CN102452879B - 对于工业c4馏分加氢生产乙烯裂解料的方法 - Google Patents

对于工业c4馏分加氢生产乙烯裂解料的方法 Download PDF

Info

Publication number
CN102452879B
CN102452879B CN201010513951.0A CN201010513951A CN102452879B CN 102452879 B CN102452879 B CN 102452879B CN 201010513951 A CN201010513951 A CN 201010513951A CN 102452879 B CN102452879 B CN 102452879B
Authority
CN
China
Prior art keywords
fraction
hydrogenation
raw material
reactor
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010513951.0A
Other languages
English (en)
Other versions
CN102452879A (zh
Inventor
乔凯
方向晨
艾抚宾
郭蓉
黎元生
徐彤
袁毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201010513951.0A priority Critical patent/CN102452879B/zh
Publication of CN102452879A publication Critical patent/CN102452879A/zh
Application granted granted Critical
Publication of CN102452879B publication Critical patent/CN102452879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种工业C4馏分加氢生产乙烯裂解料的方法,设置2个反应器,两个反应器内均装填非贵金属加氢精制催化剂,第一反应器流出物经过升温后进入第二反应器,第二反应器流出物得到的加氢后工业C4馏分部分循环与新鲜工业C4馏分原料混合进入第一反应器,加氢后工业C4馏分循环量与新鲜工业C4馏分原料的重量比为8∶1~1∶1。本发明方法可以将工业C4馏分加氢为高质量乙烯裂解原料,同时解决了工业C4馏分加氢中存在的放热量大,催化剂易结焦等问题。

Description

对于工业C4馏分加氢生产乙烯裂解料的方法
技术领域
本发明涉及一种液化石油气生产乙烯裂解料的方法,尤其是以C4馏分为反应原料,通过对其中的二烯烃、单烯烃依次加氢处理生产乙烯裂解料的方法。
背景技术
随着炼油工业的发展,尤其是催化裂化技术的不断发展,炼厂气的深加工越来越受到人们的重视。炼厂气的利用有多种路径,其中液化气加氢就是人们普遍关注的课题之一。液化气加氢后具有许多用途,比如,用作乙烯裂解原料、合成顺酐的原料、车用液化气等,其中液化气加氢用作乙烯裂解原料因为其用量较大、涉及生产装置众多、经济效益明显,所以备受关注。
就乙烯原料而言,尽管多年以来,世界乙烯原料的构成基本稳定,并且一直以石脑油和轻烃为主,但是近几年来,由于各国资源的不同,原料市场的变化,乙烯原料出现了向多样化发展的趋势。以丁烷作为乙烯原料的方法就是乙烯原料多样化的发展趋势之一。目前,在美国以丁烷作为乙烯原料已占到3%~5%,用此作为乙烯原料的调剂与补充。
国内近几年来石化企业新建、扩建了多套大型乙烯生装置,造成了乙烯原料短缺,现实状况迫使企业寻找新的乙烯原料来填补这个缺口,液化气加氢作乙烯原料就是解决这一问题的有效方法之一。
工业C4馏分加氢制备乙烯裂解料的方法就是将工业C4馏分中的烯烃和二烯烃加氢,使之成为烷烃。CN1160701A介绍了一种C3馏分的加氢的方法,但该方法目的在于使C3馏分中的炔烃选择加氢,并非对整个馏分(包括单烯烃)的加氢。CN1145891A介绍了一种加氢方法,但此法只适用于C5馏分加氢制戊烷。使用非贵金属加氢催化剂时,单烯烃的转化率较低,加氢产物达不到用于乙烯原料的要求。USP4482767介绍了一种C3(来源于FCC)馏分水合联产液化气的方法,但该方法仅适合于C3馏分。CN01114163.8介绍了一种液化石油气加氢制备车用液化石油气的方法,但该方法不适合于生产乙烯裂解料,因为车用液化石油气的指标为烯烃<5.0%,而乙烯裂解料要求加氢后液化石油气中烯烃含量<2.0%。
CN101429453A提供了一个裂解汽油馏分油一段选择加氢除二烯烃的方法;CN101429454A提供了一个全馏***解汽油选择加氢除二烯烃的方法;CN101434508A提供了一个适合于轻烃齐聚汽油加氢饱和的方法,但此三种方法均不适合于工业C4馏分加氢制备乙烯裂解料。
一般情况下,催化裂化等工艺过程得到的工业C4馏分含烯烃在40v%~60v%,在进行加氢反应时有如下特点:(1)放热量大。比如,含烯烃在60v%的C4馏分,在将其全部烯烃加氢时的反应热为18.05KCa/mol,理想状态下绝热反应温升可达324℃。(2)受热力学平衡影响。在工业C4馏分中反-2-丁烯及异丁烯的含量较高,故以反-2-丁烯为例,其反应温度与平衡常数关系列于表1中。
表1反应温度与平衡常数关系
由表1中数据可知,随着反应温度的升高,平衡常数随之降低。当反应温度在高分别于250℃、300℃、340℃之后,反应平衡常数出现了迅速减小的现象。
从理论上来说,烯烃加氢反应是一个强放热反应,控制步骤为反应控制,如果反应温度较低,尽管反应平衡常数较大,但是反应速度较慢;反之,如果反应温度过高,尽管反应速度较大,但是反应平衡常数较小,最终转化率较低。对于该项而言,反应热的扩散如果不能很好地控制(或者说反应温升不能有效控制),就会将反应控制转为热力学控制,使反应的转化率降低。
在实验中发现,当反应温度超过340℃之后,因受化学平衡的影响,其反应产物中烯烃含量下降较为缓慢。所以,对于工业C4馏分加氢制备乙烯裂解料项目来说,在工业生产中其反应热的移出(有效扩散)是一个必须解决的关键问题。
此外,目前在工业C4馏分加氢生产中还存在如下问题:(1)在工业C4馏分中二烯烃的含量较高时会造成反应床层入口处易结焦,反应床层阻力增加较快,造成生产装置经常停工除焦,以此降低反应床层阻力维持正常生产。(2)当原料中不含硫或硫含量较低时,在二烯烃加氢时,为防止其在高温下发生热聚反应,多数选择钯系催化剂;但当原料中硫含量较高时,再选择钯系催化剂,在二烯烃加氢时,原料中硫就会使催化剂中毒,致使催化剂失去加氢活性。
发明内容
本发明的目的是提供了一种利用工业C4馏分,特别是未经分离的工业C4馏分为原料,经催化加氢生产乙烯裂解料的方法,同时解决了工业C4馏分油中二烯烃含量高、硫含量高,不易达到乙烯汽裂解原料质量的要求。
经过大量研究发现,C4馏分加氢过程中,反应有如下特点:
(1)根据反应动力学研究结果可知,该项反应放热是不均匀的,在通过催化剂床层反应时,反应停留时间在整个停留时间的1/4~1/3时,反应放热量就已达到整个反应热的75%~80%。
(2)二烯烃加氢是一个快速反应,并且适合于低温、液相加氢。采用Ni系催化剂,1,3-丁二烯(以下简称丁二烯)在反应压力>3.0MPa,温度>150℃条件下就可发生加氢反应。对于丁二烯含量较高(小于4.0%)、硫含量也较高(>5mg/M3)的C4馏分物料,采用贵金属加氢精制催化剂会造成催化剂快速失活。
(3)丁二烯在C4馏分中含量达到3.0%时,反应温度达到120℃、停留时间2~3h,就可发生热聚反应;大于140℃、丁二烯热聚反应会明显加速。基于此,对于丁二烯含量较高(小于4.0%)的C4馏分加氢反应,为避免其中的丁二烯发生热聚反应,可以有两个方法:第一个方法是稀释反应进料,此方法的作用有两个,其一相对降低原料中的二烯烃的浓度,提高了物料在反应床层所通过时的线速度;其二利于取出反应热,降低了反应温度;第二个方法是提高反应压力以此降低反应温度。
(4)根据表2、3数据还可以得到如下结论:在不计氢气影响条件下,要想二烯烃为液相,反应温度应<150℃,反应压力要求>3.6MPa;如果计氢气的影响,反应温度应<140℃,反应压力要求>4.2MPa。
(5)C4馏分单烯烃加氢,液相反应条件下更为有利,但气相也可以。
表2临界温度
名称 临界温度Tc(℃)
正丁烷 152.01
异丁烷 134.98
顺-2-丁烯 162.4
反-2-丁烯 155.46
1-丁烯 146.4
异-丁烯 144.74
1,3-丁二烯 152
表3反应产物各组份蒸汽压
(6)要满足反应温度<150℃,进料中二烯烃含量小于2.0%的条件,可采用进料加大料稀释比。针对上述研究,对于工业C4馏分中二烯烃的含量较高(1%~4%)、硫含量较高(>5mg/M3)的C4馏分加氢处理方法,本发明提出如下技术方案。
本发明工业C4馏分加氢生产乙烯裂解料的方法包括如下内容:设置2个反应器,两个反应器内均装填非贵金属加氢精制催化剂,第一反应器流出物经过升温后进入第二反应器,第二反应器流出物得到的加氢后工业C4馏分部分循环与新鲜工业C4馏分原料混合进入第一反应器。
本发明方法中,第一反应器的入口温度为100~160℃,优选为120~150℃;反应压力为2.5~16.5MPa,优选为3.0~6.0MPa;原料液时体积空速(新鲜工业C4馏分原料的体积空速)为0.4~25h-1,优选为4~8h-1,氢油体积比(标准状态下氢气与新鲜工业C4馏分原料的体积比)为200∶1~1500∶1,优选为300∶1~1000∶1。
本发明方法中,第二反应器的入口温度为170~250℃,优选为190~220℃;反应压力为2.5~16.5MPa,优选为3.0~6.0MPa;原料液时体积空速(新鲜工业C4馏分原料的体积空速)为0.4~25h-1,优选为1~4h-1,氢油体积比(标准状态下氢气与新鲜工业C4馏分原料的体积比)为200∶1~1500∶1,优选为300∶1~1000∶1。
本发明方法中,加氢后工业C4馏分循环量与新鲜工业C4馏分原料的重量比(即循环物料:新鲜原料重量比)为8∶1~1∶1,优选为4∶1~2∶1。
本发明方法中,反应所用的氢气纯度为55v%~99v%,可以炼厂的低分气(58v%~88v%)、合成氨厂的合成气(氢:75v%)、加氢装置外排气等为其它加氢装置无法利用的氢源。新鲜工业C4馏分原料可以是催化裂化装置的未经精制的物料。
本发明方法中,非贵金属加氢精制催化剂一般以氧化铝为载体,以钨、钼、镍、钴中的一种或几种为活性组分,以氧化物计的活性组分重量含量为15%~40%,催化剂中可以含有适宜的助剂,可以采用商品加氢精制催化剂,如抚顺石油化工研究院研制生产的LH2010-A系列加氢精制催化剂,也可以按本领域现有方法制备。
本发明方法通过优化工业C4馏分加工流程,以及加工流程中的各个操作条件,有效地解决了工业C4馏分加氢过程存在的各种问题,使用工业工业C4馏分可以直接生产高质量的乙烯裂解原料,提高了工业C4馏分的利用价值。
本发明方法解决了工业工业C4馏分中硫含量高、烯烃含量高、二烯烃含量高等带来的催化剂中毒、催化剂结焦、运转周期短、反应温升大、受热力学平衡影响造成的加氢产物烯烃含量高等各种问题,获得了良好的技术效果。
附图说明
图1是本发明一种具体工艺流程示意图。
其中:1-C4馏分原料,2-氢气,3-第一反应器,4-加热器,5-第二反应器,6-产物冷却器,7-反应产物出口。
具体实施方式
下面通过具体实施方式进一步说明本发明的方案和效果。
具体实施方式中使用的催化剂抚顺石油化工研究院研制生产的LH2010-A加氢精制催化剂,可以再生使用。理化性质如表4。
表4LH2010-A催化剂的理化性质
实施例1
反应所用催化剂为W-Mo-Ni-Co(催化剂牌号LH2010-A);反应工艺为二段绝热反应器(中间加热)。
反应原料:氢气为电解净化氢,纯度>99%;碳四馏分取自某炼油厂,组成见表5。反应为上进料,反应物料从第二反应器底部流出,经冷却后进入分离器中,尾气从分离器项部排出,底部液相定时取样,用气相色谱分析组成,具体反应条件及结果列于表6、7、8。
表5工业C4馏分加氢反应器工业C4馏分进料的主要性质
分析项目(体积含量)
丙烷,% <0.10
异丁烷,% 29.13
正丁烷,% 10.01
丙烯,% <0.10
丁烯-1,% 14.28
异丁烯,% 17.38
反丁烯-2,% 16.54
顺丁烯-2,% 11.87
碳五,% 0.24
碳二,% <0.10
丁二烯,% 0.55
总硫 26
烯烃总计% 60.17
表6第一反应器工艺条件
表7第二反应器工艺条件
表8加氢后的工业C4馏分主要性质
分析项目(体积浓度)
产物中烷烃,% 99.17
产物中丁二烯,% -
产物中未加氢烯烃% 0.83
实施例2
反应所用催化剂为W-Mo-Ni-Co(催化剂牌号LH2010-A);反应工艺为二段绝热反应器(中间加热)。
反应原料:氢气为电解净化氢,纯度>99%;碳四馏分取自某炼油厂(未脱硫),组成见表9。反应为上进料,反应物料从第二反应器底部流出,经冷却后进入分离器中,尾气从分离器顶部排出,底部液相定时取样,用气相色谱分析组成,具体反应条件及结果列于表10、11、12。
表9工业C4馏分加氢反应器工业C4馏分进料的主要性质
分析项目(V%)
丙烷,% <0.10
异丁烷,% 29.13
正丁烷,% 10.01
丙烯,% <0.10
丁烯-1,% 14.28
异丁烯,% 17.38
反丁烯-2,% 16.54
顺丁烯-2,% 11.87
碳五,% 0.24
碳二,% <0.10
丁二烯,% 0.55
硫醇性硫,mg/m3 4
总硫,mg/m3 500
烯烃总计% 60.17
表10第一反应器工艺条件
表11第二反应器工艺条件
表12加氢后的工业C4馏分主要性质
分析项目
产物中烷烃,%(v/v) 99.23
产物中丁二烯,%(v/v) -
产物中未加氢烯烃%(v/v) 0.77

Claims (4)

1.一种对于工业C4馏分加氢生产乙烯裂解料的方法,其特征在于包括如下内容:设置2个反应器,反应工艺为二段绝热反应器,两个反应器内均装填非贵金属加氢精制催化剂,第一反应器流出物经过升温后进入第二反应器,第二反应器流出物得到的加氢后工业C4馏分部分循环与新鲜工业C4馏分原料混合进入第一反应器,加氢后工业C4馏分循环量与新鲜工业C4馏分原料的重量比为8∶1~1∶1;工业C4馏分中二烯烃的体积含量为1%~4%,硫含量>5mg/M3
其中第一反应器的入口温度为100~150℃,反应压力为3.0~16.5MPa,新鲜工业C4馏分原料的体积空速为5.0~25h-1,氢气与新鲜工业C4馏分原料的体积比为200∶1~1500∶1;第二反应器的入口温度为170~250℃,反应压力为2.5~16.5MPa,新鲜工业C4馏分原料的体积空速为0.4~25h-1,氢气与新鲜工业C4馏分原料的体积比为200∶1~1500∶1;
非贵金属加氢精制催化剂以氧化铝为载体,以钨、钼、镍、钴中的一种或几种为活性组分,以氧化物计的活性组分重量含量为15%~40%。
2.按照权利要求1所述的方法,其特征在于:第一反应器的入口温度为120~150℃,反应压力为3.0~6.0MPa,新鲜工业C4馏分原料的体积空速为5.0~8h-1,氢气与新鲜工业C4馏分原料的体积比为300∶1~1000∶1。
3.按照权利要求1所述的方法,其特征在于:第二反应器的入口温度为190~220℃,反应压力为3.0~6.0MPa,新鲜工业C4馏分原料的体积空速为1~4h-1,氢气与新鲜工业C4馏分原料的体积比为300∶1~1000∶1。
4.按照权利要求1所述的方法,其特征在于:加氢后工业C4馏分循环量与新鲜工业C4馏分原料的重量比为4∶1~2∶1。
CN201010513951.0A 2010-10-14 2010-10-14 对于工业c4馏分加氢生产乙烯裂解料的方法 Active CN102452879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010513951.0A CN102452879B (zh) 2010-10-14 2010-10-14 对于工业c4馏分加氢生产乙烯裂解料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010513951.0A CN102452879B (zh) 2010-10-14 2010-10-14 对于工业c4馏分加氢生产乙烯裂解料的方法

Publications (2)

Publication Number Publication Date
CN102452879A CN102452879A (zh) 2012-05-16
CN102452879B true CN102452879B (zh) 2015-12-16

Family

ID=46036612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010513951.0A Active CN102452879B (zh) 2010-10-14 2010-10-14 对于工业c4馏分加氢生产乙烯裂解料的方法

Country Status (1)

Country Link
CN (1) CN102452879B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273756B (zh) * 2014-06-18 2017-06-06 中国石油化工股份有限公司 一种焦化干气加氢制备乙烯裂解料的催化剂级配方法
CN106753562B (zh) * 2015-11-20 2018-08-14 中国石油化工股份有限公司 一种干气加氢生产乙烯裂解料的工艺
CN108069815B (zh) * 2016-11-11 2020-10-16 中国石油化工股份有限公司抚顺石油化工研究院 一种制备高纯度丁烷的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101081998A (zh) * 2006-05-31 2007-12-05 中国石油化工股份有限公司 一种c4馏分的加氢方法
CN101113126A (zh) * 2006-07-26 2008-01-30 李莉 含烯烃的轻烃催化加氢的方法
CN101538479A (zh) * 2008-03-19 2009-09-23 中国石油天然气股份有限公司 一种碳四烯烃低温临氢烷基化生产烷基化油的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101081998A (zh) * 2006-05-31 2007-12-05 中国石油化工股份有限公司 一种c4馏分的加氢方法
CN101113126A (zh) * 2006-07-26 2008-01-30 李莉 含烯烃的轻烃催化加氢的方法
CN101538479A (zh) * 2008-03-19 2009-09-23 中国石油天然气股份有限公司 一种碳四烯烃低温临氢烷基化生产烷基化油的方法

Also Published As

Publication number Publication date
CN102452879A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
CN102443430B (zh) 一种液化石油气加氢制备乙烯裂解料的方法
CN103121895B (zh) 稠环芳烃制取单环芳烃方法
CN103121897B (zh) 由含有稠环烃的混合物制取芳烃的方法
CN101880549A (zh) 一种液化气馏分的加氢方法
CN104611056A (zh) 一种低温费托合成产物的加氢处理方法
CN101818077B (zh) 裂解气中高不饱和烃选择加氢的方法
CN103382147B (zh) 一种提高混合碳四利用价值的方法
CN109280561A (zh) 一种石脑油或轻烃低温催化反应制丙烯并联产芳烃的方法
CN100348560C (zh) 由轻质碳五馏份制备戊烷的方法
CN112007646A (zh) 一种碳四烃全加氢催化剂及其制备方法和碳四烃加氢方法
CN101333461B (zh) 一种利用石油裂解干气与c4组分生产清洁燃料油的方法
CN102452879B (zh) 对于工业c4馏分加氢生产乙烯裂解料的方法
CN104449835B (zh) 裂解碳九及其以上烃加氢的方法
CN102690677A (zh) 一种液化气烷烃芳构化与烯烃芳构化组合生产高辛烷值清洁汽油的方法
CN102851063B (zh) 一种干气和液化气芳构化生产高辛烷值清洁汽油的方法
CN106753561B (zh) 一种液化气加氢制备乙烯裂解料的方法
CN102311783B (zh) 一种液化石油气-焦化汽油加氢组合工艺方法
CN102311787B (zh) 液化石油气加氢制备乙烯裂解料的方法
CN103864564A (zh) 一种甲醇制丙烯副产物加工工艺方法
CN110437873B (zh) 一种富含碳四碳五烷烃的烃油的利用方法
CN103834437B (zh) 一种低碳烃临氢芳构化的工艺方法
CN102311760B (zh) 一种液化石油气加氢制备乙烯裂解料的方法
CN108085061A (zh) 液化气加氢生产乙烯裂解料的方法
CN102452880B (zh) 对于工业c4馏分加氢制备乙烯裂解料的方法
CN107955640A (zh) 裂解c5馏份加氢的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant