CN102395522A - 利用碳纳米管制备的纳米粒子及其制备方法 - Google Patents

利用碳纳米管制备的纳米粒子及其制备方法 Download PDF

Info

Publication number
CN102395522A
CN102395522A CN2010800067321A CN201080006732A CN102395522A CN 102395522 A CN102395522 A CN 102395522A CN 2010800067321 A CN2010800067321 A CN 2010800067321A CN 201080006732 A CN201080006732 A CN 201080006732A CN 102395522 A CN102395522 A CN 102395522A
Authority
CN
China
Prior art keywords
cnt
particle
nano
aluminium
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800067321A
Other languages
English (en)
Inventor
苏康杓
金恩先
李永熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sungkyunkwan University Foundation for Corporate Collaboration
Dayou Smart Aluminium Co Ltd
Original Assignee
Dayou Smart Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dayou Smart Aluminium Co Ltd filed Critical Dayou Smart Aluminium Co Ltd
Publication of CN102395522A publication Critical patent/CN102395522A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0066Shaping the mixture by granulation, e.g. flaking
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/001Fillers, gelling and thickening agents (e.g. fibres), absorbents for nitroglycerine
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种利用碳纳米管的纳米粒子的制备方法及通过该方法制备的纳米粒子。在该公开的方法中,利用具有物理的稳固结构和化学的稳定的键的碳纳米管,将由金属、聚合物及陶瓷等组成的粉末粒子碾磨为纳米尺寸。而且,通过该方法制备的纳米粒子尺寸小且包含碳纳米管。因此,当该方法用于强氧化性的金属时,纳米粒子可以应用于例如固体燃料或火药等需要可燃性的相关领域。此外,碳纳米管具有优良的机械性能和导电性,因此可以应用于相关的产品。

Description

利用碳纳米管制备的纳米粒子及其制备方法
技术领域
本发明涉及一种纳米粒子的制备方法,其中利用碳纳米管(CarbonNanotube,CNT)将粉末粒子研磨成纳米尺寸。
背景技术
纳米粒子,具有远小于紫外线或可见光的波长的粒子尺寸。而且,其形成相对于纳米粒子质量而言的相对较大的晶界(grain boundary),相比于疏松(bulk)材料,在该晶界的界面中有更多的原子或分子。因此不仅能形成微/纳米混合物结构,而且能根据粒子的尺寸和形态(morphology)改变物理、化学、光学特性。
鉴于纳米粒子的应用,在各种领域中的研究已经积极开展,例如在催化剂、光电子、新材料、非线性光学以及包含医学的生物技术领域中。
纳米粒子可以为有机材料(例如,聚合物)、无机材料(例如,金属)以及陶瓷材料或诸如此类。在纳米粒子的制备过程中,有机纳米粒子可以通过例如悬浮聚合、乳液聚合、分散聚合和自组装或诸如此类的聚合法来制备,无机纳米粒子可以通过有机金属前体的热分解法、真空沉积法、胶质法、电解及非电解还原法等来制备。
作为利用溶液技术的例子,第10-2006-0101844号韩国专利申请公开了一种银纳米粒子的制备方法,该方法中,将包含银的化合物溶解在极性溶剂中,然后使用还原剂。利用该方法制备的银纳米粒子虽然具有均匀性,但是需要复杂的制备工艺,因此在产量方面有限制。
作为纳米粒子的制备方法的另外一个例子,第10-2007-7004335号韩国专利申请公开了一种蒸汽冷凝方法,该方法中,通过高温和高度真空使金属蒸发,然后使其快速冷凝。将蒸发的气态的金属原子迅速冷却时,也迅速地实现冷凝。因此,生成了大量的结晶核,并且结晶和粒子变得较小。利用这样的原理生成纳米粒子。该方法中,需要高温和高度真空,并且为了纳米粒子的制备,必须使金属完全地蒸发。因此,在产量方面有限制。
此类常规的纳米粒子制备方法使用所谓的从下而上(bottom-up)的方法,该方法是用于使原子或离子簇生长的纳米结构制备方法。为此,该方法具有在初期需要生成原子或离子的过程以及必须在纳米尺寸进行结晶控制的缺点。在溶液技术中,必须控制密度;在蒸发技术中,必须生成气体原子。因此,在产量方面有限制。
发明内容
本发明的目的是提供一种利用碳纳米管(Carbon Nanotube,CNT)制备纳米粒子的方法。碳纳米管在结构上是稳定的,并且在机械性能方面优良。因此,碳纳米管通过与物质碰撞可以碾磨该物质。此外,由于碳纳米管具有纳米尺寸,将物质碾磨成纳米尺寸是可能的。在本发明中,提供了一种利用该与常规方法不同的新方法将疏松(bulk)材料制备为纳米粒子的方法。
本发明的另一目的是提供一种用该方法制备的纳米粒子。
根据本发明的一个方面,本发明提供了一种纳米粒子的制备方法,该方法包括以下步骤:
(i)制备粉末粒子和碳纳米管的混合物;以及
(ii)球磨(ball mill)该混合物。
所述方法还可以包括在所述步骤(i)中用氩气(Ar)净化(purging)的步骤。
所述步骤(ii)中,球磨(ball mill)可以以100rpm至5000rpm进行0.5小时至12小时,以便碾磨粉末粒子和碳纳米管的混合物。
根据本发明的另一方面,本发明提供了一种纳米粒子的制备方法,该方法包括以下步骤:
(i)混合粉末粒子和碳纳米管;
(ii)放入球以与混合物进行碰撞;
(iii)将混合物和球密封在容器内;以及
(iv)通过物理旋转包含有混合物和球的容器以球磨(ball mill)混合物。
根据本发明的再一方面,本发明提供了一种纳米粒子复合材料,该纳米粒子复合材料包含通过球磨(ball mill)利用碳纳米管碾磨的粉末粒子,以及碳纳米管。
本发明中,用于制备纳米粒子的碳纳米管可以是选自由单壁碳纳米管(Single Walled Carbon Nanotube,SWNT)、双壁碳纳米管(Duble-walled CarbonNanotube,DWNT)、薄多壁碳纳米管(Thin Multi-walled Carbon Nanotube)和多壁碳纳米管(Multi-walled Carbon Nanotube,MWNT)组成的组中的至少一种。碳纳米管包含具有sp2杂化键的碳,并且形成结构上稳定的形状。为此,显示出比钢强100倍以上的机械性能。
为了实行本发明的方法,需要使碳纳米管经受物理冲击,使其可以碾磨粉末粒子。为此,需要物理冲击碳纳米管的球磨(ball mill)过程。此外,一般的球磨中,在碾磨粉末粒子的过程中,粉末粒子的尺寸将减小。然而,减小到临界尺寸时,粒子的尺寸由于形成粒子间的接合(welding)而又将增大。碳纳米管附着在粉末粒子的表面,从而防止这样的问题产生。
本发明的制备方法分为通过球磨的粉末粒子碾磨过程和利用碳纳米管的纳米粒子生成过程。为了有效地生成纳米粒子,在球磨步骤之前,还可以包括提高碳纳米管的结晶度的热处理步骤。
本发明中,纳米粒子可以包括金属、聚合物或陶瓷纳米粒子,但是根据需要还可以包括各种其他材料。
本发明中,金属可以选自,但不限于,由金、银、铜、铝、锰、铁、锡、锌和钛等组成的组。
此外,聚合物可以选自,但不限于,由聚磷腈、聚交酯、聚交酯-共-乙交脂-聚己内酯、聚酐、聚羟基丁二酸、聚氰基丙烯酸烷基酯、聚羟基丁酯、聚碳酸脂、聚原酸酯、聚乙二醇、多聚赖氨酸、聚乙交酯、聚甲基丙烯酸甲酯、聚乙烯吡咯烷酮等组成的组。
此外,陶瓷可以选自,但不限于,由氧化物(例如氧化铝、氧化锆等)、碳化物(例如碳化钨(WC)、碳化钛(TiC)、碳化硅(SiC)等)、氮化物(例如立方氮化硼(CBN,cubic boron nitride)、氮化钛(TiN)、氮化硅(Si3N4)等)等组成的组。
本发明的说明书中使用的术语“粉末粒子”表示包含金属材料、聚合物材料和陶瓷材料,并且直径范围为1微米至数十厘米的粒子。
本发明的说明书中使用的术语“纳米粒子”表示直径范围为20nm至900nm的粒子。
根据本发明,碳纳米管用于制备由金属、聚合物和陶瓷等组成的纳米粒子。因此,其可广泛应用于使用纳米粒子的各种领域,例如医学、光学和材料等。此外,这样制备的纳米粒子显示出材料特性、由材料变为纳米粒子引起的性质以及包含在纳米粒子中的碳纳米管的特性。例如,利用碳纳米管制备铝纳米粒子时,纳米粒子可以包括铝的轻和强氧化的性质,纳米粒子的高比表面积和较小的晶体尺寸,以及碳纳米管的机械、热和电的特性。
附图说明
图1示出了根据本发明的利用碳纳米管制备纳米粒子的方法的每个步骤的机制的概念图;
图2示出了根据本发明的优选实施例的利用碳纳米管制备铝纳米粒子的过程;
图3示出了根据本发明的优选实施例的利用碳纳米管制备的铝纳米粒子的制备前后的照片;
图4示出了根据本发明的优选实施例的用于利用碳纳米管制备铝纳米粒子的碳纳米管和铝的电子显微镜(SEM)照片;
图5示出了根据本发明的优选实施例的利用碳纳米管制备的铝纳米粒子的电子显微镜(SEM)照片;
图6示出了根据本发明的优选实施例的利用碳纳米管制备的铝纳米粒子的能谱色散谱(EDS)分析结果;
图7示出了根据本发明的优选实施例的利用碳纳米管制备的铝纳米粒子的透射电镜(TEM)分析结果;
图8示出了根据本发明的优选实施例的利用碳纳米管制备的铝纳米粒子的粒子尺寸测量结果(DLS);
图9示出了根据本发明的优选实施例的利用碳纳米管制备的铝纳米粒子的试验样品的机械性质测量结果;
图10示出了使用根据本发明的优选实施例的利用碳纳米管制备的铝纳米粒子的铸造用铝的导电性的测量结果;
图11示出了根据本发明的优选实施例的利用碳纳米管制备的铝纳米粒子的氧化性质测量的照片;
图12示出了通过测量根据本发明的优选实施例的利用碳纳米管制备的铝纳米粒子的氧化性质获得的差热分析(DTA)结果;
图13示出了根据本发明的优选实施例的利用碳纳米管制备的聚合物纳米粒子的制备前后的照片;
图14示出了根据本发明的优选实施例的利用碳纳米管制备的聚合物纳米粒子的电子显微镜(SEM)照片;
图15示出了根据本发明的优选实施例的利用碳纳米管制备的陶瓷纳米粒子的制备前后的照片;
图16示出了根据本发明的优选实施例的利用碳纳米管制备的陶瓷纳米粒子的制备前后的电子显微镜(SEM)照片;
图17示出了根据本发明的优选实施例的利用碳纳米管制备的纳米粒子的适用性的概念图;
图18示出了根据本发明的优选实施例的利用碳纳米管制备的铁纳米粒子的制备前后的电子显微镜(SEM)照片;以及
图19示出了根据本发明的优选实施例的利用碳纳米管制备的钛纳米粒子的制备前后的电子显微镜(SEM)分析照片。
具体实施方式
本发明提供了一种利用碳纳米管制备纳米粒子的方法。碳纳米管包含具有sp2杂化键的碳,并且形成结构上稳定的形状。因此,显示出比钢强100倍以上的机械性能。根据本发明的方法,通过物理力,此类碳纳米管与物质碰撞,从而碾磨该物质。
本发明的制备方法主要包含通过球的碾磨步骤和通过碳纳米管的碾磨步骤。图1示出了本发明的机制的概念图。为了实现本发明,如图1(a)所示,在球磨过程中,需要进行通过球的研磨步骤。由于先进行了通过球的粉末粒子的研磨步骤,粒子在没有被进一步研磨时通常会接合(welding)在一起。为此,通过球磨碾磨的方法在减小粒子的尺寸方面存在限制。对比之下,使用碳纳米管,可以抑制粒子接合(welding)在一起。而且碳纳米管会碾磨粒子。图1(b)所示的概念图,示出了碳纳米管将微米尺寸的粒子碾磨成纳米尺寸的粒子的机制。通过这样的通过碳纳米管碾磨微粒的机制,可以碾磨由各种材料(金属、聚合物、陶瓷或诸如此类)组成的粒子。
以下,参考实施例对本发明进行更详细的说明。但是,以下实施例仅是例示性的,而本发明的范围不限于此。本发明中所引用文献的内容以引用的方式并入到本发明的说明书中。
实施例
实施例1-1:利用碳纳米管制备铝纳米粒子
本发明的实施例基于图2所示的铝纳米粒子制备过程。使用厚10~20nm、长10~20μm的多层碳纳米管(Hanwha Nanotech(韩华纳米科技),CM95)作为碳纳米管。尺寸为70μm的铝粉末购自Samchun Chemical(三田化学)。将铝粒子和碳纳米管放入由SKD11组成的不锈钢球磨罐(Taemyong science(太明科学)),然后用惰性气体(Ar)进行净化(purging)以防止铝的氧化。碳纳米管以50wt%使用。进行球磨(ball mill)时,以400rpm碾磨1小时、3小时、6小时和12小时。此处,用于碾磨的球为直径为5mm的氧化锆球(Daehan(大韩),DH.ML 1032)。
实施例1-2:制备的铝纳米粒子的分析
一、照片分析
图3示出了利用碳纳米管制备的铝纳米粒子时,用数码相机(Nikon(尼康),koolpix-3700)观察的铝纳米粒子试验样品的照片。图3(a)示出了碾磨步骤前50wt%碳纳米管和铝粒子的照片。图3(b)示出了碾磨步骤后的铝纳米粒子的照片。与碾磨步骤前的体积相比,铝纳米粒子的体积增加。由此,可以发现铝粒子微粒化。
二、电子显微镜(SEM)分析
图4示出了纳米粒子制备过程前的原(Raw)样品。图4(a)为碳纳米管在30,000倍下观察的电子显微镜(Scanning Electron microscope,SEM)的照片(JEOL(日本电子),JSM700F)。碳纳米管的直径为10~20nm,并且长度为10~20μm。图4(b)为原(Raw)铝在2,000倍放大倍率下观察的照片。观察到的铝粒子尺寸不均,且它们中的大部分为10μm以上。
图5示出了利用碳纳米管制备的铝纳米粒子的电子显微镜照片。图5(a)为球磨1小时后在10,000倍放大倍率下观察的电子显微镜照片。碾磨1小时后,铝粒子形成块,但是表面上可观察到纳米粒子。图5(b)~(d)为碾磨3~12小时后的电子显微镜照片。通过电子显微镜分析,发现3小时碾磨后,铝粒子完全地变成纳米粒子。因此,发现将铝粒子变为纳米粒子的过程发生在1~3小时范围内。
三、成分分析(EDS)
图6示出了由能谱色散谱(Energy Dispersive Spectroscopy,EDS)(牛津(Oxford))获得的利用碳纳米管制备的铝纳米粒子的成分分析结果。成分分析是在将疏松铝粒子碾磨1小时后进行的。图6(a)示出了EDS的成分光谱。图6(b)示出了基于图6(a)的光谱获得的定量成分分析表。在分析表中,由于包含碳成分,因此可以推定铝纳米粒子中包含碳纳米管。
四、透射电子显微镜(TEM)分析
图7示出了通过透射电子显微镜(Transmission Electron Microscope,TEM)(JEOL(日本电子),JEM2100F)观察的铝纳米粒子的照片。通过透射电子显微镜,能观察粒子内的碳纳米管。通过透射电子显微镜观察实验样品是在将铝粒子碾磨1小时后进行的。图7(a)示出了一簇铝纳米粒子的测量结果。图7(b)~(d)示出了图7(a)的测量结果的放大分析结果。当分析一簇纳米粒子时,可观察到纳米粒子的内部和之间包含有碳纳米管。通过该分析结果,可以发现碳纳米管起到碾磨铝粒子的作用。
五、通过动态光散射(Dynamic Light Scattering,DLS)分析铝纳米粒子 的尺寸和分布
图8示出了通过DLS(Photal otsuka electronics(丰达大冢电子),ELS-8000)获得的按照铝的尺寸的分布的测量结果。本实施例中,测量了在利用5wt%的碳纳米管球磨不超过1小时期间的粒子尺寸分布。图8中,x轴为球磨时间,y轴为百分比。Ds为通过测量粒子尺寸为小于1μm的组获得的结果,D1为通过测量粒子尺寸为大于1μm的组获得的结果。从球磨开始30分钟后,在粒子尺寸分布中,粒子尺寸为小于1μm的粒子的比例和粒子尺寸为大于1μm的粒子的比例是彼此相似的(大约50%)。从球磨开始45分钟后,粒子尺寸为小于1μm的粒子的比例为大约80%,其中制备了大量的纳米粒子。因此,可以发现将铝粒子变为纳米尺寸取决于球磨时间。
六、机械性能分析
本实施例中,测量了通过本发明制备的铝纳米粒子的试验样品的机械性能。对本实施例,用放电等离子烧结法烧结了利用碳纳米管制备的铝纳米粒子。烧结是为了获得疏松粉末。已知随着粒子尺寸减小,粉末的机械性能提高。图9(a)示出了通过放电等离子烧结法获得的试验样品的硬度的测量值。硬度是根据碳纳米管的浓度测量的。在未利用碳纳米管获得的试验样品中,硬度为50Hv,而利用30wt%碳纳米管制备的试验样品中,硬度为500Hv以上。此外,将用与上述同样的方法制备的试验样品处理成拉伸试验样品,然后测量其拉伸性能。原(Raw)铝显示出93Mpa的拉伸应力。利用1wt%碳纳米管制备的试验样品显示出134Mpa的拉伸应力,利用5wt%碳纳米管制备的试验样品显示出167Mpa的拉伸应力。即,拉伸应力增加了大约80%。原(Raw)铝显示出杨氏模量为372Mpa,碳纳米管为1wt%的,显示出杨氏模量为650MPa,碳纳米管为5wt%的,显示出杨氏模量839MPa。即,杨氏模量提高了2倍以上。因此,可以发现利用碳纳米管制备的纳米粒子显示出提高了的机械性能。
七、电性质分析
本实施例中测量了利用碳纳米管制备的纳米粒子的试验样品的导电性。将铝疏松粒子添加到包含碳纳米管的铝纳米粒子中,使粒子接合,然后将粒子制成几毫米的大小。随后,将接合(welding)的粒子添加到常规合金ALDC 12.1中(Woosin Metal Co.Ltd(宇信金属股份公司),KSD2331),随后熔解。图10示出了将利用碳纳米管制备的试验样品熔解在其中的合金的导电性的测量结果。原(Raw)试验样品显示出电阻为84ohm/sq,而包含0.5wt%碳纳米管的试验样品显示出电阻为52ohm/sq,包含1wt%碳纳米管的试验样品显示电阻为50ohm/sq。通过本实施例的结果,发现当使用利用碳纳米管制备的纳米粒子时,可达到提高了的导电性。
八、可燃性分析
本实施例中测量了铝纳米粒子的氧化性。一般而言,已知铝是强氧化性的。铝变为纳米粒子时,由于比表面积高,大量的铝原子可立刻被氧化。因此,铝纳米粒子具有不同于普通铝粉末的可燃性。此外,已知碳纳米管为高热传导性的物质。因此,包含在铝纳米粒子内的碳纳米管可在纳米粒子间传热,从而更有效地进行氧化。图11示出了利用碳纳米管制备的铝纳米粒子的氧化性的测量结果。图11(a)为燃烧前的铝纳米粒子的照片。铝纳米粒子燃烧是通过使用气焊枪进行的。图11(b)为用气焊枪燃烧后的氧化反应期间的照片。在氧化反应期间,使用红外线温度计(OPL-7)测量温度。结果,发现温度升高到1200℃。图11(c)为氧化反应完成后的照片。经过氧化反应的铝变成氧化铝,其颜色变成白色。图12示出了由铝纳米粒子氧化产生的氧化热的测量结果,该结果是通过差热分析(Differential Thermal Analysis,DTA)(SEICO INST.(精工,日本),Seiko Exstar6000)获得的。DTA为测量通过以预定的速度升高相应材料的温度而发生的相(phase)变引起的热生成或热吸收的设备。本实施例中,以10℃/min的速度升温至1300℃,并观察热的变化。图12(a)为商业上可购买的尺寸为3μm的铝粒子(Sumchun Chemical(三田化学))的测量结果。铝的燃烧在650℃以上进行,燃烧热为-82.3kJ/mg。图12(b)为通过本发明制备的铝纳米粒子的测量结果。对铝纳米粒子测量的燃烧热为-111.6kJ/mg,铝纳米粒子表现出比常规的商业制备的铝粒子更高的可燃性。因此,通过本实施例的结果,可以确定当利用碳纳米管制备铝纳米粒子时,由于该铝纳米粒子具有强氧化性,因此可以用于可燃性材料例如***、航天器燃料或固体燃料。
实施例1-3:利用碳纳米管制备铁纳米粒子及电子显微镜(SEM)分析
用与实施例1-1所述相同的方法制备铁纳米粒子,但是使用的碳纳米管为10wt%,并且球磨(ball mill)进行6小时。
用电子显微镜(SEM)分析制备前后的利用碳纳米管制备的铁纳米粒子(参见图18)。图18(a)为在100倍放大倍率下观察的原(raw)铁(Fe)粒子的照片。图18(b)为利用碳纳米管通过碾磨获得的铁纳米粒子的照片。通过分析,可以发现铁粒子的尺寸减小到1μm以下的纳米尺寸。因此,根据本发明,可以利用碳纳米管制备铁纳米粒子。
实施例1-4:利用碳纳米管制备钛纳米粒子及电子显微镜(SEM)分析
用与实施例1-1所述相同的方法制备钛纳米粒子,但是使用的碳纳米管为16wt%,并且球磨(ball mill)进行6小时。
用电子显微镜(SEM)分析制备前后的利用碳纳米管制备的钛纳米粒子(参见图19)。图19(a)为在100倍放大倍率下观察的原(raw)钛(Ti)粒子的照片。图19(b)为利用碳纳米管通过碾磨获得的钛纳米粒子的照片。通过分析,可以发现钛粒子的尺寸减小到1μm以下的纳米尺寸。因此,根据本发明,可以利用碳纳米管制备钛纳米粒子。
实施例2-1:利用碳纳米管制备聚合物纳米粒子
本实施例中,利用碳纳米管制备了聚合物纳米粒子。本实施例中使用的碳纳米管为Bayer(拜耳)制造的C-150P。聚合物为聚碳酸酯(Polycarbonate)(Samsung CHEIL INDUSTRIES(三星第一毛织),ISO-14000)。本实施例以与实施例1-1类似的方法实施。碾磨进行6小时。图13示出了碾磨前后的聚碳酸酯的照片。图13(a)为添加了20wt%碳纳米管的聚碳酸酯碾磨前的照片。图13(b)为利用碳纳米管碾磨6小时后的聚碳酸酯的照片。观察到碾磨后表观体积增大。由此结果,可以推测形成了聚碳酸酯纳米粒子。
实施例2-2:制备的聚合物纳米粒子的电子显微镜(SEM)分析
图14为通过电子显微镜获得的利用碳纳米管制备的聚碳酸酯纳米粒子的分析结果。图14(a)为在10,000倍放大倍率下观察的原(raw)碳纳米管的电子显微镜照片,并且该碳纳米管的直径为5~20nm,长度为大约10μm。图14(b)为在100倍放大倍率下观察的聚碳酸酯的电子显微镜照片。聚碳酸酯粒子的直径为100um左右。图14(c)为经过6小时碾磨获得的聚碳酸酯的电子显微镜照片(10,000倍放大倍率)。图14(d)为以1000倍放大的图14(c)的照片。通过该分析,可以发现利用碳纳米管将聚碳酸酯碾磨为纳米粒子。因此,根据本发明,可以利用碳纳米管制备聚合物纳米粒子。
实施例3-1:利用碳纳米管制备陶瓷纳米粒子
本实施例中利用碳纳米管制备了陶瓷纳米粒子。使用的陶瓷是碳化硅(Silicon carbide)(Aldrich(奥德里奇),357391,400目)。使用的碳纳米管是与实施例2-1相同的bayer(拜耳)制造的C 150-P。碳纳米管的浓度为50wt%。
本实施例以与实施例1-1类似的方法实施。碾磨进行6小时。图15为碾磨前后的陶瓷。图15(a)为碾磨前的陶瓷的照片,图15(b)为碾磨成纳米粒子的陶瓷的照片。观察到碾磨之后,表观体积增大。由此结果,可以推测形成了碳化硅纳米粒子。
实施例3-2:制备的陶瓷纳米粒子的电子显微镜(SEM)分析
本实施例中用电子显微镜分析了利用碳纳米管制备的碳化硅纳米粒子。图16示出了通过电子显微镜获得的碳化硅和碳化硅纳米粒子的照片。图16(a)为在100倍放大倍率下观察的原(raw)碳化硅的照片。粒子尺寸范围为10~30μm。图16(b)为利用碳纳米管通过碾磨获得的碳化硅粒子的电子显微镜照片。通过该分析,发现碳化硅粒子的尺寸减小到1μm以下的纳米尺寸。因此,根据本发明,可以利用碳纳米管制备陶瓷纳米粒子。
尽管,为了阐明的目的,描述了本发明的几个示例性实施方式,但本领域的技术人员应当理解,在不超出由本发明所附的权利要求书公开的范围和精神的前提下,可进行多种修改、添加和等同替换。因此,可采用本发明说明书中特定的条件和材料。尽管本文中已经详细公开了目前作为最佳方式的特定实施方式,但是这些实施例并非旨在限制本发明的范围。
工业实用性
当利用强氧化性的铝、高比表面积的纳米粒子以及高热传导性的碳纳米管时,可以在短时间内引起氧化反应,因此该纳米粒子可用作例如航天器燃料和火药等引燃材料。此外,通过调整反应时间,还可用作固体燃料。而且,由于其可以具有1200℃以上的高温,因此可用作烟粉剂。此外由于铝较轻的性质和碳纳米管的机械性能,纳米粒子可以可用作轻且强的高强度复合新材料。图17示出了通过本发明制备的纳米粒子的应用性的概念图。

Claims (18)

1.一种纳米粒子的制备方法,其特征在于,包括以下步骤:
(i)制备粉末粒子和碳纳米管的混合物;以及
(ii)球磨该混合物。
2.根据权利要求1所述的方法,其特征在于,所述碳纳米管是选自由单壁碳纳米管、双壁碳纳米管、薄多壁碳纳米管和多壁碳纳米管组成的组中的至少一种。
3.根据权利要求1所述的方法,其特征在于,所述粉末粒子为金属。
4.根据权利要求3所述的方法,其特征在于,所述金属选自由金、银、铜、铝、锰、铁、锡、锌和钛组成的组。
5.根据权利要求3所述的方法,其特征在于,所述金属为铝。
6.根据权利要求1至5中任一项所述的方法,其特征在于,还包括在所述步骤(i)过程中用氩气净化的步骤。
7.根据权利要求1至5中任一项所述的方法,其特征在于,所述球磨以100rpm至5000rpm进行0.5小时至12小时。
8.根据权利要求6所述的方法,其特征在于,所述球磨以100rpm至5000rpm进行0.5小时至12小时。
9.一种纳米粒子复合材料,其特征在于,包括通过球磨利用碳纳米管碾磨的粉末粒子,以及碳纳米管。
10.根据权利要求9所述的纳米粒子复合材料,其特征在于,所述碳纳米管是选自由单壁碳纳米管、双壁碳纳米管、薄多壁碳纳米管和多壁碳纳米管组成的组中的至少一种。
11.根据权利要求9或10所述的纳米粒子复合材料,其特征在于,所述粉末粒子为金属。
12.根据权利要求11所述的纳米粒子复合材料,其特征在于,所述金属选自由金、银、铜、铝、锰、铁、锡、锌和钛组成的组。
13.根据权利要求11所述的纳米粒子复合材料,其特征在于,所述金属为铝。
14.根据权利要求9所述的纳米粒子复合材料,其特征在于,所述粉末粒子具有1μm以上并且1cm以下的尺寸。
15.一种纳米粒子的制备方法,其特征在于,该方法包括以下步骤:
(i)制备聚合物粉末粒子和碳纳米管的混合物;以及
(ii)球磨该混合物。
16.一种纳米粒子复合材料,其特征在于,包括通过球磨利用碳纳米管碾磨的聚合物粉末粒子,以及碳纳米管。
17.一种纳米粒子的制备方法,其特征在于,包括以下步骤:
(i)制备陶瓷粉末粒子和碳纳米管的混合物;以及
(ii)球磨该混合物。
18.一种纳米粒子复合材料,其特征在于,包括通过球磨利用碳纳米管碾磨的陶瓷粉末粒子和碳纳米管。
CN2010800067321A 2009-02-05 2010-02-05 利用碳纳米管制备的纳米粒子及其制备方法 Pending CN102395522A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2009-0009366 2009-02-05
KR20090009366 2009-02-05
KR10-2010-0010573 2010-02-04
KR1020100010573A KR101173847B1 (ko) 2009-02-05 2010-02-04 탄소나노튜브를 이용하여 제조된 나노입자 및 그 제조방법
PCT/KR2010/000729 WO2010090479A2 (ko) 2009-02-05 2010-02-05 탄소나노튜브를 이용하여 제조된 나노입자 및 그 제조 방법

Publications (1)

Publication Number Publication Date
CN102395522A true CN102395522A (zh) 2012-03-28

Family

ID=42755875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800067321A Pending CN102395522A (zh) 2009-02-05 2010-02-05 利用碳纳米管制备的纳米粒子及其制备方法

Country Status (6)

Country Link
US (1) US20110309311A1 (zh)
EP (1) EP2394952A4 (zh)
JP (1) JP2012516784A (zh)
KR (1) KR101173847B1 (zh)
CN (1) CN102395522A (zh)
WO (1) WO2010090479A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110387281A (zh) * 2019-06-26 2019-10-29 包头协同纳米新材科技有限公司 碳纳米管/零维纳米材料复合材料及其制法和应用
CN113603204A (zh) * 2021-08-26 2021-11-05 中国海洋大学 一种铝-碳纳米管复合材料的制备方法及其在去除水中难降解的污染物中的应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907334B1 (ko) * 2008-01-04 2009-07-13 성균관대학교산학협력단 알루미늄과 탄소재료 간의 공유결합을 형성하는 방법, 알루미늄과 탄소재료 복합체를 제조하는 방법 및 그 방법에 의하여 제조된 알루미늄과 탄소재료 복합체
KR101710159B1 (ko) 2010-09-14 2017-03-08 삼성전자주식회사 Ⅲ족 질화물 나노로드 발광소자 및 그 제조 방법
WO2012057800A1 (en) * 2010-10-29 2012-05-03 Hewlett-Packard Development Company, L.P. Metallic lep inks and associated methods
JP5744540B2 (ja) * 2011-01-26 2015-07-08 新光電気工業株式会社 金属複合材料、金属複合材料の製造方法、放熱部品、及び放熱部品の製造方法
KR101242529B1 (ko) * 2011-02-22 2013-03-12 주식회사 대유신소재 나노 실리콘카바이드 코팅을 이용한 탄소재료 계면강화 방법
WO2014049207A1 (en) 2012-09-25 2014-04-03 Greenbutton Oy Robust material, method of producing the same as well as uses thereof
EP2916123A1 (en) 2014-03-07 2015-09-09 Reagecon Diagnostics Ltd Use of nanoparticles in the preparation of calibration standards
KR101850934B1 (ko) 2016-09-22 2018-04-20 부경대학교 산학협력단 방전 플라즈마 소결 공정을 이용한 단일벽 탄소나노튜브 강화 금속기지 복합재료의 제조방법 및 이에 의해 제조된 복합재료
US11234298B2 (en) * 2018-11-15 2022-01-25 Whirlpool Corporation Hybrid nanoreinforced liner for microwave oven
US20230021998A1 (en) * 2021-07-10 2023-01-26 The United States Of America, As Represented By The Secretary Of The Navy 3-d printed carbon nanotube reinforced titanium composites and methods
CN115301942B (zh) * 2022-07-15 2023-10-10 武汉大学 碳纳米管强韧化钛基体的激光增材制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040029706A1 (en) * 2002-02-14 2004-02-12 Barrera Enrique V. Fabrication of reinforced composite material comprising carbon nanotubes, fullerenes, and vapor-grown carbon fibers for thermal barrier materials, structural ceramics, and multifunctional nanocomposite ceramics
KR20060101844A (ko) 2005-03-21 2006-09-26 주식회사 안심푸드 위생 고추분말의 제조방법 및 그 장치
KR100841754B1 (ko) * 2005-05-17 2008-06-27 연세대학교 산학협력단 나노파이버를 금속 또는 폴리머 기지에 균일 분산시키는 방법 및 이를 이용하여 제조한 금속 또는 폴리머 복합재
EP1918249B1 (de) * 2006-10-31 2009-05-27 Alcan Technology & Management Ltd. Werkstoffe enthaltend Kohlenstoffnanoröhrchen, Verfahren zu deren Herstellung und Verwendung der Werkstoffe
KR100907334B1 (ko) * 2008-01-04 2009-07-13 성균관대학교산학협력단 알루미늄과 탄소재료 간의 공유결합을 형성하는 방법, 알루미늄과 탄소재료 복합체를 제조하는 방법 및 그 방법에 의하여 제조된 알루미늄과 탄소재료 복합체
EP2127784A1 (de) * 2008-05-23 2009-12-02 Alcan Technology & Management Ltd. Verfahren zur Herstellung eines Bauteils aus einem Kompositwerkstoff
KR20100073506A (ko) * 2008-12-23 2010-07-01 삼성전자주식회사 음극 활물질, 이를 포함하는 음극, 음극의 제조 방법 및 리튬 전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110387281A (zh) * 2019-06-26 2019-10-29 包头协同纳米新材科技有限公司 碳纳米管/零维纳米材料复合材料及其制法和应用
CN113603204A (zh) * 2021-08-26 2021-11-05 中国海洋大学 一种铝-碳纳米管复合材料的制备方法及其在去除水中难降解的污染物中的应用

Also Published As

Publication number Publication date
US20110309311A1 (en) 2011-12-22
KR20100090216A (ko) 2010-08-13
WO2010090479A2 (ko) 2010-08-12
KR101173847B1 (ko) 2012-08-14
WO2010090479A3 (ko) 2010-11-25
JP2012516784A (ja) 2012-07-26
EP2394952A2 (en) 2011-12-14
EP2394952A4 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
CN102395522A (zh) 利用碳纳米管制备的纳米粒子及其制备方法
Mukasyan et al. Direct combustion synthesis of silicon carbide nanopowder from the elements
Kwon et al. Dual-nanoparticulate-reinforced aluminum matrix composite materials
So et al. SiC formation on carbon nanotube surface for improving wettability with aluminum
Bartolucci et al. Graphene–aluminum nanocomposites
Poirier et al. Structural characterization of a mechanically milled carbon nanotube/aluminum mixture
Shi et al. Alcohol-thermal synthesis of approximately core-shell structured Al@ CuO nanothermite with improved heat-release and combustion characteristics
Hwang et al. Laser-deposited carbon nanotube reinforced nickel matrix composites
Park et al. Synthesis of (Ti, M1, M2)(CN)–Ni nanocrystalline powders
Popov et al. Fulleride of aluminum nanoclusters
Xavior et al. Processing and characterization techniques of graphene reinforced metal matrix composites (GRMMC); a review
Tarasov et al. Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co–Ni and YNi2 catalysts
CN101463435A (zh) 碳材料在铝中的包封
WO2004110950A2 (en) Nanocrystalline ceramic materials reinforced with single-wall carbon nanotubes
Kumar et al. Sintering behavior of nanostructured WC–Co composite
Wu et al. Synthesis of tungsten carbide nanopowders by direct carbonization of tungsten oxide and carbon: Effects of tungsten oxide source on phase structure and morphology evolution
Groven et al. Combustion synthesis and characterization of nickel aluminide–carbon nanotube composites
Groven et al. Solution combustion synthesis of carbon nanotube loaded nickel foams
Kassaee et al. Al nanoparticles: impact of media and current on the arc fabrication
Yang et al. Preparation of low binder WC-Co-Ni cemented carbides with fine WC grains and homogeneous distribution of Co/Ni
Ghugare et al. Preparation and characterization of nanoboron for slurry fuel applications
Shu et al. Microstructure and mechanical properties of nano-carbon reinforced Mo–Cu–Zr composites
Krasnowski et al. Nanocomposites obtained by mechanical alloying in Fe–Al–Ti–C system
Nguyen et al. A method to obtain homogeneously dispersed carbon nanotubes in Al powders for preparing Al/CNTs nanocomposite
sarma Sreedhara et al. Preparation and characterization of nanoboron by cryo-milling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120328