CN102393881B - 一种实时多传感温度数据融合的高精度检测方法 - Google Patents

一种实时多传感温度数据融合的高精度检测方法 Download PDF

Info

Publication number
CN102393881B
CN102393881B CN201110264849.6A CN201110264849A CN102393881B CN 102393881 B CN102393881 B CN 102393881B CN 201110264849 A CN201110264849 A CN 201110264849A CN 102393881 B CN102393881 B CN 102393881B
Authority
CN
China
Prior art keywords
sensor
fusion
calculating
many sensing
sensing temperatures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110264849.6A
Other languages
English (en)
Other versions
CN102393881A (zh
Inventor
瞿晓
葛丁飞
张松涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang micro Cold Chain Technology Co., Ltd.
Zhejiang Lover Health Science and Technology Development Co Ltd
Original Assignee
HANGZHOU WASON ENVIRONMENTAL TECHNOLOGY Co Ltd
Zhejiang Lover Health Science and Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU WASON ENVIRONMENTAL TECHNOLOGY Co Ltd, Zhejiang Lover Health Science and Technology Development Co Ltd filed Critical HANGZHOU WASON ENVIRONMENTAL TECHNOLOGY Co Ltd
Priority to CN201110264849.6A priority Critical patent/CN102393881B/zh
Publication of CN102393881A publication Critical patent/CN102393881A/zh
Application granted granted Critical
Publication of CN102393881B publication Critical patent/CN102393881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了实时多传感温度数据融合的高精度检测方法:一、基于相关性函数排序的疏失误差剔除:(1)采集温度数据;(2)判断采集次数是否大于等于设定值CI,若否,继续采集温度数据;若是,判断采集次数是否大于设定值CI,若否,计算传感器方差和均值初值,若是,递推计算传感器方差和均值;(3)计算传感器相融度;(4)计算传感器支持度;(5)选择有效传感器,删除从无效传感器中得到的温度数据;二、基于正交神经网络的多传感温度信息融合:(1)神经网络训练和权向量递推;(2)计算神经网络输出;(3)计算多传感温度融合值;三、无效传感器方差和均值修正。该方法既可提高温度检测精度和信度,又便于相关***实时处理,且具有稳定性好、计算简单、容易实现等优点。

Description

一种实时多传感温度数据融合的高精度检测方法
技术领域
本发明属于高精度温度检测技术领域,特别涉及一种对传感器之间的支持度进行客观评价,对传感器特征参数进行实时估计,无需任何先验知识的温度数据融合的高精度检测方法,该检测方法既可提高温度检测精度和信度,又便于相关***实时处理,且具有稳定性好、计算简单、容易实现等优点。
背景技术
在诸多自动控制、检测和科学实验中,需要对温度进行高精度和高可靠性检测,例如,疫苗冷链温度检测能否满足其特殊要求不仅影响到疫苗安全的存储,而且影响到***报警的可信度,进而严重干扰监管部门对疫苗突发事件的判断和处置。为了增加疫苗温度检测结果的置信度,需要精度和可靠度更高的疫苗温度检测方法,实现这一目标的途径主要有:(1)采用高精度和高可靠性温度传感器;(2)采用多传感方案对采集的温度进行融合处理,以提高检测的精度和可靠性。但,高精度和高可靠性传感器的采用往往受制于硬件条件的限制;又由于温度补偿电路、现场突发干扰、传感器本身性能失效等方面的原因,假使采用高精度和高可靠性的温度传感器,要稳定地达到疫苗检测温度的苛刻要求依然是有困难的。
本发明技术方案从上述的多传感方案着手,提出一种以提高检测精度和置信度为目的的温度融合方法。目前,有关多传感温度检测融合方法主要有:经典推理法、贝叶斯估计法、D-S证据推理法、聚类分析法、估计理论法、参数模板法、专家***法、神经网络法、粗集理论法、Fuzzy理论法、小波分析理论法等。以上方法都在温度数据融合方面取得了不同程度的成功,但都存在如下问题:(1)某些参数的选取过于依赖经验,温度数据融合结果受主观因素的影响大,如阈值的选取等;(2)某些函数的建立和概率关系的确定尚无通用的方法,依赖于许多先验知识,存在较大的不确定性,如模糊逻辑法中隶属函数的建立和贝叶斯估计法中先验概率的确定等;(3)受***实时性限制,对某些参数只能基于有限的样本进行估计,如温度数据方差的估计等。本发明克服了上述现有温度融合方法存在的问题。
为了提高温度数据融合的效果,方法之一是增加传感器数量,但此举会引起硬件(空间)成本的增加,方法之二是在估计有关参数时增加采用数据样本,以时间换空间,这样虽然可以降低空间成本,但会影响***的实时性。为此,本发明同时在空间和时间上寻找到一种平衡,为实时温度融合检测提供一种现实的技术方案。
发明内容
为了克服现有温度融合方法的局限和不足,本发明提出一种实时多传感温度数据融合的高精度检测方法,多传感器的使用极大地提高了温度检测的可靠性和稳定性。关于稀疏误差剔除,该方法利用模糊理论中的相关性函数对传感器支持度进行定量排序,进而对传感器支持度作出客观判断,克服了基于阈值判断等方法经验化和绝对化,尽可能地消除主观因素的影响。关于传感器方差的估计,该方法每增加一个观测值即对方差进行修正,其本质是利用了所有观测值数据,使得传感器方差估计值更加逼近实际,克服了现有方法仅利用有限数据建立起来的温度融合模型的不足。关于温度数据的融合,采用正交基函数神经网络多传感温度数据加权融合方法,以多传感器动态测量值和动态算术平均值为神经网络训练样本,进而对温度加权因子进行实时更新。
本发明高精度和高置信度的实时温度检测方法克服了现有方法存在的技术局限,即参数选取的主观性,先验知识的依赖性,所使用样本的有限性。
为达到上述目的,本发明对传感器之间的支持度进行客观排序后进行稀疏误差的剔除,对传感器特征参数进行动态实时估计,使传感器特征参数更加逼近实际值,进而利用一种无需任何先验知识的温度数据融合检测方法,具体步骤如下所述:
步骤一基于相关性函数排序的疏失误差剔除
(1)采集温度数据;
(2)判断累计采集次数是否大于等于设定值CI,若否,则继续采集温度数据;若是,则判断累计采集次数是否大于设定值CI,若否,则计算传感器方差和均值初值,若是,则递推计算传感器方差和均值;
(3)计算传感器相融度;
(4)计算传感器支持度;
(5)对各传感器支持度依次进行从大到小的排序,选择排序靠前的为支持度较高的传感器,即为有效传感器;选择有效传感器,删除从无效传感器中得到的温度数据;
步骤二基于正交神经网络的多传感温度信息融合
(1)神经网络训练和权向量递推;
(2)神经网络输出的计算;
(3)多传感温度融合值的计算;
步骤三无效传感器方差和均值修正。
本发明方法包括:基于相关性函数排序的疏失误差剔除、基于正交神经网络的多传感温度的信息融合、无效传感器方差和均值修正。作为优选,各步骤进一步详述如下:
步骤一基于相关性函数排序的疏失误差剔除
该步骤包括:传感器方差实时估计、基于标准正态分布函数的传感器相融度计算、基于相关性函数的传感器支持度计算、有效传感器的选择。具体步骤如下:
第1步传感器方差实时估计
由传感器采集温度数据。
假设m个传感器同步进行C次测量,Tik表示传感器i的第k次观测值(i=1,2,...m,k=1,2,...C),传感器i前k个测量值均值和方差估计分别为基于数字特征法原理,采用如下递推算法并可得到传感器i前k个测量值均值和方差估计:
T ‾ ik = T ‾ i ( k - 1 ) + 1 k ( T ik - T ‾ i ( k - 1 ) )
σ ^ ik 2 = k - 2 k - 1 σ ) i ( k - 1 ) 2 + 1 k ( T ik - T ‾ i ( k - 1 ) ) 2
初始值(CI为依实际情况待定正整数)按以下计算:
T ‾ iCI = 1 CI Σ k = 1 CI T ik ; σ ^ iCI 2 = 1 CI - 1 Σ k = 1 CI ( T ik - T ‾ iCI ) 2
代替传感器i的方差并可进行第2步传感器相融度的计算。从第CI+1次数据采集开始,每采集一次数据,依据上述方法实时修正各传感器进而进行第2步传感器相融度的计算。
第2步基于标准正态分布函数的传感器相融度计算
计算传感器i和传感器j间基于第k次观测值融合度dij(i,j=1,2,...m):
dij=2|F(X)-0.5|
其中,F(X)为标准正态分布函数,得到dij后并可进行第3步传感器支持度的计算。
第3步基于相关性函数的传感器支持度计算
如果一个传感器不被其他传感器所支持,或只被少数传感器所支持,则这个传感器读数是无效的。由以上dij运算可知,dij取值在[0,1]之间,且其值越小说明第i个传感器被第j个传感器支持度越高。相关性函数采用如下定义:
f(i/j)=1-dij
再对以上结果进行如下修正:
f(i/j)=f(i/j)/max[f(i/j),f(j/i)]
这里i,j=1,2,3,…m,各传感器被其他传感器的支持度按下式计算:
mi=minf(i/A),A=1,2,.....,m
mi表示第i个传感器被其它传感器支持的程度,在得到mi后并可进行第4步有效传感器的选择。
第4步有效传感器的选择
依据上述第3步中的方法,计算出每个传感器被其它传感器的支持度mi,再对各传感器支持度依次进行从大到小的排序,选择排序靠前的为支持度较高的传感器,即为有效传感器。有效传感器选取规则:选取支持度分布在离中心点1倍标准差距离之内的传感器为有效传感器。在完成有效传感器选择后(假设有M个有效传感器被选择),并可进行以下步骤二的多传感温度信息的融合。在数据融合时,应删除从无效传感器中得到的温度数据。
步骤二基于正交神经网络的多传感温度信息融合
以余弦基函数集为神经网络激励函数,网络拓扑结构为1×N×1,其输入为Tik,输出为一个由N个正交余弦基函数为激励函的隐函层,其权向量为W=[w1,w2,...wN]T
该步骤包括:神经网络训练和权向量W递推、神经网络输出计算、多传感温度融合值Tk计算。具体步骤如下:
第1步神经网络训练和权向量W递推
神经网络训练样本集为其中,为M个传感器第k次测量值的均值,神经网络输出为:
T ^ ik = Σ j = 1 N w j cos [ ( j - 1 ) π b - a ( T ik - a ) ]
= C ( k , : ) W
其中, C ( k , : ) = [ 1 , cos ( π b - a ( T ik - a ) , . cos ( 2 π b - a ( T ik - a ) ) , . . . . . , cos ( ( N - 1 ) π b - a ( T ik - a ) ) ]
通过如下最小二乘递推法,使为最小,获得权值向量W:
w ( k + 1 ) = w ( k ) + Q ( k + 1 ) [ T ‾ k - C ( k , : ) w ( k ) ]
Q ( k ) = P k C T ( k , : ) 1 + C ( k , : ) P k C T ( k , : )
P(k+1)=[I-QkC(k,:)]Pk
这里k=0,1,2,...,M,w(0)=rand(N,:),P(0)=aI∈RN×N,a为足够大的正数,I为N×N单位矩阵。
第2步神经网络输出的计算
将以上第1步中得到的权向量W代入 T ^ ik = Σ j = 1 N w j cos [ ( j - 1 ) π b - a ( T ik - a ) ] , 分别计算出M个传感器输入为Tik时的网络输出
第3步多传感温度融合值Tk的计算
在第2步中得到M个传感器基于第k次测量值的输出后,计算出这M个神经网络输出的平均值,即为多传感器温度融合值Tk
步骤三无效传感器方差和均值修正
在步骤一第1步中,如果某一或某几个传感器i在第k次测量中被视为无效传感器,则用温度融合值Tk取代Tik,即Tik=Tk,进而对该传感器均值和方差进行重新计算修正,以供进一步温度数据采集、疏失误差剔除和温度融合使用。
本发明提出了一种基于多传感温度数据融合检测方法,通过对传感器支持度进行定量排序对传感器支持度作出客观判断,尽可能地消除主观因素的影响;通过对传感器方差进行连续实时修正,克服已有方法仅利用有限数据进行有关参数估计的局限。理论上讲,使用数据越多被估计的参数更加逼近实际。不难推导,本发明实际上是使用了所有温度数据进行传感器方差的估计。由于正交基函数集具有逼近非线性的性质,本发明提出基于正交基函数神经网络进行多传感温度加权融合的方法,以多传感器实时测量值及其算术平均值作为神经网络训练样本。由于这些训练样本是动态更新的,其温度加权因子也随之实时更新,因而更能反映客观实际。
附图说明
图1是本发明方法的实时流程图。
图2是基于正交基函数的神经网络模型。
具体实施方式
下面结合附图对本发明实施例作详细说明。
本实施例采用10通道数据记录仪从存储疫苗冰箱中采集温度(有10个温度传感器),共进行60次周期为1s的温度数据采集,采用标准器测得冰箱实际温度为-9.1℃。利用本发明方法进行动态温度融合模拟,以验证本发明方法的有效性。本发明方法的流程如图1所示,其中的正交基函数神经网络模型如图2所示。本发明包括:基于相关性函数排序的疏失误差剔除、基于正交神经网络的多传感温度信息融合、无效传感器方差和均值修正。
步骤一基于相关性函数排序的疏失误差剔除
该步骤包括:传感器方差实时估计、基于标准正态分布函数的传感器相融度计算、基于相关性函数的传感器支持度计算、有效传感器选择。具体步骤如下:
第1步传感器方差实时估计
由传感器采集温度数据。
假设m个传感器同步进行C次测量,Tik表示传感i的第k次测量值(i=1,2,...,m,k=1,2,...C),传感器i前k个测量值均值和方差估计分别为本例m=10,C=60,采用如下递推算法得到传感器i前k个测量值均值和方差估计:
T ‾ ik = T ‾ i ( k - 1 ) + 1 k ( T ik - T ‾ i ( k - 1 ) )
σ ^ ik 2 = k - 2 k - 1 σ ) i ( k - 1 ) 2 + 1 k ( T ik - T ‾ i ( k - 1 ) ) 2
初值按以下计算,本例CI=20
T ‾ i 20 = 1 20 Σ k = 1 20 T ik ; σ ^ i 20 2 = 1 19 Σ k = 1 20 ( T ik - T ‾ i 20 ) 2
由图1可见,得到后,并可进行第2步传感器相融度的计算。从第21次采集开始,每采集一次数据,依据上述方法实时修正各传感器温度均值估计和方差估计进而再进行第2步传感器相融度计算。
第2步基于标准正态分布函数的传感器相融度计算
计算传感器i和传感器j间基于第k次观测值融合度dij(i,j=1,2,...10):
dij=2|F(X)-0.5|
其中,F(X)为标准正态分布函数,得到dij后并可进行第3步传感器支持度计算。
第3步基于相关性函数的传感器支持度计算
如果一个传感器不被其他传感器所支持,或只被少数传感器所支持,则这个传感器的读数是无效的。由以上的dij运算可知,dij的取值在[0,1]之间,且其值越小说明第i个传感器被第j个传感器支持的程度越高,在模糊理论中的相关性函数可按如下定义:
f(i/j)=1-dij
再利用以上结果按如下方法修正f(i/j):
f(i/j)=f(i/j)/max[f(i/j),f(j/i)]
这里i,j=1,2,3,…10,各传感器支持度mi按下式计算:
mi=minf(i/A),A=1,2,.....,10
在得到mi后并可进行第4步的有效传感器的选择。
第4步有效传感器的选择
依据上述第3步中的方法,计算出每个传感器被其它传感器的支持度,再对各传感器支持度依次进行从大到小的排序,选择排序靠前的为有效传感器。选取规则是:选取支持度分布在离中心点1倍标准差距离之内的传感器。在完成有效传感器选择后(假设有M个有效传感器被选择),并可进行以下步骤二的多传感温度信息的融合。
步骤二基于正交神经网络的多传感温度信息融合
图2为一以余弦基函数为激励的神经网络模型,其拓扑结构为1×N×1,本例为1×3×1,网络输入为Tik,网络输出为一个由3个正交余弦基函数为激励的隐函层,本实施例为1,cos(x),cos(2x),其中,x为激励函数输入的中间变量,网络权向量为W=[w1,w2,w3]。
该步骤包括:神经网络训练和权向量W递推、神经网络输出的计算、多传感温度融合值Tk的计算。具体步骤如下:
第1步神经网络训练和权向量W递推
神经网络训练样本集为其中,为M个传感器第k次测量值的均值,神经网络输出为:
T ^ ik = Σ j = 1 N w j cos [ ( j - 1 ) π b - a ( T ik - a ) ]
= C ( k , : ) W
其中, C ( k , : ) = [ 1 , cos ( π b - a ( T ik - a ) , . cos ( 2 π b - a ( T ik - a ) ) , . . . . . , cos ( ( N - 1 ) π b - a ( T ik - a ) ) ] , 本例a=-8,b=-9。通过如下最小二乘递推法使为最小,获得权向量W:
w ( k + 1 ) = w ( k ) + Q ( k + 1 ) [ T ‾ k - C ( k , : ) w ( k ) ]
Q ( k ) = P k C T ( k , : ) 1 + C ( k , : ) P k C T ( k , : )
P(k+1)=[I-QkC(k,:)]Pk
本例k=0,1,2,....,M,w(0)=rand(3,:),P(0)=αI∈R3×3,α为足够大的正数,I为3×3的单位矩阵。在获得W后,并可计算以下第2步中的神经网络输出值
第2步神经网络输出的计算
将以上第1步中得到的权向量W代入 T ^ ik = Σ j = 1 3 w j cos [ ( j - 1 ) π b - a ( T ik - a ) ] , 分别计算出M个传感器基于第k次测量值的神经网络输出。在计算出M个第k次测量值神经网络输出后,并可进行以下第3步中的多传感温度融合值Tk的计算。
第3步多传感温度融合值Tk的计算
第2步中得到M个传感器第k次测量值的输出值,计算出这M个输出值的平均值,即为多传感器第k次温度测量值的融合值Tk
步骤三无效传感器方差和均值修正
在步骤一第4步中,如果某一或某些传感器i在第k次测量中被视为无效传感器,则用温度融合值Tk取代Tik,即Tik=Tk,进而对该传感器均值和方差进行重新计算修正,以供进一步温度数据采集、疏失误差剔除和温度融合使用。
本实施例多传感温度融合检测的结果:
为了说明本发明的有益效果,给出本实施例温度融合的具体结果。如表1给出基于前20次测量数据传感器支持度,传感器支持度大小依次为:2,3,5,8,7,1,4,10,9,6,传感器10,9,6被认为是无效传感器,融合时删除其读数,取其余7个传感器测量数据进行融合。
从第21次采集开始,每采集一次数据,即实时修正各传感器的方差估计,进而重新确定有效传感器及其数量,表2给出了从第21次到第30次测量值的温度融合结果。为了比较本发明方法的有效性,表3还给出了从第21次到第30次测量值基于平均温度法的温度融合值。可见,基于多传感温度信息融合法比基于平均值法均方误差和方差要小,传感器温度融合的精度得到进一步的改善。
表1基于前20次测量数据传感器支持度
传感器序号 1 2 3 4 5
支持度 0.9673 1.000 0.9954 0.9457 0.9932
传感器序号 6 7 8 9 10
支持度 0.0701 0.973 0.979 0.2352 0.3310
表2多传感温度信息融合的结果(℃)
表3基于平均值法的温度融合结果(℃)
本领域的普通技术人员应当认识到,本发明并不限于上述实施例,任何对本发明的变换、变型都落入本发明的保护范围。

Claims (8)

1.一种实时多传感温度数据融合的高精度检测方法,其特征是按如下步骤:
步骤一基于相关性函数排序的疏失误差剔除
(1)采集温度数据;
(2)判断累计采集次数是否大于等于设定值CI,若否,则继续采集温度数据;若是,则判断累计采集次数是否大于设定值CI,若否,则计算传感器方差和均值初值,若是,则递推计算传感器方差和均值;设m个传感器同步进行C次测量,Tik表示传感器i的第k次观测值(i=1,2,…m,k=1,2,…C),传感器i前k个测量值均值和方差分别为
T ‾ i k = T ‾ i ( k - 1 ) + 1 k ( T i k - T ‾ i ( k - 1 ) )
初始值 按以下计算:
T ‾ i C I = 1 C I Σ k = 1 C I T i k ; σ ^ i C I 2 = 1 C I - 1 Σ k = 1 C I ( T i k - T ‾ i C I ) 2 ;
(3)计算传感器相融度;
(4)计算传感器支持度;
(5)对各传感器支持度依次进行从大到小的排序,选择排序靠前的为支持度较高的传感器,即为有效传感器;选择有效传感器,删除从无效传感器中得到的温度数据;
步骤二基于正交神经网络的多传感温度信息融合
(1)神经网络训练和权向量递推;
(2)神经网络输出的计算;
(3)多传感温度融合值的计算;
步骤三无效传感器方差和均值修正。
2.如权利要求1所述的实时多传感温度数据融合的高精度检测方法,其特征是:步骤一(3):计算传感器i和传感器j间基于第k次观测值融合度dij(i,j=1,2,…m):
dij=2|F(X)-0.5|
其中,F(X)为标准正态分布函数, 是传感器i的方差。
3.如权利要求2所述的实时多传感温度数据融合的高精度检测方法,其特征是:步骤一(4):相关性函数采用如下定义:
f(i/j)=1-dij
再对以上结果进行如下修正:
f(i/j)=f(i/j)/max[f(i/j),f(j/i)]
这里i,j=1,2,3,…m,各传感器被其他传感器的支持度按下式计算:
mi=minf(i/A),A=1,2,.....,m。
4.如权利要求3所述的实时多传感温度数据融合的高精度检测方法,其特征是:步骤一(5):选取支持度分布在离中心点1倍标准差距离之内的传感器为有效传感器。
5.如权利要求1所述的实时多传感温度数据融合的高精度检测方法,其特征是:步骤二(1):神经网络训练和权向量W递推:
神经网络训练样本集为其中,为M个传感器第k次测量值的均值,神经网络输出为:
T ^ i k = Σ j = 1 N w j cos [ ( j - 1 ) π b - a ( T i k - a ) ] = C ( k , : ) W
其中, C ( k , : ) = [ 1 , cos ( π b - a ( T i k - a ) ) , ..... , cos ( 2 π b - a ( T i k - a ) ) , ..... , cos ( ( N - 1 ) π b - a ( T i k - a ) ) ]
通过如下最小二乘递推法,使为最小,获得权向量W:
W ( k + 1 ) = W ( k ) + Q ( k + 1 ) [ T ‾ k - C ( k , : ) W ( k ) ]
P(k+1)=[I-Q(k)C(k,:)]P(k)
这里k=0,1,2,….,M,W(0)=rand(N,:),P(0)=aI∈RN×N,a为足够大的正数,I为N×N单位矩阵。
6.如权利要求5所述的实时多传感温度数据融合的高精度检测方法,其特征是:步骤二(2):神经网络输出的计算:
将步骤二(1)中得到的权向量W代入
分别计算出M个传感器输入为Tik时的网络输出
7.如权利要求6所述的实时多传感温度数据融合的高精度检测方法,其特征是:步骤二(3):多传感温度融合值Tk的计算:
在步骤二(2)中得到M个传感器基于第k次测量值的输出后,计算出这M个神经网络输出的平均值,即为多传感器温度融合值Tk
8.如权利要求1所述的实时多传感温度数据融合的高精度检测方法,其特征是:步骤三:在步骤一(5)中,若传感器i在第k次测量中被视为无效传感器,则用温度融合值Tk取代Tik,即Tik=Tk,进而对该传感器均值和方差进行重新计算修正,以供进一步温度数据采集、疏失误差剔除和温度融合使用。
CN201110264849.6A 2011-09-08 2011-09-08 一种实时多传感温度数据融合的高精度检测方法 Active CN102393881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110264849.6A CN102393881B (zh) 2011-09-08 2011-09-08 一种实时多传感温度数据融合的高精度检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110264849.6A CN102393881B (zh) 2011-09-08 2011-09-08 一种实时多传感温度数据融合的高精度检测方法

Publications (2)

Publication Number Publication Date
CN102393881A CN102393881A (zh) 2012-03-28
CN102393881B true CN102393881B (zh) 2015-12-09

Family

ID=45861204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110264849.6A Active CN102393881B (zh) 2011-09-08 2011-09-08 一种实时多传感温度数据融合的高精度检测方法

Country Status (1)

Country Link
CN (1) CN102393881B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102929704B (zh) * 2012-10-29 2014-03-12 湖州师范学院 基于集对同一度和联系数的多传感器数据融合方法
CN105699043B (zh) * 2016-04-14 2018-06-08 中国空气动力研究与发展中心高速空气动力研究所 一种提高风洞传感器测量稳定性和精准度的方法
CN106667448B (zh) * 2016-11-24 2019-07-09 珠海泰莱笙科技有限公司 一种体温测量方法
CN107274006A (zh) * 2017-05-23 2017-10-20 中国地质大学(武汉) 一种基于贝叶斯推断的多源气象风速融合方法
CN109903823A (zh) * 2019-03-01 2019-06-18 广州达安临床检验中心有限公司 医学冷链检测方法、装置、设备和存储介质
CN110398386B (zh) * 2019-06-28 2021-03-19 浙江中烟工业有限责任公司 一种智能化判断空调***温湿度测点状态的方法
CN110987068B (zh) * 2019-11-28 2021-11-30 中国人民解放军陆军炮兵防空兵学院郑州校区 一种多传感器综合控制***数据融合方法
CN111550961B (zh) * 2020-04-26 2021-11-26 青岛海尔电冰箱有限公司 冰箱间室温度的预测方法与智能冰箱
CN111915858B (zh) * 2020-08-04 2022-03-29 山东科技大学 一种融合模拟量与数字量相关信息的报警方法及***
CN113916932B (zh) * 2021-09-22 2024-04-16 安徽艺云玻璃有限公司 一种检测中空玻璃传热系数的方法
CN114723285B (zh) * 2022-04-07 2022-11-04 广州汉光电气股份有限公司 一种电网设备安全性评估预测方法
CN115884006B (zh) * 2023-02-23 2023-06-09 启实(烟台)数据技术有限公司 基于AIoT的校园安全防控***和方法
CN116389183B (zh) * 2023-06-07 2023-08-29 深圳市华翌科技有限公司 一种基于物联网的智能家居交互数据处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389710A (zh) * 2002-07-18 2003-01-08 上海交通大学 多传感器多目标信息融合方法
CN102084794A (zh) * 2010-10-22 2011-06-08 华南农业大学 多传感器信息融合的作物病虫害早期检测方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389710A (zh) * 2002-07-18 2003-01-08 上海交通大学 多传感器多目标信息融合方法
CN102084794A (zh) * 2010-10-22 2011-06-08 华南农业大学 多传感器信息融合的作物病虫害早期检测方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于正交基神经网络算法的多传感器数据融合方法;曾喆昭等;《传感技术学报》;20070630;第20卷(第6期);第1369页 *
基于相关性函数和最小二乘的多传感器数据融合;刘建书等;《控制与决策》;20060630;第21卷(第6期);第714-716页 *
大直径多传感器数据融合方法研究;吴昂;《中国优秀硕士学位论文全文数据库》;20050915(第5期);摘要 *

Also Published As

Publication number Publication date
CN102393881A (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
CN102393881B (zh) 一种实时多传感温度数据融合的高精度检测方法
CN108593990B (zh) 一种基于电能用户用电行为模式的窃电检测方法和应用
CN101216998B (zh) 基于模糊粗糙集的证据理论城市交通流信息融合方法
CN104931960B (zh) 动向报文与雷达目标态势信息全航迹段数据关联方法
CN106055918A (zh) 一种电力***负荷数据辨识及修复方法
CN111950627B (zh) 一种多源信息融合方法及其应用
CN102222313B (zh) 基于核主成分分析的城市演化模拟元胞模型处理方法
CN106250442A (zh) 一种网络安全数据的特征选择方法及***
CN103400152A (zh) 基于分层聚类的滑动窗口多数据流异常检测方法
CN104091216A (zh) 基于果蝇优化最小二乘支持向量机的交通信息预测方法
CN104318077A (zh) 气候变化和人类活动对河川径流变化定量分析方法
CN113837352B (zh) 基于长短期记忆神经网络的降雨-径流时空关系模拟方法
CN105205313A (zh) 模糊高斯和粒子滤波方法、装置及目标跟踪方法、装置
CN113313145B (zh) 一种基于混合核相关向量机的快速道路交通事件检测方法
CN112348290B (zh) 河流水质预测方法、装置、存储介质及设备
CN108804851A (zh) 一种混沌群智寻优高精度的丙烯聚合生产过程最优软测量仪表
CN105005708A (zh) 一种基于ap聚类算法的广义负荷特性聚类方法
CN108985455A (zh) 一种计算机应用神经网络预测方法及***
CN106772354B (zh) 基于并行模糊高斯和粒子滤波的目标跟踪方法及装置
CN110716998B (zh) 一种精细尺度人口数据空间化方法
Tang et al. On missing traffic data imputation based on fuzzy C-means method by considering spatial–temporal correlation
CN106339357A (zh) 寻优参数化的网络信息安全检测***和方法
CN115907204A (zh) 麻雀搜索算法优化bp神经网络的林木蒸腾耗水预测方法
CN115691140A (zh) 一种汽车充电需求时空分布的分析与预测方法
Chaudhari et al. Data mining with meteorological data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170727

Address after: 311122, Zhejiang, Hangzhou province Yuhang District Yuhang Street holy road nine, two building on the first floor

Co-patentee after: Zhejiang University of Science and Technology

Patentee after: Zhejiang micro Cold Chain Technology Co., Ltd.

Address before: 310012 room 619, science building, Zhejiang Academy of Sciences, Xihu District, Xueyuan Road, Zhejiang, Hangzhou 83, China

Co-patentee before: Zhejiang University of Science and Technology

Patentee before: Hangzhou Wason Environmental Technology Co., Ltd.

TR01 Transfer of patent right