CN102380315A - 一种精馏co生产稳定同位素13c的低温精馏级联*** - Google Patents

一种精馏co生产稳定同位素13c的低温精馏级联*** Download PDF

Info

Publication number
CN102380315A
CN102380315A CN201110355385XA CN201110355385A CN102380315A CN 102380315 A CN102380315 A CN 102380315A CN 201110355385X A CN201110355385X A CN 201110355385XA CN 201110355385 A CN201110355385 A CN 201110355385A CN 102380315 A CN102380315 A CN 102380315A
Authority
CN
China
Prior art keywords
rectifying
rectifying column
tower
stable isotope
cascade system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110355385XA
Other languages
English (en)
Other versions
CN102380315B (zh
Inventor
许保云
李虎林
陈大昌
李良君
杜晓宁
周建跃
蔡扬
龙磊
吉永喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Research Institute of Chemical Industry SRICI
Original Assignee
Shanghai Research Institute of Chemical Industry SRICI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Research Institute of Chemical Industry SRICI filed Critical Shanghai Research Institute of Chemical Industry SRICI
Priority to CN201110355385.XA priority Critical patent/CN102380315B/zh
Publication of CN102380315A publication Critical patent/CN102380315A/zh
Application granted granted Critical
Publication of CN102380315B publication Critical patent/CN102380315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明涉及一种精馏CO生产稳定同位素13C的低温精馏级联***,该低温精馏级联***为水平放置的n级精馏塔组成的级联装置,精馏塔由塔顶冷凝器、塔底再沸器和精馏柱组成,各级精馏塔之间经管道连接。与现有技术相比,本发明利用在水平级联各塔中设置提取段来减小级联各塔之间的物料输送流量,同时通过改变水平级联***的压力分布实现各塔间物料的自动流动,中间各级塔间的物料输送不需要动力输送设备,可确保级联装置长期、稳定、连续运转。

Description

一种精馏CO生产稳定同位素13C的低温精馏级联***
技术领域
本发明涉及碳的稳定同位素分离技术,尤其是涉及一种精馏CO生产稳定同位素13C的低温精馏级联***。
背景技术
含碳化合物中,碳元素以稳定同位素12C、13C和放射性14C存在于自然界中,其中12C与13C的天然丰度比约为98.9∶1.1。随着科技的发展,13C作为示踪原子已经广泛应用于医学、药理学、生物化学和生命科学等领域。此外,高丰度的12C合成的金刚石比天然产品更好的物理性质也得到关注。
现有技术中,已经有多种稳定同位素13C的生产方法,例如热扩散法、气体扩散法、化学交换法、低温精馏法、激光法等。其中低温精馏法是工业中生产13C的主要方法,但是由于同位素组分之间的蒸气压相差很小,获得高丰度的碳-13必须采用多塔级联操作。
早在1949年,英国Harwell原子能研究中心就建立了低温精馏CO分离13C的装置(T.F.Johns,H.London,enrichment of isotopes13C and 18O,AERE Harwell reportG/R 661,1951),该装置由垂直连接的两座塔构成,全长32ft,产品中13C的丰度为60%,产率为0.4g13C/d。
前苏联梯比利斯实验室(П.Я.Acаmuaнu,B.A.Kaмuckuεзебǔ,E.Л.Oзuaωεuлu,et al.,Пoлyчeниe изoтona C13 мeтoлoм peктификaции oкиcи yrлepoлa,Isotopenpraxis,4.Jahrgang,Heft 7,1968,275-277)建造的CO低温精馏装置由塔径逐渐减小的三座塔构成,装置全长36m,第一级塔径为4.3cm、高15m,第二级塔径为2.0cm、高10m,第三级塔径为1.0cm、高11m,三塔垂直连接,塔内装填三角螺旋圈填料,保温形式为真空绝热,产品中13C的丰度为60%。
1969年7月,美国Los Alamos实验室建成一套CO低温精馏装置(D.E.Armstrong,A.C.Briesmeister,B.B.Mclnteer,et al.,A carbon-13 production plantusing carbon monoxide distillation,LASL report,LA-4391,1970),是当时规模最大的CO低温精馏装置,该装置由垂直串联起来的七段塔组成,整个级联悬空放入一个真空夹套中,再用聚苯乙烯泡沫塑料以及40层铝合金Mylar薄膜绝热,最后放入直径0.9144米、深38.1米的地洞中。级联装置经过6个星期的平衡期,获得13C丰度为92.37%的产品。该装置后被1979年建成的8kg/a的13C装置代替(B.B.Mclnteer,isotope separation by distillation:design of a carbon-13 plant,separationscience and technology,vol.15,No.3,1980,491-508),即Cola-Colita装置,Cola-Colita装置的主塔由垂直串联起来的两段塔及同位素转化反应器和精馏副塔组成,其中主塔第一段为长100米的6根塔,第二段为长100米的1根塔,精馏副塔长55米。
1999年,俄罗斯人杨.格.柴列万西克(杨.格.柴列万西克,阿.勃.哈劳西劳夫,低温精馏碳氧化物制备稳定同位素,Xим.пpoм.1999,No.4,229-235)设计了一套采用CO低温精馏分离13C的四塔级联装置,四座塔采用水平连接的方式,原料加入到第一级塔的塔釜,第2~4级塔全部为浓缩段,四座塔采用等高设计,塔内填料的高度均为20米。前级塔塔底的气体物料通过压力的推动自动流动至后级塔顶部的冷凝器中,冷凝后从冷凝器底部流到后级塔顶部,作为后级塔的喷淋液体,后级塔的蒸气从顶部流出,经过鼓风机输送至前级塔的底部,实现级联各塔之间的物料流动。该流程降低了对场地的要求,但增加了级间物料的动力输送设备。
综合以上文献可知,采用CO低温精馏法浓缩13C需要进行多塔级联操作,现有技术中,级联装置有垂直级联和水平级联两种连接方式。垂直级联中,前级塔的液体依靠重力进入后级塔,后级塔的蒸汽依靠压力进入前级塔,容易实现级联各塔之间的物料输送。但是由于同位素分离过程需要的理论板数很多,造成塔设备很高,因此,施工难度比较大;另外,由于级联装置的压降比较大,降低同位素组分间的分离系数,对分离不利。相比较之下,水平级联的施工难度小得多,但是,在现有技术的n级水平级联装置中,第2~n级精馏塔塔顶进料、出料维持液相和气相的浓度相差一个α的差值,因此级联各塔间的物料流量很大,一方面造成输送设备的能耗比较大,另一方面,这种级联装置对自动控制、仪器仪表的要求比较高,并要求每级必须连续、稳定运转,任何一级塔出现事故,都会造成级联装置不好衔接。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种低温精馏CO生产稳定同位素13C的水平级联***,该***可实现低温精馏装置长期、稳定的运行。
本发明的目的可以通过以下技术方案来实现:
一种精馏CO生产稳定同位素13C的低温精馏级联***,为水平放置的n级精馏塔组成的级联装置,所述的精馏塔由塔顶冷凝器、塔底再沸器和精馏柱组成,各级精馏塔之间经管道连接。
所述的级联装置由直径逐渐变细的n级水平连接的精馏塔组成。
所述的精馏塔为2~10级。
第一级精馏塔可以从中部或塔顶输入原料。
所述的级联装置中后级精馏塔塔顶的蒸气依靠压力经管道输送到前级精馏塔的中部,前级精馏塔的塔釜产生的液体在管道中汽化后在压力作用下输送到后级精馏塔的中部。
所述的后级精馏塔塔顶的蒸气可以在前级精馏塔的进料点位置进入前级精馏塔内。
所述的后级精馏塔塔顶的蒸气可以在比前级精馏塔的进料点位置高的位置进入前级精馏塔内。
所述的后级精馏塔塔顶的蒸气可以在比前级精馏塔的进料点位置低的位置进入前级精馏塔内。
所述的精馏塔内填充高效分离填料。
所述的高效分离填料为金属板波纹规整填料、金属丝网规整填料、金属网孔波纹填料、栅格填料或脉冲填料。
与现有技术相比,本发明利用在水平级联各塔中设置提取段来减小级联各塔之间的物料输送流量,同时通过改变水平级联***的压力分布实现各塔间物料的自动流动,中间各级塔间的物料输送不需要动力输送设备,可确保级联装置长期、稳定、连续运转。
附图说明
图1为本发明级联***的示意图;
图2为实施例1的流程示意图;
图3为实施例1中级联精馏塔内各同位素组分的浓度分布图;
图4为实施例2的流程示意图;
图5为实施例2中级联精馏塔内各同位素组分的浓度分布图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
图1为本发明的由n级精馏塔组成的低温精馏级联***的流程示意图,该***是由n级水平连接的精馏塔构成的级联装置。本发明中的级联装置中,各级塔是这样连接的:原料加入级联装置的第一级精馏塔的中部,第1级塔塔顶采出部分低丰度的13CO气体,第1~第n-1级塔再沸器气化的一部分蒸气经计量后在压力作用下分别进入第2~第n级精馏塔的中部,第2~第n级精馏塔塔顶的部分蒸气经计量后在压力作用下分别进入第1~第n-1级精馏塔的中部,第n级塔的再沸器气化的蒸气一部分进入精馏塔内与塔顶冷凝器下来的液体进行气、液传质,一部分高丰度的13CO气体作为产品离开级联装置。
第1级~第n级精馏塔的塔顶分别连接冷凝器C1~Cn,每个冷凝器均连接与本级精馏塔连通的气体管道、液体管道,和向前一级精馏塔输送物料的管道,此外,每个冷凝器还具有供冷凝介质进、出的管道。
塔顶冷凝器C1~Cn可以是盘管式换热器、列管式换热器、套管式换热器、板片式换热器、螺旋板式换热器、板翅式换热器等,优选板翅式换热器。
图1所示的级联装置中,第1~第n级精馏塔塔内装填高比表面积的规整填料,其类型可以是板波纹填料、栅格填料、丝网波纹规整填料、脉冲填料等,优选孔板波纹填料和丝网波纹填料。
第1级~第n级精馏塔的塔底分别连接再沸器B1~Bn,每个再沸器均连接与本级精馏塔连通的气体管道、液体管道,和向后级精馏塔输送物料的管道。
参照图1,CO原料经由流量计F1计量后沿管线L3输送至第一级塔T1的中部,T1塔内装填分离填料,为塔顶冷凝器C1中冷凝回流的液体与塔底再沸器B1中汽化的蒸气提供传热、传质的表面。从T1塔顶经由管线L2取出高丰度的碳-12,从T1塔釜取出一部分蒸气,在压力的驱动下经由阀V1与流量计F2计量后沿管线L4输送到塔T2的中部,T2塔内装填分离填料,为塔顶冷凝器C2中冷凝回流的液体与塔底再沸器B2中汽化的蒸气提供传热、传质的表面。从T2塔顶取出一部分蒸气,在压力的驱动下经由阀V2与流量计F3计量后沿管线L5输送到塔T1的中部,从T2塔釜取出一部分蒸气,在压力的驱动下经由阀V3与流量计F4计量后沿管线L6输送到塔T3的中部,T3塔内装填分离填料,为塔顶冷凝器C3中冷凝回流的液体与塔底再沸器B3中汽化的蒸气提供传热、传质的表面。从T3塔顶取出一部分蒸气,在压力的驱动下经由阀V4与流量计F5计量后沿管线L7输送到塔T2的中部,从T3塔釜取出一部分蒸气,在压力的驱动下经由阀V5与流量计F6计量后沿管线L8输送到塔T4的中部,类似地,第四塔T4、第五塔T5直到第n塔Tn,均采用这样的连接方式,在第n塔Tn的塔釜采出高丰度的碳-13产品。
整个级联装置中,第1级~第n级精馏塔均有提取段和富集段,且第1级塔到第n级塔的级联装置中的压力是逐渐升高的,第n级塔的塔釜压力最高,级联各塔之间的物料传输均为气体形式,且气体物料的输送在压力的驱动下进行,不需要动力输送设备,可确保级联装置的连续、稳定的操作。
此外,本发明中还提供了使用以上低温精馏***分离富集13C时,级联装置内的各同位素组分的丰度分布的计算机模拟结果。本发明中,使用精馏理论进行级联装置的设计和优化,考虑到体系中氧同位素的影响,计算过程中考察天然丰度比较高的12C16O、13C16O和12C18O三种组分。根据同位素分离级联理论和精密精馏理论设计本发明中提出的低温精馏级联装置,也可以获得类似的结果。
下面结合实施例对本发明作进一步的阐述。
实施例1
实施例1中的级联装置由4级精馏塔组成,级联装置的工艺流程简图如图2所示。CO原料经由流量计F1计量后由管线L3输送至第一级塔T1的中部,T1塔内装填金属丝网波纹填料,为塔顶冷凝器C1中冷凝回流的液体与塔底再沸器B1中汽化的蒸气提供传热、传质的表面。从T1塔顶经由管线L2取出高丰度的碳-12,从T1塔釜取出一部分蒸气,在压力的驱动下经由阀V1与流量计F2计量后沿管线L4输送到塔T2的中部,T2塔内装填金属丝网波纹填料,为塔顶冷凝器C2中冷凝回流的液体与塔底再沸器B2中汽化的蒸气提供传热、传质的表面。从T2塔顶取出一部分蒸气,在压力的驱动下经由阀V2与流量计F3计量后沿管线L5输送到塔T1的中部,与天然丰度的原料一起加入塔T1中部,从T2塔釜取出一部分蒸气,在压力的驱动下经由阀V3与流量计F4计量后沿管线L6输送到塔T3的中部,T3塔内装填金属丝网波纹填料,为塔顶冷凝器C3中冷凝回流的液体与塔底再沸器B3中汽化的蒸气提供传热、传质的表面。从T3塔顶取出一部分蒸气,在压力的驱动下经由阀V4与流量计F5计量后沿管线L7输送到塔T2的中部,其中管线L7与管线L4在同一位置与塔T2连接,从T3塔釜取出一部分蒸气,在压力的驱动下经由阀V5与流量计F6计量后沿管线L8输送到塔T4的中部,T4塔内装填金属丝网波纹填料,为塔顶冷凝器C4中冷凝回流的液体与塔底再沸器B4中汽化的蒸气提供传热、传质的表面。从T4塔顶取出一部分蒸气,在压力的驱动下经由阀V6与流量计F7计量后沿管线L9输送到塔T3的中部,其中管线L8与管线L9在同一位置与塔T3连接,在第4塔T4的塔釜采出高丰度的碳-13产品。
实施例1中,原料为碳-13丰度为1.1%的天然CO,经过四级塔的分离后,碳-13富集到90%,表1是年产净13C 100kg、丰度为90%的级联装置的工艺参数,级联各塔内的同位素丰度分布如图3所示。
表1实施例1中年产100kg碳-13的四级联装置的工艺参数
Figure BDA0000107315480000061
从表1中的数据可以看出,后级塔返回到前级塔的物料量远远低于后级塔塔底再沸器内汽化的物料量,降低了级联各塔间连接管路内的持液量,且中间级联塔出现问题时,可以分别进行单塔全回流操作,待问题解决后再将级联装置连起来,级联装置可以很快恢复操作。
实施例2
实施例2中的级联装置由4级精馏塔组成,级联装置的工艺流程简图如图4所示。CO原料经由流量计F1计量后由管线L3输送至第一级塔T1的中部,T1塔内装填金属丝网波纹填料,为塔顶冷凝器C1中冷凝回流的液体与塔底再沸器B1中汽化的蒸气提供传热、传质的表面。从T1塔顶经由管线L2取出高丰度的碳-12,从T1塔釜取出一部分蒸气,在压力的驱动下经由阀V1与流量计F2计量后沿管线L4输送到塔T2的中部(图4中点d位置),T2塔内装填金属丝网波纹填料,为塔顶冷凝器C2中冷凝回流的液体与塔底再沸器B2中汽化的蒸气提供传热、传质的表面。从T2塔顶取出一部分蒸气,在压力的驱动下经由阀V2与流量计F3计量后沿管线L5输送到塔T1的中部偏下的位置(图4中点a位置),从T2塔釜取出一部分蒸气,在压力的驱动下经由阀V3与流量计F4计量后沿管线L6输送到塔T3的中部(图4中点h位置),T3塔内装填金属丝网波纹填料,为塔顶冷凝器C3中冷凝回流的液体与塔底再沸器B3中汽化的蒸气提供传热、传质的表面。从T3塔顶取出一部分蒸气,在压力的驱动下经由阀V4与流量计F5计量后沿管线L7输送到塔T2的中部偏下的位置(图4中点e位置)。从T3塔釜取出一部分蒸气,在压力的驱动下经由阀V5与流量计F6计量后沿管线L8输送到塔T4的中部(图4中点1位置),T4塔内装填金属丝网波纹填料,为塔顶冷凝器C4中冷凝回流的液体与塔底再沸器B4中汽化的蒸气提供传热、传质的表面。从T4塔顶取出一部分蒸气,在压力的驱动下经由阀V6与流量计F7计量后沿管线L9输送到塔T3的中部偏下的位置(图4中点i位置),在第4塔T4的塔釜采出高丰度的碳-13产品。
实施例2中,原料为碳-13丰度为1.1%的天然CO,经过四级塔的分离后,碳-13富集到90%,表1是年产100kg、丰度为90%的净碳-13的级联装置的工艺参数,级联各塔内的同位素丰度分布如图5所示。
表2实施例1中年产100kg碳-13的四级联装置的工艺参数
Figure BDA0000107315480000071
从表2中的数据可以看出,后级塔返回到前级塔的物料量远远低于后级塔塔底再沸器内汽化的物料量,降低了级联各塔间连接管路内的持液量,且中间级联塔出现问题时,可以分别进行单塔全回流操作,待问题解决后再将级联装置连起来,级联装置可以很快恢复操作。
实施例3
一种精馏CO生产稳定同位素13C的低温精馏级联***,为水平放置的两级直径逐渐变细精馏塔组成的级联装置,精馏塔由塔顶冷凝器、塔底再沸器和精馏柱组成,各级精馏塔之间经管道连接。第一级精馏塔从中部输入原料,后级精馏塔塔顶的蒸气依靠压力经管道输送到前级精馏塔的中部,前级精馏塔的塔釜产生的液体在管道中汽化后在压力作用下输送到后级精馏塔的中部,后级精馏塔塔顶的蒸气可以在前级精馏塔的进料点位置进入前级精馏塔内。在精馏塔内填充有金属板波纹规整填料作为分离填料。
实施例4
一种精馏CO生产稳定同位素13C的低温精馏级联***,为水平放置的10级直径逐渐变细的精馏塔组成的级联装置,精馏塔由塔顶冷凝器、塔底再沸器和精馏柱组成,各级精馏塔之间经管道连接。第一级精馏塔从塔顶输入原料,后级精馏塔塔顶的蒸气依靠压力经管道输送到前级精馏塔的中部,前级精馏塔的塔釜产生的液体在管道中汽化后在压力作用下输送到后级精馏塔的中部。后级精馏塔塔顶的蒸气可以在前级精馏塔的进料点位置进入前级精馏塔内,也可以在比前面精馏塔的进料点位置高的位置进入前级精馏塔内,还可以在比前级精馏塔的进料点位置低的位置进入前级精馏塔内。在精馏塔内填充有金属丝网规整填料、金属网孔波纹填料作为分离填料。
尽管结合具体的实施方案描述了本***,本领域内熟练的技术人员可认识到在本发明权利要求的范围和精神内有各种其它的实施例。

Claims (10)

1.一种精馏CO生产稳定同位素13C的低温精馏级联***,其特征在于,该低温精馏级联***为水平放置的n级精馏塔组成的级联装置,所述的精馏塔由塔顶冷凝器、塔底再沸器和精馏柱组成,各级精馏塔之间经管道连接。
2.根据权利要求1所述的一种精馏CO生产稳定同位素13C的低温精馏级联***,其特征在于,所述的级联装置由直径逐渐变细的n级水平连接的精馏塔组成。
3.根据权利要求1所述的一种精馏CO生产稳定同位素13C的低温精馏级联***,其特征在于,所述的精馏塔为2~10级。
4.根据权利要求1所述的一种精馏CO生产稳定同位素13C的低温精馏级联***,其特征在于,第一级精馏塔可以从中部或塔顶输入原料。
5.根据权利要求1所述的一种精馏CO生产稳定同位素13C的低温精馏级联***,其特征在于,所述的级联装置中后级精馏塔塔顶的蒸气依靠压力经管道输送到前级精馏塔的中部,前级精馏塔的塔釜产生的液体在管道中汽化后在压力作用下输送到后级精馏塔的中部。
6.根据权利要求5所述的一种精馏CO生产稳定同位素13C的低温精馏级联***,其特征在于,所述的后级精馏塔塔顶的蒸气可以在前级精馏塔的进料点位置进入前级精馏塔内。
7.根据权利要求5所述的一种精馏CO生产稳定同位素13C的低温精馏级联***,其特征在于,所述的后级精馏塔塔顶的蒸气可以在比前级精馏塔的进料点位置高的位置进入前级精馏塔内。
8.根据权利要求5所述的一种精馏CO生产稳定同位素13C的低温精馏级联***,其特征在于,所述的后级精馏塔塔顶的蒸气可以在比前级精馏塔的进料点位置低的位置进入前级精馏塔内。
9.根据权利要求1所述的一种精馏CO生产稳定同位素13C的低温精馏级联***,其特征在于,所述的精馏塔内填充高效分离填料。
10.根据权利要求9所述的一种精馏CO生产稳定同位素13C的低温精馏级联***,其特征在于,所述的高效分离填料为金属板波纹规整填料、金属丝网规整填料、金属网孔波纹填料、栅格填料或脉冲填料。
CN201110355385.XA 2011-11-10 2011-11-10 一种精馏co生产稳定同位素13c的低温精馏级联*** Active CN102380315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110355385.XA CN102380315B (zh) 2011-11-10 2011-11-10 一种精馏co生产稳定同位素13c的低温精馏级联***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110355385.XA CN102380315B (zh) 2011-11-10 2011-11-10 一种精馏co生产稳定同位素13c的低温精馏级联***

Publications (2)

Publication Number Publication Date
CN102380315A true CN102380315A (zh) 2012-03-21
CN102380315B CN102380315B (zh) 2014-06-18

Family

ID=45820391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110355385.XA Active CN102380315B (zh) 2011-11-10 2011-11-10 一种精馏co生产稳定同位素13c的低温精馏级联***

Country Status (1)

Country Link
CN (1) CN102380315B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430337A (zh) * 2011-11-10 2012-05-02 上海化工研究院 一种由co生产稳定同位素13c的低温精馏***
CN103055697A (zh) * 2013-01-16 2013-04-24 伍昭化 一种浓缩富集稳定同位素2h、18o、13c的方法和装置
CN103977706A (zh) * 2014-05-15 2014-08-13 中国工程物理研究院核物理与化学研究所 一种同位素13c的分离方法
CN104084042A (zh) * 2014-07-18 2014-10-08 上海联启化工科技有限公司 一种生产稳定同位素15n的全循环、双路进料节能***
CN106731837A (zh) * 2016-12-01 2017-05-31 上海化工研究院有限公司 一种氖气生产稳定同位素的精馏工艺和装置
JP2021010872A (ja) * 2019-07-05 2021-02-04 日本酸素ホールディングス株式会社 一酸化炭素安定同位体濃縮装置および一酸化炭素安定同位体濃縮方法
JP2021041356A (ja) * 2019-09-12 2021-03-18 大陽日酸株式会社 一酸化炭素安定同位体濃縮装置および一酸化炭素安定同位体装置の運転方法
CN113813786A (zh) * 2020-06-19 2021-12-21 核工业理化工程研究院 准矩形级联分离方法、矩形级联改善方法及其应用
RU2785869C1 (ru) * 2022-09-20 2022-12-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения высокообогащенного изотопа углерода 13С

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230267A (ja) * 2003-01-29 2004-08-19 Tokyo Electric Power Co Inc:The 吸着剤及びそれを用いた炭素同位体の分離方法
CN101745315A (zh) * 2009-10-22 2010-06-23 上海化工研究院 采用co低温精馏分离稳定同位素13c的工艺及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230267A (ja) * 2003-01-29 2004-08-19 Tokyo Electric Power Co Inc:The 吸着剤及びそれを用いた炭素同位体の分離方法
CN101745315A (zh) * 2009-10-22 2010-06-23 上海化工研究院 采用co低温精馏分离稳定同位素13c的工艺及装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430337A (zh) * 2011-11-10 2012-05-02 上海化工研究院 一种由co生产稳定同位素13c的低温精馏***
CN102430337B (zh) * 2011-11-10 2014-10-29 上海化工研究院 一种由co生产稳定同位素13c的低温精馏***
CN103055697A (zh) * 2013-01-16 2013-04-24 伍昭化 一种浓缩富集稳定同位素2h、18o、13c的方法和装置
CN103055697B (zh) * 2013-01-16 2016-03-23 江苏正能同位素有限公司 一种浓缩富集稳定同位素2h、18o、13c的方法和装置
CN103977706B (zh) * 2014-05-15 2016-08-17 中国工程物理研究院核物理与化学研究所 一种同位素13c的分离方法
CN103977706A (zh) * 2014-05-15 2014-08-13 中国工程物理研究院核物理与化学研究所 一种同位素13c的分离方法
CN104084042A (zh) * 2014-07-18 2014-10-08 上海联启化工科技有限公司 一种生产稳定同位素15n的全循环、双路进料节能***
CN104084042B (zh) * 2014-07-18 2017-04-12 上海化工研究院 一种生产稳定同位素15n的全循环、双路进料节能***
CN106731837A (zh) * 2016-12-01 2017-05-31 上海化工研究院有限公司 一种氖气生产稳定同位素的精馏工艺和装置
JP2021010872A (ja) * 2019-07-05 2021-02-04 日本酸素ホールディングス株式会社 一酸化炭素安定同位体濃縮装置および一酸化炭素安定同位体濃縮方法
JP2021041356A (ja) * 2019-09-12 2021-03-18 大陽日酸株式会社 一酸化炭素安定同位体濃縮装置および一酸化炭素安定同位体装置の運転方法
CN113813786A (zh) * 2020-06-19 2021-12-21 核工业理化工程研究院 准矩形级联分离方法、矩形级联改善方法及其应用
CN113813786B (zh) * 2020-06-19 2024-06-11 核工业理化工程研究院 准矩形级联分离方法、矩形级联改善方法及其应用
RU2785869C1 (ru) * 2022-09-20 2022-12-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения высокообогащенного изотопа углерода 13С

Also Published As

Publication number Publication date
CN102380315B (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
CN102380315B (zh) 一种精馏co生产稳定同位素13c的低温精馏级联***
CN102430337B (zh) 一种由co生产稳定同位素13c的低温精馏***
CN101035601B (zh) 采用微通道技术的蒸馏方法
CN1962037A (zh) 分离稳定性同位素的低温精馏装置及分离方法
US7610775B2 (en) Distillation process using microchannel technology
EP2837904B1 (en) Distillation device
CN103055697B (zh) 一种浓缩富集稳定同位素2h、18o、13c的方法和装置
CN104474898B (zh) 生产高丰度13c的低温精馏多塔级联节能装置
CN114432726B (zh) 一种热耦合精馏塔
CN103791691B (zh) 富氧空气制造***
CN102008935B (zh) 一种锯齿形波纹填料及其应用
CN2675635Y (zh) 用于富集重氧同位素水的水精馏装置
CN107576148A (zh) 基于lng冷能的高纯特种气体节能型生产方法及***
CN202470618U (zh) 以规整填料精馏分离氩气与氧气的制备装置
CN103644706B (zh) 一种液化天然气及高纯氮联产方法
CN115540501A (zh) 一种从空分设备富氧液空中提取贫氪氙的装置及方法
CN207108920U (zh) 一种轻重分离塔***
CN104084042B (zh) 一种生产稳定同位素15n的全循环、双路进料节能***
JP3329755B2 (ja) 蒸留装置及び蒸留方法
CN107062799A (zh) 一种天然气液化的方法和装置
CN207079020U (zh) 水力真空式级联精馏生产低氘水和重氧水装置
CN85105545A (zh) 空分装置运转的方法和设备
JP6913786B1 (ja) 安定同位体濃縮方法
CN113474956B (zh) 用于热和物质交换的设备
EP4245403A1 (en) Stable isotope concentrating device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 200062 Shanghai city Putuo District Yunling Road No. 345

Patentee after: Shanghai Chemical Research Institute Co., Ltd.

Address before: 200062 Shanghai city Putuo District Yunling Road No. 345

Patentee before: Shanghai Research Institute of Chemical Industry