述夹具座上设有夹具。
本发明中所述检测***包括:同步加速辐射光源、探测器、放大器、脉冲高度分析器、计数器;所述同步加速辐射光源发出的入射激光进入夹具中的工件表面后,由探测器接收转换为电脉冲,电脉冲经放大器放大后进入脉冲高度分析器转换为信号脉冲,信号脉冲发送至计数器再送入控制***运算分析。
本发明还公开了一种激光微冲击无模成形的方法,其特征在于:该方法的具体步骤如下:
(A)在激光微冲击无模成形的装置的工装夹具***中放入试样体系,所述试样体系包括:工件和工件表面贴设的柔性贴膜;
(B)启动激光微冲击无模成形的装置,其中激光器内的调制器产生脉冲宽度为4ns~l0ns的激光束;所述激光束经过所述光路引导***冲击工件表面,在激光器发出激光的同时,工装夹具***中工作台和激光冲击头同时接受控制***指令向待冲击位置作三维运动,从而达到控制冲击位置的目的;
(C)然后激光器放出强脉冲激光束,即功卒密度大于l09W/cm2,脉冲宽度8 ns~30ns的强脉冲激光束,该强脉冲激光束冲击试样体系中工件表面的柔性贴膜,使其表层气化电离并形成冲击波,使产生的冲击波压力峰值超过材料动态屈服强度,使成形材料发生明显塑性的宏观材料变形,然后通过逐点冲击和有序的冲击点分布获得大面积复杂形状;
(D)在激光束冲击成形的过程中,所述同步加速辐射光源(13)发出的入射激光进入夹具中的工件表面后,由探测器(8)接收转换为电脉冲,电脉冲经放大器(9)放大后进入脉冲高度分析器(10)转换为信号脉冲,信号脉冲发送至计数器(9)再送入控制***运算分析;
(E)控制***经过运算分析、误差分析和参数修正后,再将分析计算结果与该点理论变形进行比对,由比对结果分析得出下次激光冲击所需要的能量,控制激光器下次发出的激光束的能量,同时发出指令控制工装夹具***中工作台和激光冲击头向下一次冲击位置作三维运动,从而达到控制冲击位置和冲击能量的目的;
(F)控制***不断调整激光束的冲击能量和冲击位置,直至获得完整精确的工件轮廓,激光微冲击无模成形的装置关闭。
本发明中成形材料包括金属、复合材料、塑料,以及镀有脆性涂层(如TiN)的金属薄板冲击成形;能有效地对金属材料、无机材料、高分子材料及复合材料等多种材料进行局部胀形、弯曲、拉伸、板料校平、杆件校直校曲,是集多种成形方式为一体的无模复杂成形,应用范围广泛。
有益效果:本发明的优点如下:
1、本发明所述装置实现了微成形零件的无模成形,并且保证了微成形零件的精度和质量。
2、本发明所述方法属于无模成形,避免了微塑性成形中最棘手的模制造、间隙保证和行程控制等问题,激光束作为柔性冲头能使板材达到高成形精度和对异形凹模的高覆膜性,并将微尺度的摩擦降到最低。因而可加工一些形状复杂的微型元器件,诸如非球面光学元件,尤其是制造一种作为医疗器械的复杂光栅等.
3、本发明所述方法是高应变率成形(>105S-1),成形速度快,同时由于惯性效应和率相关的材料本构行为的变化,与准静态成形相比,材料的成形极限明显提高。
4、本发明所述方法利用等离子体***诱发的力效应而非热效应进行成形,避免了连续激光照射时因剧烈温度梯度导致的不良组织和性能,同时由于应力波前沿所引起的大量的位错和严重的塑性变形,反而使组织结构均匀和细化,因而可进行高质量的激光微成形加工。
5、本发明所述方法继承了激光冲击强化的优点,在材料表面能够形成残余压应力,因而显著提高零件的耐磨性、耐蚀性和疲劳寿命;
6、本发明所述方法适用的材料类型广泛,可以加工硅或金属基材料,还能穿过透明材料进行加工成形;工艺范围广,可用于加工微型机器人,医疗器械的超小型金属、陶瓷、塑料机械零部件及其包装容器。
7、本发明所述方法由于激光脉冲参数可以实时调整和控制,且加工参数具有可重复性,可在同一地方通过累积的方式多次喷丸;对激光微冲击工艺非***的、实时的监视,在线检测金属微器件的微成形效果,并由控制***进行误差分析,实时调整激光加工工艺参数,可控制金属微器件变形情况,以确保实现预期的成形效果,满足金属微器件所需的不同的微成形要求。
附图说明
图1为本发明所述激光微冲击无模成形的装置的结构示意图。
 
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例
如图1所示的一种激光微冲击无模成形的装置,包括激光器1、光路引导***、工装夹具***、检测***和控制***;所述光路引导***包括:第一反射镜2、准直器3和激光冲击头5;所述激光冲击头5中从光线进入次序为排列顺序,依次包括:第二反射镜17、三棱镜4和聚焦镜6;所述工装夹具***包括:三维工作台14、夹具15,夹具座16;所述检测***包括:同步加速辐射光源13、探测器8、放大器9、脉冲高度分析器10、计数器11;所述控制***采用工业计算机12。
   本实施例还公开了激光微冲击无模成形的的方法,具体步骤如下:
(A)在激光微冲击无模成形的装置的工装夹具***中放入试样体系,所述试样体系7包括:工件和工件表面贴设的柔性吸收层;夹具15将试样体系7夹住并固定在夹具座16上,夹具座16固定在三维工作台14上;
(B)启动激光微冲击无模成形的装置,其中激光器1内的调制器产生脉冲宽度为4ns~l0ns的激光束;所述激光束经过所述光路引导***中的第一反射镜2反射穿过准直器3进入激光冲击头5中,激光冲击头5中的第二反射镜17改变激光路径,将激光反射入三棱镜4中,从三棱镜4中射出后进入聚焦镜6,经过聚焦镜6聚焦后冲击工件表面,在激光器发出激光的同时,工装夹具***中三维工作台14和激光冲击头5同时接受控制***指令向待冲击位置作三维运动,从而达到控制冲击位置的目的;
(C)然后激光器放出强脉冲激光束,即功卒密度大于l09W/cm2,脉冲宽度8 ns~30ns的强脉冲激光束,该强脉冲激光束冲击试样体系中工件表面的柔性贴膜,使其表层气化电离并形成冲击波,使产生的冲击波压力峰值超过材料动态屈服强度,使成形材料发生明显塑性的宏观材料变形,然后通过逐点冲击和有序的冲击点分布获得大面积复杂形状;
(D)在激光束冲击成形的过程中,所述同步加速辐射光源13发出的入射激光进入夹具中的工件表面后,由探测器8接收转换为电脉冲,电脉冲经放大器9放大后进入脉冲高度分析器10转换为信号脉冲,信号脉冲发送至计数器9再送入控制***运算分析;
(E)控制***经过运算分析、误差分析和参数修正后,再将分析计算结果与该点理论变形进行比对,由比对结果分析得出下次激光冲击所需要的能量,控制激光器下次发出的激光束的能量,同时发出指令控制工装夹具***中工作台和激光冲击头向下一次冲击位置作三维运动,从而达到控制冲击位置和冲击能量的目的;
(F)控制***不断调整激光束的冲击能量和冲击位置,直至获得完整精确的工件轮廓,激光微冲击无模成形的装置关闭。

Claims (5)

1.一种激光微冲击无模成形的装置,其特征在于:包括激光器、光路引导***、工装夹具***、检测***和控制***;所述激光器发出的激光束通过光路引导***传输到安装在工装夹具***中粘贴有柔性吸收层的工件表面,吸收层受到激光诱导产生高温高压的等离子体,等离子体急剧膨胀***产生强冲击波压向工件表层及内部组织结构,使工件产生快速的塑性变形,检测***对工件上的冲击区进行检测,将检测的数据传输给控制***,控制***接受数据后进行分析计算,再将分析计算结果与该点理论变形进行比对,由比对结果分析得出下次激光冲击所需要的能量,控制激光器下次发出的激光束的能量,同时控制工装夹具***向下一次冲击位置作三维运动。
2.根据权利要求1所述的一种激光微冲击无模成形的装置,其特征在于:所述光路引导***包括:第一反射镜(2)、准直器(3)和激光冲击头(5);所述激光冲击头(5)中从光线进入次序为排列顺序,依次包括:第二反射镜(17)、三棱镜(4)和聚焦镜(6)。
3.根据权利要求1所述的一种激光微冲击无模成形的装置,其特征在于:所述工装夹具***包括:三维工作台(14)、夹具(15),夹具座(16);所述三维工作台(14)上设有夹具座(16),所述夹具座(16)上设有夹具(15)。
4.根据权利要求1所述的一种激光微冲击无模成形的装置,其特征在于:所述检测***包括:同步加速辐射光源(13)、探测器(8)、放大器(9)、脉冲高度分析器(10)、计数器(11);所述同步加速辐射光源(13)发出的入射激光进入夹具中的工件表面后,由探测器(8)接收转换为电脉冲,电脉冲经放大器(9)放大后进入脉冲高度分析器(10)转换为信号脉冲,信号脉冲发送至计数器(9)再送入控制***运算分析。
5.一种激光微冲击无模成形的方法,其特征在于:该方法的具体步骤如下:
(A)在激光微冲击无模成形的装置的工装夹具***中放入试样体系,所述试样体系包括:工件和工件表面贴设的柔性吸收层;
(B)启动激光微冲击无模成形的装置,其中激光器内的调制器产生脉冲宽度为4ns~l0ns的激光束;所述激光束经过所述光路引导***冲击工件表面,在激光器发出激光的同时,工装夹具***中工作台和激光冲击头同时接受控制***指令向待冲击位置作三维运动,从而达到控制冲击位置的目的;
(C)然后激光器放出强脉冲激光束,即功卒密度大于l09W/cm2,脉冲宽度8 ns~30ns的强脉冲激光束,该强脉冲激光束冲击试样体系中工件表面的柔性贴膜,使其表层气化电离并形成冲击波,使产生的冲击波压力峰值超过材料动态屈服强度,使成形材料发生明显塑性的宏观材料变形,然后通过逐点冲击和有序的冲击点分布获得大面积复杂形状;
(D)在激光束冲击成形的过程中,所述同步加速辐射光源(13)发出的入射激光进入夹具中的工件表面后,由探测器(8)接收转换为电脉冲,电脉冲经放大器(9)放大后进入脉冲高度分析器(10)转换为信号脉冲,信号脉冲发送至计数器(9)再送入控制***运算分析;
(E)控制***经过运算分析、误差分析和参数修正后,再将分析计算结果与该点理论变形进行比对,由比对结果分析得出下次激光冲击所需要的能量,控制激光器下次发出的激光束的能量,同时发出指令控制工装夹具***中工作台和激光冲击头向下一次冲击位置作三维运动,从而达到控制冲击位置和冲击能量的目的;
(F)控制***不断调整激光束的冲击能量和冲击位置,直至获得完整精确的工件轮廓,激光微冲击无模成形的装置关闭。
CN2012100559929A 2012-03-06 2012-03-06 一种激光微冲击无模成形的装置及其方法 Pending CN102527813A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100559929A CN102527813A (zh) 2012-03-06 2012-03-06 一种激光微冲击无模成形的装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100559929A CN102527813A (zh) 2012-03-06 2012-03-06 一种激光微冲击无模成形的装置及其方法

Publications (1)

Publication Number Publication Date
CN102527813A true CN102527813A (zh) 2012-07-04

Family

ID=46336538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100559929A Pending CN102527813A (zh) 2012-03-06 2012-03-06 一种激光微冲击无模成形的装置及其方法

Country Status (1)

Country Link
CN (1) CN102527813A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646479A (zh) * 2015-02-02 2015-05-27 浙江理工大学 一种激光加热诱导等静压加载板材无模成形的方法
CN104772569A (zh) * 2015-04-03 2015-07-15 山东科技大学 一种医用钛合金板的激光冲击微成形装置及其微成形工艺
CN106093013A (zh) * 2016-06-13 2016-11-09 长春理工大学 激光诱导产生等离子体墙屏蔽冲击波传播的装置和方法
CN106270005A (zh) * 2016-08-25 2017-01-04 广东工业大学 一种叶片激光喷丸校形的方法与装置
CN106624353A (zh) * 2016-12-30 2017-05-10 广东工业大学 一种激光喷丸制品表面制造***
CN109482750A (zh) * 2018-12-24 2019-03-19 广东工业大学 一种无铆钉微铆接装置
CN110918770A (zh) * 2019-12-16 2020-03-27 山东大学 一种多点激光冲击成形装置及成形方法
CN111843124A (zh) * 2020-07-06 2020-10-30 中国人民解放军空军工程大学 一种基于激光冲击的金属焊接方法及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374165A (zh) * 2001-10-19 2002-10-16 江苏大学 一种激光冲击精密成形方法及装置
CN1403238A (zh) * 2002-09-25 2003-03-19 江苏大学 一种基于激光冲击波技术的快速制造模具的方法和装置
CN101518852A (zh) * 2009-03-13 2009-09-02 江苏大学 一种基于激光冲击多点复合成形的方法和装置
CN101653802A (zh) * 2009-09-21 2010-02-24 上海交通大学 基于激光冲击效应的微坑阵列加工方法
CN101722361A (zh) * 2009-11-05 2010-06-09 江苏大学 一种控制金属微结构表面残余应力的装置及方法
CN102029317A (zh) * 2010-10-12 2011-04-27 江苏大学 一种激光直接复合微塑性成形装置与方法
CN102225491A (zh) * 2011-06-09 2011-10-26 安徽工业大学 基于激光冲击波技术的金属变径管成形的方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374165A (zh) * 2001-10-19 2002-10-16 江苏大学 一种激光冲击精密成形方法及装置
CN1403238A (zh) * 2002-09-25 2003-03-19 江苏大学 一种基于激光冲击波技术的快速制造模具的方法和装置
CN101518852A (zh) * 2009-03-13 2009-09-02 江苏大学 一种基于激光冲击多点复合成形的方法和装置
CN101653802A (zh) * 2009-09-21 2010-02-24 上海交通大学 基于激光冲击效应的微坑阵列加工方法
CN101722361A (zh) * 2009-11-05 2010-06-09 江苏大学 一种控制金属微结构表面残余应力的装置及方法
CN102029317A (zh) * 2010-10-12 2011-04-27 江苏大学 一种激光直接复合微塑性成形装置与方法
CN102225491A (zh) * 2011-06-09 2011-10-26 安徽工业大学 基于激光冲击波技术的金属变径管成形的方法和装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646479A (zh) * 2015-02-02 2015-05-27 浙江理工大学 一种激光加热诱导等静压加载板材无模成形的方法
CN104772569A (zh) * 2015-04-03 2015-07-15 山东科技大学 一种医用钛合金板的激光冲击微成形装置及其微成形工艺
CN104772569B (zh) * 2015-04-03 2017-11-14 山东科技大学 一种医用钛合金板的激光冲击微成形装置及其微成形工艺
CN106093013A (zh) * 2016-06-13 2016-11-09 长春理工大学 激光诱导产生等离子体墙屏蔽冲击波传播的装置和方法
CN106270005A (zh) * 2016-08-25 2017-01-04 广东工业大学 一种叶片激光喷丸校形的方法与装置
CN106270005B (zh) * 2016-08-25 2018-05-15 广东工业大学 一种叶片激光喷丸校形的方法与装置
CN106624353A (zh) * 2016-12-30 2017-05-10 广东工业大学 一种激光喷丸制品表面制造***
CN109482750A (zh) * 2018-12-24 2019-03-19 广东工业大学 一种无铆钉微铆接装置
CN110918770A (zh) * 2019-12-16 2020-03-27 山东大学 一种多点激光冲击成形装置及成形方法
CN110918770B (zh) * 2019-12-16 2021-01-15 山东大学 一种多点激光冲击成形装置及成形方法
CN111843124A (zh) * 2020-07-06 2020-10-30 中国人民解放军空军工程大学 一种基于激光冲击的金属焊接方法及***
CN111843124B (zh) * 2020-07-06 2021-11-19 中国人民解放军空军工程大学 一种基于激光冲击的金属焊接方法及***

Similar Documents

Publication Publication Date Title
CN102527813A (zh) 一种激光微冲击无模成形的装置及其方法
CN101269440B (zh) 一种微器件的激光冲击微体积成形方法和装置
CN106216842B (zh) 焊接金属板料激光喷丸校形尺寸精度在线控制的方法与装置
CN106141425B (zh) 机器人夹持金属板材的激光喷丸成形精度动态自适应控制装置
Dixit et al. Laser forming systems: a review
CN101249588A (zh) 一种基于激光冲击波效应的板材双面精密成形方法及装置
CN101745740B (zh) 金属板料环形光斑激光冲击成形方法及装置
Edwardson et al. Geometrical influences on multi-pass laser forming
CN101524784B (zh) 一种基于聚氨酯橡胶模的激光冲击成形方法和装置
CN101254574A (zh) 强激光冲击微塑性成形的方法及其装置
Watkins et al. Laser forming of aerospace alloys
CN103146893A (zh) 一种激光冲击处理曲面的方法
Zheng et al. Laser shock induced incremental forming of pure copper foil and its deformation behavior
CN1128689C (zh) 一种激光冲击精密成形方法及装置
Tran et al. Analysis of the asymmetrical roll bending process through dynamic FE simulations and experimental study
CN102513699A (zh) 基于激光推进制作板料冲击成形极限图的方法与装置
Zhang et al. FEM analysis for laser bending process of DP980 steel sheet
CN101020276A (zh) 基于大光斑单次激光冲击的薄板半模精密成形方法
CN101759139B (zh) Mems微器件的表面改性处理方法及装置
CN102756020B (zh) 激光冲击微调校方法及装置
Gisario et al. External force-assisted LaserOrigami (LO) bending: Shaping of 3D cubes and edge design of stainless steel chairs
Ghanei et al. Analysis of material behaviour and shape defect compensation in the flexible roll forming of advanced high strength steel
CN2496591Y (zh) 激光冲压精密成形装置
Nadeem et al. Process designing for laser forming of circular sheet metal
Nadeem et al. Deformation behavior of laser bending of circular sheet metal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120704