CN102519904A - 六氟化硫分解组分的自动恒温型光声检测装置及实验方法 - Google Patents

六氟化硫分解组分的自动恒温型光声检测装置及实验方法 Download PDF

Info

Publication number
CN102519904A
CN102519904A CN2011104145928A CN201110414592A CN102519904A CN 102519904 A CN102519904 A CN 102519904A CN 2011104145928 A CN2011104145928 A CN 2011104145928A CN 201110414592 A CN201110414592 A CN 201110414592A CN 102519904 A CN102519904 A CN 102519904A
Authority
CN
China
Prior art keywords
photoacoustic cell
photoacoustic
gas
temperature
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011104145928A
Other languages
English (en)
Inventor
唐炬
裘吟君
张晓星
范敏
袁静帆
刘岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN2011104145928A priority Critical patent/CN102519904A/zh
Publication of CN102519904A publication Critical patent/CN102519904A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种六氟化硫分解组分的自动恒温型光声检测装置及实验方法,属于SF6气体绝缘设备局部放电在线监测技术领域。本发明的特点是在现有红外光声光谱监测***中增设自动恒温***;本发明的方法是利用本发明装置,在预设温度下自动恒温,对GIS模拟元件中的SF6气体局部放电分解组分进行检测。本发明能排除外部环境的影响,能有效检测出低至0.01μL/L的SO2、CO2、CF4、SO2F2、SOF2等气体组分,准确性、检测精度和稳定性高,固态继电器性能稳定,能保证自动恒温***长期有效的工作。本发明可广泛应用于SF6气体绝缘设备局部放电在线监测领域,特别适用于GIS中SF6气体局部放电分解组分的检测。

Description

六氟化硫分解组分的自动恒温型光声检测装置及实验方法
技术领域
本发明属于六氟化硫(SF6)气体绝缘电气设备局部放电(PD)的在线监测技术领域,具体涉及GIS中SF6局部放电下分解组分的自动恒温型光声光谱检测装置及实验方法。
背景技术
气体绝缘组合电器(GIS),以SF6气体作为绝缘介质,具有绝缘强度高、运行稳定、占地面积少和维护工作量小等优点,在电力***中,尤其在大中城市城网建设和改造中得到愈来愈广泛的应用。但从近年来的运行情况看,国内外的GIS在使用中都出现了许多问题,其内部不可避免的缺陷会引起故障并随着运行时间的增长而不断扩大,其中突出表现为绝缘缺陷引起的故障。绝缘缺陷在引起绝缘介质的贯穿性故障之前会出现局部放电现象,在局部放电发生时,SF6气体在热、电的作用下会发生分解,并与GIS设备内部存在的微水(H2O)、微氧(O2)等杂质发生反应,生成一些对故障类型判断有价值的特征气体,如二氧化硫(SO2)、氟化亚硫酰(SOF2)、氟化硫酰(SO2F2)、氟化氢(HF)等,如果局部放电的位置出现在固体绝缘介质附近,还会有二氧化碳(CO2)、四氟化碳(CF4)等成分产生。因此,可以通过对SF6气体进行检测和组分分析,通过气体组分的类型和含量来判断绝缘缺陷的类型和程度,为GIS设备的绝缘水平的判断和状态检修提供依据,从而避免严重故障和大停电事故的发生,所以研究六氟化硫局部放电下分解组分的检测装置和实验方法是保证电力***安全运行,保证国民生产正常进行的重要手段之一。
现有六氟化硫局部放电下分解组分的光声检测装置和实验方法:申请号为201010295554.0的专利“局放下六氟化硫分解组份的红外光声光谱检测装置及方法”,公开的装置主要包括无电晕实验变压器、感应调压器、无局部放电保护电阻、无感电阻、标准电容分压器、GIS模拟元件、宽频高速超大容量数字存储示波器、红外光声光谱***等;公开的实验方法包括:(1)检测前的准备;(2)检测局放下六氟化硫分解组分的浓度;(3)清洗及维护。该专利的主要缺点是其所采用的红外光声光谱***是开放式装置,不能自动恒温,在实际现场检测时受环境温度的影响较大,光声检测装置的稳定性、检测的准确性和精度得不到保证,不适用于在线监测。
发明内容
本发明的目的在于针对现有的六氟化硫局部放电下分解组分的光声检测装置及方法的不足之处,提供一种六氟化硫分解组分的自动恒温型光声检测装置及实验方法,具有灵敏度高、检测范围宽、检测速度快、检测精度高、不需要消耗载气、能自动恒温而不受外界环境影响、特别适合于在线监测等优点,为进一步完善和改进SF6局部放电分解组分的光声光谱在线监测***奠定了基础。
本发明的主要特点是在现有红外光声光谱检测***中增设自动恒温装置,其自动恒温的原理在于通过检测光声池内部的温度信号来控制加热回路的通断,以达到恒温的目的。由于光声光谱气体检测法本质上是利用了气体红外热吸收效应和光声池的声学理论,温度的变化会影响气体的红外吸收效应和光声池的各种性能参数,从而影响到光声光谱检测***的检测精度和稳定性,因此本发明为现有的红外光声光谱检测***添加了自动恒温装置,使***恒定在预设的温度,有利于提高红外光声光谱检测***的稳定性和检测的准确性。
实现本发明目的的技术方案是:一种六氟化硫分解组分的自动恒温型光声检测装置,主要包括无晕实验变压器、调压器、无局放保护电阻、无感电阻、电容分压器、GIS模拟元件、宽频高速超大容量数字存储示波器、红外光声光谱检测***、自动恒温***等。其中:所述的红外光声光谱检测***,主要由宽频红外光源、硒化锌透镜、机械斩波器、斩波器控制器、滤光片轮、滤光片、硒化锌窗片、光声池、气压表、微音器、信号传输电缆、气体阀门、输气管、真空泵、光学支架、锁相放大器及计算机等组成。本发明的特征是:在所述的红外光声光谱检测***中的光声池的外部装设自动恒温***。所述的自动恒温***主要由开关电源、固态继电器、智能数显温度调节仪、环形加热带、热电偶等组成。
所述的开关电源为市购产品,输出电压为60V,最大电流为5A,所述开关电源的输入端通过导线与220V/50Hz的电源连接,所述开关电源的输出端的正极通过导线与所述固态继电器输出端的正极连接后,所述固态继电器输出端的负极通过导线与所述的环形加热带正接线柱连接,所述的开关电源的输出端的负极通过导线与所述的环形加热带负接线柱连接,用来为装设在光声池外表面的所述的环形加热带提供直流电源,以便对所述的光声池加热。
所述的固态继电器为市购产品,所述的固态继电器的受控端通过导线与所述的智能数显温度调节仪的控制信号输出端连接,用以接收智能数显温度调节仪的输出控制信号,从而控制所述开关电源和所述环形加热带所组成的加热回路的工作状态达到调节所述光声池内部温度的目的。
所述的环形加热带为定制产品,数目为2~6个,每个环形加热带宽度为20~50mm、厚度为1~1.5mm、内径与所述光声池的外径相匹配,所述的环形加热带分别装设在所述光声池的外表面,每个环形加热带的两端接头通过导线分别与所述固态继电器和所述开关电源相连接,用于直接对光声池进行加热,加热功率100~250W。
所述的热电偶为市购产品,由热电偶温度传感器和热电偶控制器构成,所述的热电偶装设在所述光声池的外表面上,所述热电偶的热电偶温度传感器的输入端通过导线与热电偶控制器的输出端连接,热电偶温度传感器的输出端与所述智能数显温度调节仪的输入端连接,用于检测光声池内部温度,将温度信号传递给智能数显温度调节仪并显示出来并作为所述固态继电器的控制信号。
所述的智能数显温度调节仪为市购产品,所述智能数显温度调节仪的输入端通过导线与所述的热电偶连接,用以接收所述的热电偶检测到的光声池温度信号,所述的智能数显温度调节仪的输出端通过导线与所述的固态继电器的输入端连接,用以控制固态继电器的导通与关断。
所述的滤光片和滤光片轮为市购产品,滤光片安装在滤光片轮的孔中,滤光片轮通过步进电机驱动旋转,用以切换不同的特征滤光片到光路中,滤光片轮上各滤光片中心波长分别为7350nm(SO2吸收峰中心波长)、4260nm(CO2吸收峰中心波长)、7780nm(CF4吸收峰中心波长)、18550nm(SO2F2吸收峰中心波长)、7440nm(SOF2吸收峰中心波长),只允许其中心波长的红外光通过,滤掉剩余频带的红外光,通过信号电缆将滤光片轮与计算机连接,计算机发出信号控制滤光片轮内的步进电机旋转,进而控制不同特征波长的红外光通过滤光片经硒化锌窗片射入光声池内,在不同波长下的检测即反映了不同气体组分的含量。
一种六氟化硫分解组分的自动恒温型光声检测的实验方法,利用本发明装置,对GIS模拟元件中的SF6气体的局部放电分解组分进行检测的具体步骤如下:
(1)   实验准备
①    光声池和自动恒温***部件安装调试
首先用无水酒精清洗光声池的内壁,除去池内壁的杂质,待光声池风干后,再安装微音器、热电偶、气压表、进出气管、进出气阀、硒化锌窗口片等部件,在安装硒化锌窗口片时,在硒化锌窗口片与光声池接触处先垫硅胶片后用螺栓压紧。在各螺纹连接处加生料带及密封胶,以保证光声池有良好的气密性;然后调整宽频红外光源和光声池的三维调整光学支架、斩波器、滤光片轮、硒化锌透镜的升降光学支架,保证各部件和光声池的中心在同一水平线上,使得红外光能够准确直射透过各个部件,射入光声池。将自动恒温***的加热回路和控制回路分别通过导线依次连接好,接上电源,确认各元件正常工作,环形加热带装设在光声池外表面,拧紧螺丝,保证环形加热带紧贴在光声池外表面。
②    气密性测试
在(1)—①步完成后,首先关闭进气阀门,打开出气阀门,然后启动本装置的真空泵,对光声池抽真空,当本装置的气压表显示气压为0.005~0.01MPa时,依次关闭出气阀门和真空泵,静置光声池10~15小时,再去观察气压表示数,如基本保持不变,则说明本装置的光声池在真空下的气密性良好;打开本装置的进气阀门和氮气(N2)瓶阀门,向光声池内冲入N2气体至气压表示数为0.2~0.25MPa,依次关闭进气阀门和N2瓶阀门,静置光声池10~15小时,再去观察气压表示数,如基本保持不变,则说明本装置的光声池在高气压的情况下气密性良好。
③    清洗光声池
在(1)—②步完成后,先打开出气阀门,启动所述的真空泵,对所述的光声池抽真空,当所述的光声池真空度为0.005~0.01MPa时,依次关闭出气阀门和真空泵,再打开所述的SF6气瓶的阀门和进气阀门,向所述的光声池内充入SF6 气体,直到光声池内气压值为0.2~0.25MPa时为止,然后依次关闭SF6气瓶的阀门和进气阀门,对所述的光声池进行清洗。接着按前述操作步骤,先抽真空,再充入SF6气体清洗,如此重复冲洗2~4次,清洗后通过真空泵将光声池抽真空,最后通过进气管和进气阀门将待检测的GIS模拟元件中的SF6局部放电分解气体组分通入光声池中。
(2)   恒定温度下的参数测量
在(1)步完成后,首先打开宽频红外光源、斩波控制器、斩波器、滤光片轮、微音器、气压表、热电偶、开关电源、固态继电器、智能数显温度调节仪及锁相放大器,锁相放大器积分时间1s。
再控制光声池内的温度,使其恒定在30℃~50℃之间。即通过所述的智能数显温度调节仪输出方波信号控制所述的固态继电器的导通与关断,所述的固态继电器的导通与关断又控制本装置的开关电源的输出端向所述的环形加热带输送低压直流电能的多少,从而使光声池内的温度随之升高或降低,手动调节所述的智能数显温度调节仪设定值为t1,所述的热电偶将检测到光声池内实际温度信号t2传输给所述的智能数显温度调节仪进行显示和比较:当t2>t1(即光声池内温度的实际值>设定值)时,所述的智能数显温度调节仪输出的方波信号控制所述的固态继电器的导通时间变短,使输送给环形加热带的低压直流电能减少,从而使光声池温度降低;反之,当t2<t1(即光声池内温度的实际值<设定值)时,所述的智能数显温度调节仪输出的方波信号控制所述的固态继电器的导通时间变长,使输送给环形加热带的低压直流电能增多,从而使光声池温度升高,此比较过程不断重复,直到光声池温度稳定在设定值t1(即t1=t2)为止,从而达到了光声池恒温的目的。
然后在温度恒定后,测量光声池的各项参数性能。首先测量光声池的共振频率f,调节斩波控制器的频率,同时观察锁相放大器显示的光声信号,当锁相放大器显示的光声信号达到最大时,记录此时斩波控制器显示的频率,即为光声池在此温度下的共振频率f
接着测量光声池的各种噪声。先测量外部环境噪声值:将宽频红外光源及斩波器关闭,记录此时锁相放大器显示的值,即为环境噪声值;再测量斩波器噪声值:保持宽谱红外光源关闭并打开斩波器,调节斩波器的频率至共振频率,记录此时锁相放大器的示数,该示数减去环境噪声值即为斩波器噪声值。最后测量由硒化锌窗口片吸收和光声池内壁吸收所造成的噪声值:通过进气管将光声池中充入高纯氮气,打开斩波器及宽频红外光源,记录此时锁相放大器显示的数值,即为***总体噪声,用***总体噪声减去环境噪声和斩波器噪声即为硒化锌窗口片吸收和光声池内壁吸收造成的噪声值。
再测量气体光声信号与气体浓度的关系系数即响应系数k。用配气***将所要测量的气体配成不同浓度的标准气体,分别通过进气管和进气阀门充入光声池,记录各种浓度气体下锁相放大器测得的光声信号值,采用一元线性回归拟合的方式计算出气体浓度与光声信号之间的关系系数,即响应系数k
最后计算光声检测***的最低检测限。对于六氟化硫局部放电分解气体组分,用***总体噪声除以各自的响应系数k即可得各种气体组分的最低检测限。
(3)   六氟化硫局部放电分解组分浓度的检测
第(2)步完成后,在其条件下,先通过出气管、出气阀门和真空泵将光声池抽成真空,后通过进气管和进气阀门充入待检测的GIS模拟元件中的六氟化硫局部放电分解组分,气压为0.1MPa,再通过计算机控制滤光片轮旋转,依次将中心波长分别为7350nm(SO2吸收峰中心波长)、4260nm(CO2吸收峰中心波长)、7780nm(CF4吸收峰中心波长)、18550nm(SO2F2吸收峰中心波长)、7440nm(SOF2吸收峰中心波长)的滤光片旋转至光路中,并依次记下各特征滤光片所对应的光声信号值 S i (i=1,…,6),最后将锁相放大器测得的光声信号值输入计算机,在计算机上通过公式 S i =k C i +d(i=1,…,6)进行计算(式中k为响应系数, S i 为光声信号值,d为截距,即各种气体组分光声信号与气体浓度关系直线与纵坐标的交点,纵坐标为光声信号值),得到准确的SO2、CO2、CF4、SO2F2、SOF2浓度值 C i ,(i=1,…,6)。
(4)   设备维护
在第(3)步完成后,先打开出气阀门和真空泵,将光声池中的气体抽至室外排放,然后关闭出气阀门和真空泵,打开氮气瓶阀门和进气阀门充入氮气,然后依次打开出气阀门和真空泵,将光声池中的气体抽至室外排放,重复以上操作2~4次,用氮气将光声池清洗干净,防止SF6局部放电分解组分中的酸性气体腐蚀光声池。
本发明采用上述技术方案后,主要有以下效果:
(1) 本发明装置的灵敏度高,能有效检测出低至0.01μL/L的SO2、CO2、CF4、SO2F2、SOF2等气体组分,能够对六氟化硫局部放电下分解组分进行准确的定性和定量分析,准确性高。
(2) 本发明装置是自动恒温型光声光谱检测装置,能根据预设的温度值自动调节光声池的温度,使其恒定在预设值,其优点在于:一是消除了光声检测***外部环境对其检测精度的影响,相对于现有的光声光谱检测装置,检测精度和稳定性都有较大的提高;二是可以自动调节光声池温度为分解组分的光声检测最适宜温度。
(3) 本发明装置采用的固态继电器的性能稳定,正常工作条件下能开断100万次,能长期有效工作,为保证自动恒温***长期有效的工作打下基础。
本发明可广泛用于SF6气体绝缘电气设备中局部放电的在线监测,特别适用于GIS设备中SF6气体局部放电分解组分的检测,为科研院所和电力***对GIS设备SF6状态检测的理论分析和应用研究提供了一种简单可靠的方法和实验平台。
附图说明
图1为现有红外光声光谱检测的整体接线图;
图2为现有红外光声光谱检测***的原理示意图;
图3为实施例1的自动恒温***结构图。
图中:1感应调压器;2无晕实验变压器;3无局部放电保护电阻;4标准电容分压器;5无感电阻;6 GIS模拟元件;7红外光声光谱***和自动恒温***;8宽频高速超大容量数字存储示波器;9宽谱红外光源;10硒化锌透镜;11斩波器;12斩波器控制器;13滤光片轮;14滤光片;15硒化锌窗口片;16光声池;17热电偶温度传感器; 18气压表;19微音器;20信号电缆;21进气阀门;22出气阀门;23进气管;24出气管;25真空泵;26光学支架;27锁相放大器;28计算机;29开关电源;30固态继电器;31智能数显温度调节仪;32环形加热带。
具体实施方式
下面结合具体实施方式,进一步说明本发明。
实施例1
如图1~3所示,一种六氟化硫分解组分的自动恒温型光声检测装置,主要包括无晕实验变压器2、感应调压器1、无局部放电保护电阻3、标准电容分压器4、无感电阻5、GIS模拟元件6、宽频高速超大容量数字存储示波器8、自动恒温***7、红外光声光谱检测***7等。其中:所述的红外光声光谱检测***,主要由宽频红外光源9、硒化锌透镜10、机械斩波器11、斩波器控制器12、滤光片轮13、滤光片14、硒化锌窗口片15、光声池16、气压表18、微音器19、信号电缆20、进气阀门21、出气阀门22、进气管23、出气管24、真空泵25、光学支架26、锁相放大器27及计算机28等组成。本发明的特征是:在所述的红外光声光谱检测***中的光声池的外部装设自动恒温***。所述的自动恒温***主要由开关电源29、固态继电器30、智能数显温度调节仪31、环形加热带32、热电偶17等组成。 
所述的开关电源29为市购产品,输出电压为60V,最大电流为5A,开关电源29的输入端通过导线与220V/50Hz的电源连接,所述开关电源29的输出端的正极通过导线与所述固态继电器30输出端的正极连接后,所述固态继电器30输出端的负极通过导线与所述的环形加热带32正接线柱连接,所述的开关电源29的输出端的负极通过导线与所述的环形加热带32负接线柱连接,用来为装设在光声池16外表面的所述环形加热带32提供直流电源,以便对所述的光声池16加热。
所述的固态继电器30为市购产品,所述的固态继电器30的受控端通过导线与所述的智能数显温度调节仪31的控制信号输出端连接,用以接收智能数显温度调节仪31的输出控制信号,从而控制所述开关电源29和所述环形加热带32所组成的加热回路的工作状态达到调节所述光声池16内部温度的目的。
所述的环形加热带32为定制产品,数目为2个,每个环形加热带32的宽度为50mm、厚度为1.5mm、内径与所述光声池16的外径相匹配,所述环形加热带32分别装设在所述光声池16的外表面,每个环形加热带32的两端接头通过导线分别与所述固态继电器30和所述开关电源29相连接,用于直接对光声池16进行加热,加热功率250W。
所述的热电偶17为市购产品,由热电偶温度传感器和热电偶控制器构成,所述的热电偶17装设在光声池的外表面上,所述热电偶17的热电偶温度传感器的输入端通过导线与热电偶控制器的输出端连接,热电偶温度传感器的输出端与所述智能数显温度调节仪31的输入端连接,用于检测所述光声池16内部温度,将温度信号传递给智能数显温度调节仪31并显示出来并作为所述固态继电器30的控制信号。
所述的智能数显温度调节仪31为市购产品,所述智能数显温度调节仪31的输入端通过导线与所述的热电偶17连接,用于接收所述的热电偶17检测到的所述光声池16的温度信号,所述的智能数显温度调节仪31的输出端通过导线与所述的固态继电器30的输入端连接,用以控制固态继电器30的导通与关断。
所述的滤光片14和滤光片轮13为市购产品,滤光片14安装在滤光片轮13的孔中,滤光片轮13通过步进电机驱动旋转,用以切换不同的特征滤光片到光路中,滤光片轮13上各滤光片14中心波长分别为7350nm(SO2吸收峰中心波长)、4260nm(CO2吸收峰中心波长)、7780nm(CF4吸收峰中心波长)、18550nm(SO2F2吸收峰中心波长)、7440nm(SOF2吸收峰中心波长),只允许其中心波长的红外光通过,滤掉剩余频带的红外光,通过信号电缆20将滤光片轮13与计算机28连接,计算机28发出信号控制滤光片轮13内的步进电机旋转,进而控制不同特征波长的红外光通过滤光片14经硒化锌窗片15射入所述的光声池16内,在不同波长下的检测即反映了不同气体组分的含量。
实施例2
一种六氟化硫分解组分的自动恒温型光声检测装置,同实施例1,其中:所述的环形加热带32个数为4个,每个环形加热带32的宽度为40mm、厚度为1.2mm、内径与光声池16的外径相匹配,加热功率为200W。
实施例3
一种六氟化硫分解组分的自动恒温型光声检测装置,同实施例1,其中:所述的环形加热带32个数为6个,每个环形加热带32的宽度为20mm、厚度为1mm、内径与光声池16的外径相匹配,加热功率为100W。
实施例4
一种六氟化硫分解组分的自动恒温型光声检测的实验方法,具体步骤如下:
(1)   实验准备
①   光声池和自动恒温***部件安装调试
首先用无水酒精清洗光声池16的内壁,除去池内壁的杂质,待光声池16风干后,再安装微音器19、热电偶17、气压表18、进气管23、出气管24、进气阀门21、出气阀门22、硒化锌窗口片15等部件,在安装硒化锌窗口片15时,在硒化锌窗口片15与光声池16接触处先垫硅胶片后用螺栓压紧。在各螺纹连接处加生料带及密封胶,以保证光声池16有良好的气密性;然后调整宽频红外光源9和光声池16的三维调整光学支架、斩波器11、滤光片轮13、硒化锌透镜10的升降光学支架,保证各部件和光声池16的中心在同一水平线上,使得红外光能够准确直射透过各个部件,射入光声池16。将自动恒温***的加热回路和控制回路分别通过导线依次连接好,接上电源,确认各元件正常工作,环形加热带32装设在光声池16的外表面上,拧紧螺丝,保证环形加热带32紧贴在光声池16外表面。
②   气密性测试
在(1)—①步完成后,首先关闭进气阀门21,打开出气阀门22,然后启动本装置的真空泵25,对光声池16抽真空,当本装置的气压表18显示气压为0.005MPa时,依次关闭出气阀门22和真空泵25,静置光声池12小时,再去观察气压表18示数,如基本保持不变,则说明本装置的光声池16在真空下的气密性良好;打开本装置的进气阀门21和氮气(N2)瓶阀门,向光声池16内冲入N2气体至气压表18示数为0.2MPa,依次关闭进气阀门21和N2瓶阀门,静置光声池12小时,再去观察气压表18示数,如基本保持不变,则说明本装置的光声池16在高气压的情况下气密性良好。
③  清洗光声池
在(1)—②步完成后,先打开出气阀门22,启动所述的真空泵25,对所述的光声池16抽真空,当所述的光声池16真空度为0.005MPa时,依次关闭出气阀门22和真空泵25,再打开所述的SF6气瓶的阀门和进气阀门21,向所述的光声池16内充入SF6 气体,直到光声池16内气压值为0.2MPa时为止,然后依次关闭SF6气瓶的阀门和进气阀门21,对所述的光声池16进行清洗。接着按前述操作步骤,先抽真空,再充入SF6气体清洗,如此重复冲洗2~4次,清洗后通过真空泵25将光声池16抽真空,最后通过进气管23和进气阀门21将待检测的GIS模拟元件6中的SF6局部放电分解气体组分通入光声池16中。
(2)   恒定温度下的参数测量
在(1)步完成后,首先打开宽频红外光源9、斩波控制器12、斩波器11、滤光片轮13、微音器19、气压表18、热电偶17、开关电源29、固态继电器30、智能数显温度调节仪31及锁相放大器27,锁相放大器积分时间1s。
再控制光声池16内的温度,使其恒定在30℃~50℃之间。即通过所述的智能数显温度调节仪31输出方波信号控制所述的固态继电器30的导通与关断,所述的固态继电器30的导通与关断又控制本装置的开关电源29的输出端向所述的环形加热带32输送低压直流电能的多少,从而使光声池16内的温度随之升高或降低,手动调节所述的智能数显温度调节仪31设定值为t1,所述的热电偶17将检测到光声池16内实际温度信号t2传输给所述的智能数显温度调节仪31进行显示和比较:当t2>t1(即光声池内温度的实际值>设定值)时,所述的智能数显温度调节仪31输出的方波信号控制所述的固态继电器30的导通时间变短,使输送给环形加热带32的低压直流电能减少,从而使光声池16温度降低;反之,当t2<t1(即光声池内温度的实际值<设定值)时,所述的智能数显温度调节仪31输出的方波信号控制所述的固态继电器30的导通时间变长,使输送给环形加热带32的低压直流电能增多,从而使光声池16温度升高,此比较过程不断重复,直到光声池16温度稳定在设定值t1(即t1=t2)为止,从而达到了光声池16恒温的目的。
然后在温度恒定后,测量光声池16的各项参数性能。首先测量光声池16的共振频率f,调节斩波控制器12的频率,同时观察锁相放大器27显示的光声信号,当锁相放大器27显示的光声信号达到最大时,记录此时斩波控制器12显示的频率,即为光声池16在此温度下的共振频率f
接着测量光声池16的各种噪声。先测量外部环境噪声值:将宽频红外光源9及斩波器11关闭,记录此时锁相放大器27显示的值,即为环境噪声值;再测量斩波器11噪声值:保持宽谱红外光源9关闭并打开斩波器11,调节斩波器11的频率至共振频率,记录此时锁相放大器27的示数,该示数减去环境噪声值即为斩波器噪声值。最后测量由硒化锌窗口片15吸收和光声池16内壁吸收所造成的噪声值:通过进气管23将光声池16中充入高纯氮气,打开斩波器11及宽频红外光源9,记录此时锁相放大器27显示的数值,即为***总体噪声,用***总体噪声减去环境噪声和斩波器噪声即为硒化锌窗口片15吸收和光声池16内壁吸收造成的噪声值。
再测量气体光声信号与气体浓度的关系系数即响应系数k。用配气***将所要测量的气体配成不同浓度的标准气体,分别通过进气管23和进气阀门21充入光声池16,记录各种浓度气体下锁相放大器27测得的光声信号值,采用一元线性回归拟合的方式计算出气体浓度与光声信号之间的关系系数,即响应系数k
最后计算光声检测***的最低检测限。对于六氟化硫局部放电分解气体组分,用***总体噪声除以各自的响应系数k即可得各种气体组分的最低检测限。
(3)   六氟化硫局部放电分解组分浓度的检测
第(2)步完成后,在其条件下,先通过出气管24、出气阀门22和真空泵25将光声池16抽成真空,后通过进气管23和进气阀门21充入待检测的GIS模拟元件6中的六氟化硫局部放电分解组分,气压为0.1MPa,再通过计算机28控制滤光片轮13旋转,依次将中心波长分别为7350nm(SO2吸收峰中心波长)、4260nm(CO2吸收峰中心波长)、7780nm(CF4吸收峰中心波长)、18550nm(SO2F2吸收峰中心波长)、7440nm(SOF2吸收峰中心波长)的滤光片14旋转至光路中,并依次记下各特征滤光片14所对应的光声信号值 S i (i=1,…,6),最后将锁相放大器27测得的光声信号值输入计算机28,在计算机28上通过公式 S i =kC i +d(i=1,…,6)进行计算(式中k为响应系数, S i 为光声信号值,d为截距,即各种气体组分光声信号与气体浓度关系直线与纵坐标的交点,纵坐标为光声信号值),得到准确的SO2、CO2、CF4、SO2F2、SOF2浓度值 C i ,(i=1,…,6)。
(4)   设备维护
在第(3)步完成后,先打开出气阀门22和真空泵25,将光声池16中的气体抽至室外排放,然后关闭出气阀门22和真空泵25,打开氮气瓶阀门和进气阀门21充入氮气,然后依次打开出气阀门22和真空泵25,将光声池16中的气体抽至室外排放,重复以上操作2~4次,用氮气将光声池16清洗干净,防止SF6局部放电分解组分中的酸性气体腐蚀光声池16。

Claims (2)

1.一种六氟化硫分解组分的自动恒温型光声检测装置,主要包括无晕实验变压器(2)、感应调压器(1)、无局部放电保护电阻(3)、标准电容分压器(4)、无感电阻(5)、GIS模拟元件(6)、宽频高速超大容量数字存储示波器(8)、自动恒温***(7)、红外光声光谱检测***(7),其中:所述的红外光声光谱检测***,主要由宽频红外光源(9)、硒化锌透镜(10)、机械斩波器(11)、斩波器控制器(12)、滤光片轮(13)、滤光片(14)、硒化锌窗口片(15)、光声池(16)、气压表(18)、微音器(19)、信号电缆(20)、进气阀门(21)、出气阀门(22)、进气管(23)、出气管(24)、真空泵(25)、光学支架(26)、锁相放大器(27)及计算机(28)等组成,其特征在于,在所述的红外光声光谱检测***中的光声池(16)的外部装设自动恒温***,所述的自动恒温***主要由开关电源(29)、固态继电器(30)、智能数显温度调节仪(31)、环形加热带(32)、热电偶(17)等组成;
所述的开关电源(29)的输入端通过导线与220V/50Hz的电源连接,所述开关电源(29)的输出端的正极通过导线与所述固态继电器(30)输出端的正极连接后,所述固态继电器(30)输出端的负极通过导线与所述的环形加热带(32)正接线柱连接,所述的开关电源(29)的输出端的负极通过导线与所述的环形加热带(32)负接线柱连接; 
所述的固态继电器(30)的受控端通过导线与所述的智能数显温度调节仪(31)的控制信号输出端连接;
所述的环形加热带(32)的数目为2~6个,每个环形加热带(32)的宽度为20~50mm、厚度为1~1.5mm、内径与所述光声池(16)的外径相匹配,所述环形加热带(32)分别装设在所述光声池(16)的外表面,每个环形加热带(32)的两端接头通过导线分别与所述固态继电器(30)和所述开关电源(29)相连接,加热功率100~250W;
所述的热电偶(17)由热电偶温度传感器和热电偶控制器构成,所述的热电偶(17)装设在光声池的外表面上,所述热电偶(17)的热电偶温度传感器的输入端通过导线与热电偶控制器的输出端连接,热电偶温度传感器的输出端与所述智能数显温度调节仪(31)的输入端连接,将温度信号传递给智能数显温度调节仪(31)进行显示并作为所述固态继电器(30)的控制信号;
所述的智能数显温度调节仪(31)的输入端通过导线与所述的热电偶(17)连接,所述的智能数显温度调节仪(31)的输出端通过导线与所述的固态继电器(30)的输入端连接;
所述的滤光片(14)安装在所述滤光片轮(13)的孔中,滤光片轮(13)通过步进电机驱动旋转,滤光片轮(13)上各滤光片(14)中心波长分别为7350nm即SO2吸收峰中心波长、4260nm即CO2吸收峰中心波长、7780nm即CF4吸收峰中心波长、18550nm即SO2F2吸收峰中心波长、7440nm即SOF2吸收峰中心波长,只允许其中心波长的红外光通过,滤掉剩余频带的红外光,通过信号电缆(20)将滤光片轮(13)与计算机(28)连接,计算机(28)发出信号控制滤光片轮(13)内的步进电机旋转,进而控制不同特征波长的红外光通过滤光片(14)经硒化锌窗片(15)射入所述的光声池(16)内,在不同波长下的检测即反映了不同气体组分的含量。
2.  一种六氟化硫分解组分的自动恒温型光声检测的实验方法,利用权利要求1所述的六氟化硫分解组分的自动恒温型光声检测装置,对GIS模拟元件中的SF6气体的局部放电分解组分进行检测,其特征在于所述方法的具体步骤如下:
(1) 实验准备
① 光声池和自动恒温***部件安装调试
首先用无水酒精清洗光声池(16)的内壁,除去池内壁的杂质,待光声池(16)风干后,再安装微音器(19)、热电偶(17)、气压表(18)、进气管(23)、出气管(24)、进气阀门(21)、出气阀门(22)、硒化锌窗口片(15)等部件,在安装硒化锌窗口片(15)时,在硒化锌窗口片(15)与光声池(16)接触处先垫硅胶片后用螺栓压紧,在各螺纹连接处加生料带及密封胶,以保证光声池(16)有良好的气密性,然后调整宽频红外光源(9)和光声池(16)的三维调整光学支架、斩波器(11)、滤光片轮(13)、硒化锌透镜(10)的升降光学支架,保证各部件和光声池(16)的中心在同一水平线上,使得红外光能够准确直射透过各个部件,射入光声池(16),将自动恒温***的加热回路和控制回路分别通过导线依次连接好,接上电源,确认各元件正常工作,环形加热带(32)装设在光声池(16)的外表面上,拧紧螺丝,保证环形加热带(32)紧贴在光声池(16)外表面;
 ② 气密性测试
在(1)—①步完成后,首先关闭进气阀门(21),打开出气阀门(22),然后启动本装置的真空泵(25),对光声池(16)抽真空,当本装置的气压表(18)显示气压为0.005~0.01MPa时,依次关闭出气阀门(22)和真空泵(25),静置光声池10~15小时,再去观察气压表(18)示数,如基本保持不变,则说明本装置的光声池(16)在真空下的气密性良好,打开本装置的进气阀门(21)和氮气(N2)瓶阀门,向光声池(16)内冲入N2气体至气压表(18)示数为0.2~0.25MPa,依次关闭进气阀门(21)和N2瓶阀门,静置光声池10~15小时,再去观察气压表(18)示数,如基本保持不变,则说明本装置的光声池(16)在高气压的情况下气密性良好;
③ 清洗光声池
在(1)—②步完成后,先打开出气阀门(22),启动所述的真空泵(25),对所述的光声池(16)抽真空,当所述的光声池(16)真空度为0.005~0.01MPa时,依次关闭出气阀门(22)和真空泵(25),再打开所述的SF6气瓶的阀门和进气阀门(21),向所述的光声池(16)内充入SF6 气体,直到光声池(16)内气压值为0.2~0.25MPa时为止,然后依次关闭SF6气瓶的阀门和进气阀门(21),对所述的光声池(16)进行清洗,接着按前述操作步骤,先抽真空,再充入SF6气体清洗,如此重复冲洗2~4次,清洗后通过真空泵(25)将光声池(16)抽真空,最后通过进气管(23)和进气阀门(21)将待检测的GIS模拟元件(6)中的SF6局部放电分解气体组分通入光声池(16)中;
(2) 恒定温度下的参数测量
在(1)步完成后,首先打开宽频红外光源(9)、斩波控制器(12)、斩波器(11)、滤光片轮(13)、微音器(19)、气压表(18)、热电偶(17)、开关电源(29)、固态继电器(30)、智能数显温度调节仪(31)及锁相放大器(27),锁相放大器积分时间1s,再控制光声池(16)内的温度,使其恒定在30℃~50℃之间,即通过所述的智能数显温度调节仪(31)输出方波信号控制所述的固态继电器(30)的导通与关断,所述的固态继电器(30)的导通与关断又控制本装置的开关电源(29)的输出端向所述的环形加热带(32)输送低压直流电能的多少,从而使光声池(16)内的温度随之升高或降低,手动调节所述的智能数显温度调节仪(31)设定值为t1,所述的热电偶(17)将检测到光声池(16)内实际温度信号t2传输给所述的智能数显温度调节仪(31)进行显示和比较,当t2>t1,即光声池内温度的实际值>设定值时,所述的智能数显温度调节仪(31)输出的方波信号控制所述的固态继电器(30)的导通时间变短,使输送给环形加热带(32)的低压直流电能减少,从而使光声池(16)温度降低,反之,当t2<t1,即光声池内温度的实际值<设定值时,所述的智能数显温度调节仪(31)输出的方波信号控制所述的固态继电器(30)的导通时间变长,使输送给环形加热带(32)的低压直流电能增多,从而使光声池(16)温度升高,此比较过程不断重复,直到光声池(16)温度稳定在设定值t1,即t1=t2时为止,从而达到了光声池(16)恒温的目的,然后在温度恒定后,测量光声池(16)的各项参数性能,首先测量光声池(16)的共振频率f,调节斩波控制器(12)的频率,同时观察锁相放大器(27)显示的光声信号,当锁相放大器(27)显示的光声信号达到最大时,记录此时斩波控制器(12)显示的频率,即为光声池(16)在此温度下的共振频率f,接着测量光声池(16)的各种噪声,先测量外部环境噪声值:将宽频红外光源(9)及斩波器(11)关闭,记录此时锁相放大器(27)显示的值,即为环境噪声值,再测量斩波器(11)噪声值:保持宽谱红外光源(9)关闭并打开斩波器(11),调节斩波器(11)的频率至共振频率,记录此时锁相放大器(27)的示数,该示数减去环境噪声值即为斩波器噪声值,最后测量由硒化锌窗口片(15)吸收和光声池(16)内壁吸收所造成的噪声值:通过进气管(23)将光声池(16)中充入高纯氮气,打开斩波器(11)及宽频红外光源(9),记录此时锁相放大器(27)显示的数值,即为***总体噪声,用***总体噪声减去环境噪声和斩波器噪声即为硒化锌窗口片(15)吸收和光声池(16)内壁吸收造成的噪声值,再测量气体光声信号与气体浓度的关系系数即响应系数k,用配气***将所要测量的气体配成不同浓度的标准气体,分别通过进气管(23)和进气阀门(21)充入光声池(16),记录各种浓度气体下锁相放大器(27)测得的光声信号值,采用一元线性回归拟合的方式计算出气体浓度与光声信号之间的关系系数,即响应系数k,最后计算光声检测***的最低检测限,对于六氟化硫局部放电分解气体组分,用***总体噪声除以各自的响应系数k即可得各种气体组分的最低检测限;
(3) 六氟化硫局部放电分解组分浓度的检测
第(2)步完成后,在其条件下,先通过出气管(24)、出气阀门(22)和真空泵(25)将光声池(16)抽成真空,后通过进气管(23)和进气阀门(21)充入待检测的GIS模拟元件(6)中的六氟化硫局部放电分解组分,气压为0.1MPa,再通过计算机(28)控制滤光片轮(13)旋转,依次将中心波长分别为7350nm即SO2吸收峰中心波长、4260nm即CO2吸收峰中心波长、7780nm即CF4吸收峰中心波长、18550nm即SO2F2吸收峰中心波长、7440nm即SOF2吸收峰中心波长的滤光片14旋转至光路中,并依次记下各特征滤光片(14)所对应的光声信号值 S i i=1,…,6,最后将锁相放大器(27)测得的光声信号值输入计算机(28),在计算机(28)上通过公式 S i =kC i +di=1,…,6,进行计算,其中式中k为响应系数, S i 为光声信号值,d为截距,即各种气体组分光声信号与气体浓度关系直线与纵坐标的交点,纵坐标为光声信号值,得到准确的SO2、CO2、CF4、SO2F2、SOF2浓度值 C i i=1,…,6;
(4) 设备维护
在第(3)步完成后,先打开出气阀门(22)和真空泵(25),将光声池(16)中的气体抽至室外排放,然后关闭出气阀门(22)和真空泵(25),打开氮气瓶阀门和进气阀门(21)充入氮气,然后依次打开出气阀门(22)和真空泵(25),将光声池(16)中的气体抽至室外排放,重复以上操作2~4次,用氮气将光声池(16)清洗干净,防止SF6局部放电分解组分中的酸性气体腐蚀光声池(16)。
CN2011104145928A 2011-12-13 2011-12-13 六氟化硫分解组分的自动恒温型光声检测装置及实验方法 Pending CN102519904A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011104145928A CN102519904A (zh) 2011-12-13 2011-12-13 六氟化硫分解组分的自动恒温型光声检测装置及实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011104145928A CN102519904A (zh) 2011-12-13 2011-12-13 六氟化硫分解组分的自动恒温型光声检测装置及实验方法

Publications (1)

Publication Number Publication Date
CN102519904A true CN102519904A (zh) 2012-06-27

Family

ID=46290898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011104145928A Pending CN102519904A (zh) 2011-12-13 2011-12-13 六氟化硫分解组分的自动恒温型光声检测装置及实验方法

Country Status (1)

Country Link
CN (1) CN102519904A (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604769A (zh) * 2013-11-13 2014-02-26 广东电网公司电力科学研究院 Sf6分解产物的傅里叶红外光谱分析方法
CN103868853A (zh) * 2014-03-12 2014-06-18 中国科学院电工研究所 用于六氟化硫气体分解过程实时监测的径向共振光声池
CN104111410A (zh) * 2013-04-16 2014-10-22 国家电网公司 六氟化硫电气设备绝缘故障监测方法、装置及设备
CN104198130A (zh) * 2014-09-19 2014-12-10 国家电网公司 一种sf6气体泄漏的点阵激光诱导击穿光谱检测方法
CN104237126A (zh) * 2014-09-09 2014-12-24 中国科学院电工研究所 一种采用轴向多层滤光片盘结构的光声光谱检测装置
CN104198130B (zh) * 2014-09-19 2017-01-04 国家电网公司 一种sf6气体泄漏的点阵激光诱导击穿光谱检测方法
CN106769975A (zh) * 2016-11-22 2017-05-31 中国科学院合肥物质科学研究院 同位素光谱分析***的温控装置
CN107831119A (zh) * 2017-10-20 2018-03-23 国网重庆市电力公司电力科学研究院 一种六氟化硫分解的微量气体光声检测信号温度校正模型
CN107864525A (zh) * 2017-11-24 2018-03-30 国网内蒙古东部电力有限公司 一种gis设备的加热装置及方法
CN108489681A (zh) * 2018-03-06 2018-09-04 扬州长运塑料技术股份有限公司 一种用于检测塑料燃油箱密封性的全自动生产线
CN108489907A (zh) * 2018-04-10 2018-09-04 中国科学院合肥物质科学研究院 一种氨气检测装置及方法
CN109668867A (zh) * 2019-01-24 2019-04-23 深圳供电局有限公司 气体检测探头
CN109884260A (zh) * 2019-04-12 2019-06-14 国网江苏省电力有限公司 一种气路控制***、方法及气体绝缘组合电器gis设备
CN109990956A (zh) * 2017-12-01 2019-07-09 英飞凌科技股份有限公司 光声传感器、用于检测气密性的方法和***
CN110389106A (zh) * 2019-07-25 2019-10-29 国网重庆市电力公司电力科学研究院 一种sf6分解组分的红外光声光谱定量分析方法
CN111413291A (zh) * 2020-04-09 2020-07-14 中国科学院上海应用物理研究所 一种气体氟化物的红外光谱定量分析方法
CN112113915A (zh) * 2020-10-20 2020-12-22 国网重庆市电力公司电力科学研究院 一种检测二氧化硫组分红外光声光谱的方法及***
CN112730303A (zh) * 2020-12-18 2021-04-30 Oppo广东移动通信有限公司 气体检测方法及装置、终端设备、存储介质
CN113899988A (zh) * 2021-09-01 2022-01-07 广西电网有限责任公司南宁供电局 一种变压器有载分接开关局部放电监测***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080073536A1 (en) * 2006-09-27 2008-03-27 Ir Microsystems Sa Gas detection method and gas detection device
EP2019307A1 (en) * 2007-07-24 2009-01-28 IR Microsystems S.A. Method and gas sensor for performing quartz-enhanced photoacoustic spectroscopy
CN101514960A (zh) * 2009-03-23 2009-08-26 吉林市中准仪表开发有限责任公司 基于光声光谱技术的sf6检测***
CN201724899U (zh) * 2010-08-03 2011-01-26 祁军 六氟化硫气体湿度检测装置
CN101982759A (zh) * 2010-09-29 2011-03-02 重庆大学 局放下六氟化硫分解组分的红外光声光谱检测装置及方法
CN102169085A (zh) * 2010-12-10 2011-08-31 中国科学院安徽光学精密机械研究所 温度可控光声吸收光谱测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080073536A1 (en) * 2006-09-27 2008-03-27 Ir Microsystems Sa Gas detection method and gas detection device
EP2019307A1 (en) * 2007-07-24 2009-01-28 IR Microsystems S.A. Method and gas sensor for performing quartz-enhanced photoacoustic spectroscopy
CN101514960A (zh) * 2009-03-23 2009-08-26 吉林市中准仪表开发有限责任公司 基于光声光谱技术的sf6检测***
CN201724899U (zh) * 2010-08-03 2011-01-26 祁军 六氟化硫气体湿度检测装置
CN101982759A (zh) * 2010-09-29 2011-03-02 重庆大学 局放下六氟化硫分解组分的红外光声光谱检测装置及方法
CN102169085A (zh) * 2010-12-10 2011-08-31 中国科学院安徽光学精密机械研究所 温度可控光声吸收光谱测量装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111410A (zh) * 2013-04-16 2014-10-22 国家电网公司 六氟化硫电气设备绝缘故障监测方法、装置及设备
CN104111410B (zh) * 2013-04-16 2017-03-15 国家电网公司 六氟化硫电气设备绝缘故障监测方法、装置及设备
CN103604769A (zh) * 2013-11-13 2014-02-26 广东电网公司电力科学研究院 Sf6分解产物的傅里叶红外光谱分析方法
CN103868853B (zh) * 2014-03-12 2016-04-13 中国科学院电工研究所 用于六氟化硫气体分解过程实时监测的径向共振光声池
CN103868853A (zh) * 2014-03-12 2014-06-18 中国科学院电工研究所 用于六氟化硫气体分解过程实时监测的径向共振光声池
CN104237126A (zh) * 2014-09-09 2014-12-24 中国科学院电工研究所 一种采用轴向多层滤光片盘结构的光声光谱检测装置
CN104198130B (zh) * 2014-09-19 2017-01-04 国家电网公司 一种sf6气体泄漏的点阵激光诱导击穿光谱检测方法
CN104198130A (zh) * 2014-09-19 2014-12-10 国家电网公司 一种sf6气体泄漏的点阵激光诱导击穿光谱检测方法
CN106769975A (zh) * 2016-11-22 2017-05-31 中国科学院合肥物质科学研究院 同位素光谱分析***的温控装置
CN106769975B (zh) * 2016-11-22 2019-07-09 中国科学院合肥物质科学研究院 同位素光谱分析***的温控装置
CN107831119A (zh) * 2017-10-20 2018-03-23 国网重庆市电力公司电力科学研究院 一种六氟化硫分解的微量气体光声检测信号温度校正模型
CN107864525A (zh) * 2017-11-24 2018-03-30 国网内蒙古东部电力有限公司 一种gis设备的加热装置及方法
US10900932B2 (en) 2017-12-01 2021-01-26 Infineon Technologies Ag Photoacoustic sensor, method for checking a gas-tightness, and system
CN109990956B (zh) * 2017-12-01 2021-12-14 英飞凌科技股份有限公司 光声传感器、用于检测气密性的方法和***
CN109990956A (zh) * 2017-12-01 2019-07-09 英飞凌科技股份有限公司 光声传感器、用于检测气密性的方法和***
CN108489681A (zh) * 2018-03-06 2018-09-04 扬州长运塑料技术股份有限公司 一种用于检测塑料燃油箱密封性的全自动生产线
CN108489681B (zh) * 2018-03-06 2024-04-05 扬州长运塑料技术股份有限公司 一种用于检测塑料燃油箱密封性的全自动生产线
CN108489907A (zh) * 2018-04-10 2018-09-04 中国科学院合肥物质科学研究院 一种氨气检测装置及方法
CN109668867B (zh) * 2019-01-24 2024-02-06 深圳供电局有限公司 气体检测探头
CN109668867A (zh) * 2019-01-24 2019-04-23 深圳供电局有限公司 气体检测探头
CN109884260A (zh) * 2019-04-12 2019-06-14 国网江苏省电力有限公司 一种气路控制***、方法及气体绝缘组合电器gis设备
CN110389106A (zh) * 2019-07-25 2019-10-29 国网重庆市电力公司电力科学研究院 一种sf6分解组分的红外光声光谱定量分析方法
CN111413291A (zh) * 2020-04-09 2020-07-14 中国科学院上海应用物理研究所 一种气体氟化物的红外光谱定量分析方法
CN112113915A (zh) * 2020-10-20 2020-12-22 国网重庆市电力公司电力科学研究院 一种检测二氧化硫组分红外光声光谱的方法及***
CN112730303A (zh) * 2020-12-18 2021-04-30 Oppo广东移动通信有限公司 气体检测方法及装置、终端设备、存储介质
CN113899988A (zh) * 2021-09-01 2022-01-07 广西电网有限责任公司南宁供电局 一种变压器有载分接开关局部放电监测***

Similar Documents

Publication Publication Date Title
CN102519904A (zh) 六氟化硫分解组分的自动恒温型光声检测装置及实验方法
CN101982759B (zh) 局放下六氟化硫分解组分的红外光声光谱检测装置及方法
CN104198393B (zh) Sf6电气设备内分解气体组分在线监测***及方法
CN102495319B (zh) 六氟化硫气体绝缘设备接触面过热性故障的模拟实验方法
CN110568326B (zh) 一种电-热联合老化和气体分解试验装置及应用方法
CN204269439U (zh) 检测六氟化硫分解气体的在线无损采样装置
CN108427088B (zh) 一种密度继电器在线校验装置及在线校验方法
CN206020373U (zh) 一种对gis中sf6气体分解物、纯度及湿度在线监测的装置
CN103412014A (zh) 一种氟化氢气体在线检测仪及方法
CN204817340U (zh) 在线检测仪器自动控制吹扫装置
CN102520289A (zh) 六氟化硫气体绝缘电气设备接触面过热性故障的模拟装置
CN2932374Y (zh) 六氟化硫智能环境监控***及其六氟化硫气体激光探测器
CN203275293U (zh) 一种集中式红外变电站环境气体监测装置
CN213780031U (zh) 一种变压器油中溶解气体在线监测装置
CN212275539U (zh) 一种电缆终端用绝缘硅油电-湿复合老化实验装置
CN111638433B (zh) 一种环境湿度可调的绝缘硅油局部放电分解实验设备及方法
CN101839959A (zh) Sf6设备电气故障定位方法和装置
CN103308576A (zh) 一种六氟化硫分解物测试仪
CN203465246U (zh) 一种变压器油色谱在线监测装置性能检测***
CN107860849A (zh) 模拟空气及有机绝缘材料分解的平台及方法
CN201724899U (zh) 六氟化硫气体湿度检测装置
CN206894122U (zh) 一种封闭母线的防结露装置
CN206848174U (zh) 基于拉曼光谱的便携式sf6分解气体检测装置
CN204612753U (zh) 六氟化硫气体质量现场一体化检测装置
CN209215531U (zh) 基于气体法的高压开关柜局部放电在线监测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120627