CN102324511B - Preparation method for lithium ion battery composite cathode material - Google Patents
Preparation method for lithium ion battery composite cathode material Download PDFInfo
- Publication number
- CN102324511B CN102324511B CN2011103034947A CN201110303494A CN102324511B CN 102324511 B CN102324511 B CN 102324511B CN 2011103034947 A CN2011103034947 A CN 2011103034947A CN 201110303494 A CN201110303494 A CN 201110303494A CN 102324511 B CN102324511 B CN 102324511B
- Authority
- CN
- China
- Prior art keywords
- tio
- lithium
- electrode material
- negative electrode
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 35
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 23
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000010406 cathode material Substances 0.000 title 1
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 76
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 26
- 239000007773 negative electrode material Substances 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 24
- 239000010405 anode material Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 13
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 9
- 238000002390 rotary evaporation Methods 0.000 claims abstract description 7
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims abstract description 6
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims abstract description 6
- 239000010936 titanium Substances 0.000 claims description 95
- 239000000843 powder Substances 0.000 claims description 22
- 238000003756 stirring Methods 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052744 lithium Inorganic materials 0.000 claims description 9
- 230000001681 protective effect Effects 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 3
- 229930006000 Sucrose Natural products 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 3
- 238000004729 solvothermal method Methods 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 239000005720 sucrose Substances 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 2
- 229930091371 Fructose Natural products 0.000 claims description 2
- 239000005715 Fructose Substances 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 229910002986 Li4Ti5O12 Inorganic materials 0.000 claims 1
- 150000001298 alcohols Chemical class 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 30
- 230000005518 electrochemistry Effects 0.000 abstract description 2
- 239000007772 electrode material Substances 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000002105 nanoparticle Substances 0.000 abstract description 2
- 239000011246 composite particle Substances 0.000 abstract 1
- 239000010419 fine particle Substances 0.000 abstract 1
- 239000002994 raw material Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910018071 Li 2 O 2 Inorganic materials 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 244000140975 Prunus simonii Species 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003836 solid-state method Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000003335 steric effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种锂离子电池复合负极材料的制备方法,属于新材料和电化学领域,所要解决的问题是提供一种可高倍率充放电的复合电极材料以及经济可行的制备工艺。以醋酸锂、钛酸四丁酯为原料,氨水为pH值调节剂,采用溶剂热结合热处理的方法,制备出Li4Ti5O12-TiO2纳米颗粒,然后通过旋转蒸发工艺将碳源均匀包覆在Li4Ti5O12-TiO2复合颗粒表面,高温裂解后制得Li4Ti5O12-TiO2/C复合材料。此方法制备的Li4Ti5O12-TiO2/C复合材料颗粒细小,粒径、成分分布均匀,具有较高的倍率特性和循环稳定性,能够发挥Li4Ti5O12、TiO2、C各自的优势,是一种理想的高倍率锂离子电池复合负极材料,可广泛应用于各种便携式电子设备、电动汽车以及航空航天等领域。
The invention discloses a preparation method of a lithium-ion battery composite negative electrode material, which belongs to the field of new materials and electrochemistry. The problem to be solved is to provide a composite electrode material that can be charged and discharged at a high rate and an economical and feasible preparation process. Li 4 Ti 5 O 12 -TiO 2 nanoparticles were prepared by using lithium acetate and tetrabutyl titanate as raw materials, ammonia water as a pH regulator, and solvothermal combined with heat treatment, and then the carbon source was homogenized by a rotary evaporation process. Coated on the surface of Li 4 Ti 5 O 12 -TiO 2 composite particles and cracked at high temperature to obtain Li 4 Ti 5 O 12 -TiO 2 /C composite material. The Li 4 Ti 5 O 12 -TiO 2 /C composite material prepared by this method has fine particles, uniform particle size and composition distribution, high rate characteristics and cycle stability, and can exert Li 4 Ti 5 O 12 , TiO 2 , The respective advantages of C are an ideal high-rate lithium-ion battery composite anode material, which can be widely used in various portable electronic devices, electric vehicles, aerospace and other fields.
Description
技术领域 technical field
本发明属于新材料和电化学领域,具体涉及一种可高倍率充放电的Li4Ti5O12-TiO2/C锂离子电池复合负极材料及其制备方法。 The invention belongs to the field of new materials and electrochemistry, and in particular relates to a Li 4 Ti 5 O 12 -TiO 2 /C lithium ion battery composite negative electrode material capable of high-rate charge and discharge and a preparation method thereof.
背景技术 Background technique
在能源危机和环境污染的双重压力下,各国都在努力寻找新型能源,而绿色能源的先行者——锂离子电池,被广泛应用于便携式电子设备、航空航天、军事等领域。目前,节能环保的电动汽车风靡全球,使高比容量、高循环稳定性、倍率性能优异的动力型电池成为当前研究的重点。 Under the dual pressure of energy crisis and environmental pollution, all countries are trying to find new energy sources. Lithium-ion batteries, the pioneer of green energy, are widely used in portable electronic devices, aerospace, military and other fields. At present, energy-saving and environmentally friendly electric vehicles are popular all over the world, making power batteries with high specific capacity, high cycle stability, and excellent rate performance become the focus of current research.
商业上广泛应用的石墨类碳负极材料存在着一些弊端:碳电极的电位与金属锂的电位很接近(100 mV vs. Li+/Li),表面易析出金属锂形成枝晶,存在安全隐患;首次放电过程中与电解液反应生成SEI膜,首次库仑效率低;锂离子反复脱嵌过程中,材料结构受到破坏导致比容量衰减,降低了其循环使用寿命。于是,新型负极材料已经成为当前关注的焦点。 There are some disadvantages in the widely used graphite-based carbon anode materials in commercial use: the potential of the carbon electrode is very close to that of metal lithium (100 mV vs. Li + /Li), and the surface is easy to precipitate metal lithium to form dendrites, which poses a safety hazard; During the first discharge process, it reacts with the electrolyte to form an SEI film, and the first coulombic efficiency is low; during the repeated deintercalation of lithium ions, the material structure is damaged, resulting in specific capacity attenuation, which reduces its cycle life. Therefore, new anode materials have become the focus of current attention.
Li4Ti5O12具有平稳的充放电平台(1.55 V vs. Li+/Li),不与电解液反应,安全性及首次库仑效率高;脱嵌锂过程中,晶体结构变化很小,被称为“零应变材料”,具有良好的循环稳定性,使用寿命长。Li4Ti5O12作为动力型负极材料具有巨大的应用价值,但是电导率低导致其在大电流充放电时容量衰减快,倍率性能较差。目前,提高Li4Ti5O12材料功率密度的关键是提高其电子电导率和离子电导率,通常采取以下方法: Li 4 Ti 5 O 12 has a stable charge-discharge platform (1.55 V vs. Li + /Li), does not react with the electrolyte, has high safety and first Coulombic efficiency; Known as "zero strain material", it has good cycle stability and long service life. Li 4 Ti 5 O 12 has great application value as a dynamic anode material, but its low conductivity leads to rapid capacity decay and poor rate performance during high current charge and discharge. At present, the key to improving the power density of Li 4 Ti 5 O 12 materials is to increase their electronic conductivity and ion conductivity, and the following methods are usually adopted:
(1)离子掺杂。在Li位或Ti位进行高价阳离子掺杂、在O位进行低价阴离子掺杂,根据电中性原理,部分Ti离子由Ti4+向Ti3+转变,提高Li4Ti5O12材料的电子电导率。但是其改善Li4Ti5O12材料倍率性能的效果不明显;同时,掺杂元素进入Li4Ti5O12晶格,在一定程度上会降低材料的结构稳定性。上海硅酸盐研究所的温兆银小组对Li4Ti5O12进行了阳离子掺杂改性研究,通过固相法合成了Li3.95M0.15Ti4.9O12(M=Al,Ga,Co)和Li3.9Mg0.1Al0.15Ti4.85O12,研究发现Al3+掺杂有利于提高材料的比容量,其循环性能稳定;掺杂Ga3+对于材料的比容量稍有提高,但循环稳定性略微降低;Co3+和Mg2+掺杂,在一定程度上降低了Li4Ti5O12材料的电化学性能(Shahua Huang, Zhaoyin Wen, Xiujian Zhu, Zuxiang Lin. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries. J. Power Sources 165 (2007) 408–412)。 (1) Ion doping. Doping high-valent cations at the Li site or Ti site, and low-valent anion doping at the O site, according to the principle of electrical neutrality, some Ti ions are transformed from Ti 4+ to Ti 3+ , which improves the Li 4 Ti 5 O 12 material. electronic conductivity. However, the effect of improving the rate performance of Li 4 Ti 5 O 12 material is not obvious; at the same time, doping elements enter the Li 4 Ti 5 O 12 lattice, which will reduce the structural stability of the material to a certain extent. Wen Zhaoyin's group at the Shanghai Institute of Ceramics conducted a study on the cation doping modification of Li 4 Ti 5 O 12 , and synthesized Li 3.95 M 0.15 Ti 4.9 O 12 (M=Al, Ga, Co) and Li 3.9 Mg 0.1 Al 0.15 Ti 4.85 O 12 , the study found that Al 3+ doping is beneficial to improve the specific capacity of the material, and its cycle performance is stable; doping Ga 3+ slightly improves the specific capacity of the material, but the cycle stability is slightly reduced ; Co 3+ and Mg 2+ doping, to some extent reduce the electrochemical performance of Li 4 Ti 5 O 12 materials (Shahua Huang, Zhaoyin Wen, Xiujian Zhu, Zuxiang Lin. Effects of dopant on the electrochemical performance of Li 4 Ti 5 O 12 as electrode material for lithium ion batteries. J. Power Sources 165 (2007) 408–412).
(2)引入高导电相,通常采取碳包覆的方法。碳均匀分散于Li4Ti5O12颗粒表面,具有架桥作用,增强了颗粒之间的电子导电能力,改善了材料的倍率性能。同时,碳并不进入Li4Ti5O12晶格,不影响材料的结构稳定性。中国科学院的邓正华等以PAALi为锂源和碳源,TiO2为钛源合成了Li4Ti5O12/C负极材料,颗粒尺寸约为200 nm,在8.60 mA/cm2的电流密度下充放电,首次比容量达130.0 mAh/g,循环稳定性优良(Ziji Lin, Xuebu Hu, Yongjian Huai, Li Liu, Zhenghua Deng, Jishuan Suo. One-step synthesis of Li4Ti5O12/C anode material with high performance for lithiumion batteries. Solid State Ionics 181 (2010) 412–415)。中国科学院的于作龙等通过固相法合成了Li4Ti5O12/GCNTs复合材料,其具有高比容量和良好的倍率性能,在10 C的电流密度下,首次放电容量达143 mAh/g,循环100次后,比容量为132 mAh/g(Xing Li, Meizhen Qu, Zuolong Yu. Preparation and electrochemical performance of Li4Ti5O12/graphitized carbon nanotubes composite. Solid State Ionics 181 (2010) 635–639) 。苏州阿特斯阳光电力科技有限公司的高立军通过溶胶-凝胶法合成了Li4Ti5O12/C复合材料,其倍率性能良好、循环性能稳定,和金属锂组成半电池时,在60 C放电条件下,首次比容量为108.9 mAh/g,经过2000次循环后,容量保持率为75.9%,和尖晶石锰酸锂组成锂离子电池时,在1 A/g电流密度下的放电容量为60 mA/g时的85% (CN 101867036 A)。天津巴莫科技股份有限公司的徐宁等制备的碳包覆型钛酸锂材料具有良好的倍率性能,10 C时可逆容量为150.1 mAh/g,为0.1 C时容量的90.3%(CN 101378119A)。 (2) Introduce a highly conductive phase, usually by carbon coating. Carbon is evenly dispersed on the surface of Li 4 Ti 5 O 12 particles, which has a bridging effect, enhances the electronic conductivity between particles, and improves the rate performance of the material. At the same time, carbon does not enter the Li 4 Ti 5 O 12 lattice, which does not affect the structural stability of the material. Deng Zhenghua from the Chinese Academy of Sciences synthesized Li 4 Ti 5 O 12 /C negative electrode material with PAALi as lithium and carbon sources and TiO 2 as titanium source . Discharge, the first specific capacity of 130.0 mAh/g, excellent cycle stability (Ziji Lin, Xuebu Hu, Yongjian Huai, Li Liu, Zhenghua Deng, Jishuan Suo. One-step synthesis of Li 4 Ti 5 O 12 /C anode material with high performance for lithiumion batteries. Solid State Ionics 181 (2010) 412–415). Yu Zuolong from the Chinese Academy of Sciences synthesized Li 4 Ti 5 O 12 /GCNTs composite material by solid-state method, which has high specific capacity and good rate performance. At a current density of 10 C, the initial discharge capacity reaches 143 mAh/ g, after 100 cycles, the specific capacity is 132 mAh/g (Xing Li, Meizhen Qu, Zuolong Yu. Preparation and electrochemical performance of Li 4 Ti 5 O 12 /graphitized carbon nanotubes composite. Solid State Ionics 181 (2010) 635– 639). Gao Lijun of Suzhou Canadian Sunshine Power Technology Co., Ltd. synthesized Li 4 Ti 5 O 12 /C composite material by sol-gel method, which has good rate performance and stable cycle performance. Under discharge conditions, the initial specific capacity is 108.9 mAh/g, and after 2000 cycles, the capacity retention rate is 75.9%. When a lithium-ion battery is composed of spinel lithium manganese oxide, the discharge capacity at a current density of 1 A/g 85% of 60 mA/g (CN 101867036 A). The carbon-coated lithium titanate material prepared by Xu Ning of Tianjin Bamo Technology Co., Ltd. has good rate performance, and the reversible capacity at 10 C is 150.1 mAh/g, which is 90.3% of the capacity at 0.1 C (CN 101378119A) .
(3)制备纳米级颗粒,缩短锂离子扩散路径,提高材料的离子导电性。哈尔滨工业大学张乃庆等通过溶胶-凝胶法合成了纳米Li4Ti5O12颗粒,颗粒尺寸约为100 nm,在40 C电流密度下,具比容量高达108 mAh/g,并且,材料具有优异的循环稳定性和容量恢复性(Naiqing Zhang, Zhimin Liu, Tongyong Yang, Chenglong Liao, Zhijun Wang, Kening Sun. Facile preparation of nanocrystalline Li4Ti5O12 and its high electrochemical performance as anode material for lithium-ion batteries. Electrochem. Commun. 13 (2011) 654–656)。上海交通大学杨立等通过水热法合成的Li4Ti5O12负极材料,在20 C的电流密度条件下,放电比容量为125 mAh/g,循环稳定,高倍率充放电性能优良(CN 101409341A)。 (3) Prepare nano-sized particles, shorten the diffusion path of lithium ions, and improve the ionic conductivity of the material. Zhang Naiqing from Harbin Institute of Technology synthesized nano Li 4 Ti 5 O 12 particles by sol-gel method. The particle size is about 100 nm. At 40 C current density, the specific capacity is as high as 108 mAh/g, and the material has excellent Cycle stability and capacity recovery (Naiqing Zhang, Zhimin Liu, Tongyong Yang, Chenglong Liao, Zhijun Wang, Kening Sun. Facile preparation of nanocrystalline Li 4 Ti 5 O 12 and its high electrochemical performance as anode material for lithium-ion batteries . Electrochem. Commun. 13 (2011) 654–656). The Li 4 Ti 5 O 12 anode material synthesized by Yang Li of Shanghai Jiaotong University through the hydrothermal method has a discharge specific capacity of 125 mAh/g at a current density of 20 C, stable cycling, and excellent high-rate charge and discharge performance (CN 101409341A).
TiO2的理论比容量为335 mAh/g,具有适宜的嵌锂电位(~2 V vs. Li+/Li)、体积膨胀率低(3~4%),将其引入Li4Ti5O12中,可以提高材料的比容量。澳大利亚M.M. Rahman等采用碱性熔盐法合成了纳米Li4Ti5O12-TiO2负极材料,在1 C电流密度条件下,首次放电比容量为146 mAh/g,循环100次后,容量保持率为95%(M.M. Rahman, Jia-Zhao Wang, Mohd Faiz Hassan, Shulei Chou, David Wexler, Hua-Kun Liu. Basic molten salt process—A new route for synthesis of nanocrystalline Li4Ti5O12-TiO2 anode material for Li-ion batteries using eutectic mixture of LiNO3–LiOH–Li2O2. J. Power Sources 195 (2010) 4297–4303)。 The theoretical specific capacity of TiO 2 is 335 mAh/g, it has a suitable lithium intercalation potential (~2 V vs. Li + /Li), and a low volume expansion rate (3~4%), and it can be introduced into Li 4 Ti 5 O 12 , the specific capacity of the material can be increased. Australia MM Rahman et al. synthesized nano Li 4 Ti 5 O 12 -TiO 2 anode materials by the alkaline molten salt method. Under the condition of 1 C current density, the initial discharge specific capacity was 146 mAh/g, and after 100 cycles, the capacity remained The rate is 95% (MM Rahman, Jia-Zhao Wang, Mohd Faiz Hassan, Shulei Chou, David Wexler, Hua-Kun Liu. Basic molten salt process—A new route for synthesis of nanocrystalline Li 4 Ti 5 O 12 -TiO 2 anode material for Li-ion batteries using eutectic mixture of LiNO 3 –LiOH–Li 2 O 2 . J. Power Sources 195 (2010) 4297–4303).
发明内容 Contents of the invention
本发明的目的在于提供一种颗粒细小、粒径分布均匀、形貌规整、在高倍率充放电条件下,具有相对较高的比容量和循环稳定性的Li4Ti5O12-TiO2/C锂离子电池复合负极材料。 The object of the present invention is to provide a Li 4 Ti 5 O 12 -TiO 2 / C lithium ion battery composite negative electrode material.
一种锂离子电池复合负极材料的制备方法,其特征在于:它是由Li4Ti5O12、TiO2、C三种组分构成。 A method for preparing a lithium-ion battery composite negative electrode material is characterized in that it is composed of three components: Li 4 Ti 5 O 12 , TiO 2 , and C.
其具体步骤为: The specific steps are:
(1)配置溶液:选用分析纯钛酸四丁酯作为钛源,与有机溶剂混合,搅拌均匀,制成澄清透明溶液,其中钛的加入量在0.0001~0.1 mol/100 ml溶剂; (1) Configuration solution: select analytically pure tetrabutyl titanate as the titanium source, mix it with an organic solvent, and stir evenly to make a clear and transparent solution, in which the amount of titanium added is 0.0001~0.1 mol/100 ml solvent;
选用分析纯醋酸锂作为锂源,按照原子比Li/Ti = 0.8~1.6进行配制,将其加入到澄清溶液中,搅拌均匀; Select analytically pure lithium acetate as the lithium source, prepare according to the atomic ratio Li/Ti = 0.8~1.6, add it to the clarified solution, and stir evenly;
选用分析纯氨水(质量百分含量25~28%)作为pH值调节剂,逐滴加入到溶液中,其中氨水的加入量在1~8 ml/100 ml溶剂; Select analytically pure ammonia water (25-28% by mass) as the pH regulator, and add it dropwise to the solution, wherein the amount of ammonia water added is 1-8 ml/100 ml solvent;
(2)将上述溶液置于高压釜中,进行溶剂热反应,合成条件为:140~180 oC保温12~48小时; (2) Put the above solution in an autoclave for solvothermal reaction, the synthesis conditions are: 140~180 o C for 12~48 hours;
(3)将步骤(2)所得的产物用无水乙醇洗涤、过滤后,置于烘箱中80~120 oC烘干,得到Li4Ti5O12-TiO2前驱体; (3) The product obtained in step (2) was washed with absolute ethanol, filtered, and dried in an oven at 80-120 o C to obtain a Li 4 Ti 5 O 12 -TiO 2 precursor;
(4)空气气氛下,将步骤(3)所得的前驱体升温至450~650 oC保温1.5~4小时,随炉冷却至室温制得Li4Ti5O12-TiO2粉体; (4) Under an air atmosphere, heat the precursor obtained in step (3) to 450-650 o C for 1.5-4 hours, then cool to room temperature with the furnace to prepare Li 4 Ti 5 O 12 -TiO 2 powder;
(5)将步骤(4)制得的Li4Ti5O12-TiO2与碳源在溶剂中混合,搅拌至均匀,通过旋转蒸发,碳源均匀包覆在Li4Ti5O12-TiO2颗粒表面; (5) Mix the Li 4 Ti 5 O 12 -TiO 2 prepared in step (4) with the carbon source in the solvent, stir until uniform, and through rotary evaporation, the carbon source is uniformly coated on the Li 4 Ti 5 O 12 -TiO 2 particle surface;
(6)在惰性保护性气氛下,将步骤(5)所得的粉体升温至550~650 oC保温1~5小时,然后随炉冷却至室温,制得Li4Ti5O12-TiO2/C复合负极材料。 (6) Under an inert protective atmosphere, raise the temperature of the powder obtained in step (5) to 550~650 o C for 1~5 hours, and then cool to room temperature with the furnace to prepare Li 4 Ti 5 O 12 -TiO 2 /C composite anode material.
步骤(1)所述的有机溶剂为一元醇类,所述的氨水可快速一次性加入到溶液中,也可缓慢逐滴加入到溶液中。 The organic solvent described in step (1) is a monohydric alcohol, and the ammonia water can be quickly added to the solution at one time, or slowly added dropwise to the solution.
步骤(5)所述的碳源为蔗糖、葡萄糖、淀粉、环氧树脂、果糖、PVdF中的一种或几种。 The carbon source in step (5) is one or more of sucrose, glucose, starch, epoxy resin, fructose, and PVdF.
步骤(6)所述的惰性保护性气氛是氮气、氩气中的一种或两种。 The inert protective atmosphere in step (6) is one or both of nitrogen and argon.
TiO2在Li4Ti5O12-TiO2粉体中的质量百分含量为5~50%,C在Li4Ti5O12-TiO2/C复合负极材料中的质量百分含量为1~10%,碳源不进入基体材料Li4Ti5O12-TiO2的晶格。 The mass percentage of TiO 2 in Li 4 Ti 5 O 12 -TiO 2 powder is 5~50%, and the mass percentage of C in Li 4 Ti 5 O 12 -TiO 2 /C composite negative electrode material is 1 ~10%, the carbon source does not enter the lattice of the matrix material Li 4 Ti 5 O 12 -TiO 2 .
TiO2在Li4Ti5O12-TiO2粉体中的含量优选为15~40%,这是因为若TiO2含量过低,则合成的Li4Ti5O12-TiO2颗粒粒径较大,对材料离子导电性的改善不明显;TiO2含量过高,则合成的Li4Ti5O12-TiO2颗粒过小易团聚,不利于改善材料的电化学性能。 The content of TiO 2 in Li 4 Ti 5 O 12 -TiO 2 powder is preferably 15~40%, because if the content of TiO 2 is too low, the particle size of the synthesized Li 4 Ti 5 O 12 -TiO 2 will be smaller If the TiO 2 content is too high, the synthesized Li 4 Ti 5 O 12 -TiO 2 particles are too small and easy to agglomerate, which is not conducive to improving the electrochemical performance of the material.
从容量和导电性兼顾起来考虑,C在Li4Ti5O12-TiO2/C复合负极材料中的含量优选为2~4%,这是因为若碳含量过低,则无法从根本上提高材料的电子导电性,碳含量过高,则会降低材料的比容量。 Considering both capacity and conductivity, the content of C in the Li 4 Ti 5 O 12 -TiO 2 /C composite negative electrode material is preferably 2~4%, because if the carbon content is too low, it cannot be fundamentally improved. The electronic conductivity of the material, if the carbon content is too high, the specific capacity of the material will be reduced.
Li4Ti5O12材料作为“零应变材料”,具有良好的循环稳定性;TiO2材料可脱嵌锂,且在热处理时,由于空间位阻效应,抑制了Li4Ti5O12颗粒的生长,得到纳米Li4Ti5O12-TiO2颗粒,缩短了锂离子扩散路径,提高了材料的离子导电性;碳均匀分散于颗粒之间或包覆于颗粒表面,具有良好的架桥作用,提高了材料的的电子导电性,发挥着三者各自的优势。 As a "zero strain material", Li 4 Ti 5 O 12 material has good cycle stability; TiO 2 material can deintercalate lithium, and during heat treatment, due to the steric effect, the Li 4 Ti 5 O 12 particle is inhibited. growth, to obtain nanometer Li 4 Ti 5 O 12 -TiO 2 particles, which shortens the lithium ion diffusion path and improves the ionic conductivity of the material; carbon is evenly dispersed between the particles or coated on the surface of the particles, which has a good bridging effect, The electronic conductivity of the material is improved, and the respective advantages of the three are exerted.
采用这种方法制备的负极材料具有以下优点: The negative electrode material prepared by this method has the following advantages:
(1)颗粒细小,粒径分布均匀,形貌规整; (1) The particles are fine, the particle size distribution is uniform, and the shape is regular;
(2)碳源不进入基体材料Li4Ti5O12-TiO2的晶格,有利于保持材料的结构稳定性; (2) The carbon source does not enter the lattice of the matrix material Li 4 Ti 5 O 12 -TiO 2 , which is conducive to maintaining the structural stability of the material;
(3)在高倍率充放电条件下,具有相对较高的比容量和循环稳定性; (3) Under high rate charge and discharge conditions, it has relatively high specific capacity and cycle stability;
(4)各组分能够发挥各自的优势。 (4) Each component can exert its own advantages.
本发明通过溶剂热法,利用空间位阻效应,原位合成纳米Li4Ti5O12-TiO2复合材料,并利用旋转蒸发工艺在颗粒表面均匀包覆一层碳,制备Li4Ti5O12-TiO2/C复合负极材料。TiO2的存在,一方面提供容量,一方面阻止颗粒长大,实现活性粉体的纳米化;纳米活性颗粒具有良好的离子导电性;碳包覆后提高材料的电子导电性。三者发挥着各自的优势。在大电流充放电条件下,Li4Ti5O12-TiO2/C材料的具有高比容量、高循环稳定性和高安全性,是一种性能良好的锂离子电池负极材料。 The present invention utilizes steric hindrance effect by solvothermal method to in-situ synthesize nanometer Li 4 Ti 5 O 12 -TiO 2 composite material, and uses a rotary evaporation process to uniformly coat a layer of carbon on the particle surface to prepare Li 4 Ti 5 O 12 -TiO 2 /C composite anode material. The existence of TiO2 , on the one hand, provides capacity, on the other hand, prevents the particle from growing up, and realizes the nanometerization of the active powder; the nano-active particle has good ion conductivity; the electronic conductivity of the material is improved after carbon coating. The three play their respective advantages. Under the condition of high-current charge and discharge, Li 4 Ti 5 O 12 -TiO 2 /C material has high specific capacity, high cycle stability and high safety, and is a good performance lithium-ion battery negative electrode material.
本发明优点在于材料的合成过程中,操作灵活、简单,反应条件温和,物相形成、粒径大小以及颗粒形态易于控制。 The invention has the advantages of flexible and simple operation, mild reaction conditions, and easy control of phase formation, particle size and particle shape during the material synthesis process.
Li4Ti5O12-TiO2/C复合材料是一种性能良好的锂离子电池复合负极材料,此材料及其制备方法尚未见文献和专利报道。 Li 4 Ti 5 O 12 -TiO 2 /C composite material is a composite anode material for lithium-ion batteries with good performance. This material and its preparation method have not yet been reported in literature and patents.
附图说明 Description of drawings
图1是实施例1的Li4Ti5O12-TiO2/C的充放电曲线图。 Fig. 1 is a charge-discharge curve diagram of Li 4 Ti 5 O 12 -TiO 2 /C in Example 1.
具体实施方式 Detailed ways
下面结合实施例对本发明做进一步说明,但并不限定于本发明的保护范围: Below in conjunction with embodiment the present invention will be further described, but not limited to protection scope of the present invention:
实施例1: Example 1:
称取2.383 g分析纯钛酸四丁酯(纯度≥99.0%)溶解于50 ml无水乙醇中,搅拌均匀,制成澄清透明溶液;按照原子比Li/Ti = 1.4,称取1.000 g醋酸锂(纯度≥99.0%),加入到澄清溶液中,继续搅拌直至形成均匀溶液;逐滴加入2 ml氨水至溶液中,混合均匀后将混合液转移至100 ml高压釜内,并置于烘箱中,180 oC保温24小时,冷却至室温,所得的产物用无水乙醇洗涤、过滤后,置于烘箱中80 oC烘干,得到Li4Ti5O12-TiO2前驱体;空气气氛下,将所得的前驱体升温至600 oC保温2小时,随炉冷却至室温制得Li4Ti5O12-TiO2粉体,其中,TiO2在Li4Ti5O12-TiO2粉体中的含量约为23%;称取0.450 g Li4Ti5O12-TiO2粉体、0.027 g蔗糖,将两者在无水乙醇中混合,搅拌至均匀,通过旋转蒸发,碳源均匀包覆在Li4Ti5O12-TiO2颗粒表面;在高纯氮气保护性气氛下,将粉体升温至600 oC保温1小时,然后随炉冷却至室温,制得Li4Ti5O12-TiO2/C复合负极材料,C在Li4Ti5O12-TiO2/C复合负极材料中的含量约为2%。 Weigh 2.383 g of analytically pure tetrabutyl titanate (purity ≥ 99.0%) and dissolve it in 50 ml of absolute ethanol, stir well to make a clear and transparent solution; according to the atomic ratio Li/Ti = 1.4, weigh 1.000 g of lithium acetate (purity ≥ 99.0%), add to the clear solution, continue to stir until a uniform solution is formed; add 2 ml of ammonia water to the solution drop by drop, mix well, transfer the mixture to a 100 ml autoclave, and place in an oven, 180 o C for 24 hours, cooled to room temperature, the resulting product was washed with absolute ethanol, filtered, and dried in an oven at 80 o C to obtain the Li 4 Ti 5 O 12 -TiO 2 precursor; under air atmosphere, Raise the temperature of the obtained precursor to 600 o C for 2 hours, then cool to room temperature with the furnace to prepare Li 4 Ti 5 O 12 -TiO 2 powder, wherein TiO 2 is in Li 4 Ti 5 O 12 -TiO 2 powder The content of Li 4 Ti 5 O 12 -TiO 2 powder is about 23%. Weigh 0.450 g Li 4 Ti 5 O 12 -TiO 2 powder and 0.027 g sucrose, mix the two in absolute ethanol, stir until uniform, and use rotary evaporation to evenly coat the carbon source On the surface of Li 4 Ti 5 O 12 -TiO 2 particles; under the protective atmosphere of high-purity nitrogen, raise the temperature of the powder to 600 o C for 1 hour, and then cool to room temperature with the furnace to obtain Li 4 Ti 5 O 12 - TiO 2 /C composite negative electrode material, the content of C in Li 4 Ti 5 O 12 -TiO 2 /C composite negative electrode material is about 2%.
将制得的Li4Ti5O12-TiO2/C复合负极材料、10 wt%的乙炔黑、5 wt%的PVdF混合均匀,制成浆料,均匀涂覆在铜箔上,真空烘干后冲压为圆形电极极片,以金属锂为对电极,1 mol/L LiPF6/EMC+DC+EC(体积比为1:1:1)为电解液,Celgard 2400为隔膜,组成试验电池。对电池进行恒流充放电测试,电流密度为5 C(1 C = 175 mA/g),充放电电压范围为1.0~2.5 V。结果表明,其最大可逆比容量达167.7 mAh/g,100次循环后,比容量保持在150 mAh/g左右。 The prepared Li 4 Ti 5 O 12 -TiO 2 /C composite negative electrode material, 10 wt% acetylene black, and 5 wt% PVdF were mixed evenly to make a slurry, which was uniformly coated on copper foil and dried in vacuum The post-punching is a circular electrode pole piece, with metal lithium as the counter electrode, 1 mol/L LiPF 6 /EMC+DC+EC (volume ratio 1:1:1) as the electrolyte, and Celgard 2400 as the separator to form a test battery . The constant current charge and discharge test was carried out on the battery, the current density was 5 C (1 C = 175 mA/g), and the charge and discharge voltage range was 1.0-2.5 V. The results show that its maximum reversible specific capacity reaches 167.7 mAh/g, and after 100 cycles, the specific capacity remains at about 150 mAh/g.
实施例2: Example 2:
称取2.383 g分析纯钛酸四丁酯(纯度≥99.0%)溶解于50 ml无水乙醇中,搅拌均匀,制成澄清透明溶液;按照原子比Li/Ti = 1.4,称取1.000 g醋酸锂(纯度≥99.0%),加入到澄清溶液中,继续搅拌直至形成均匀溶液;逐滴加入1 ml氨水至溶液中,混合均匀后将混合液转移至100 ml高压釜内,并置于烘箱中,180 oC保温24小时,冷却至室温,所得的产物用无水乙醇洗涤、过滤后,置于烘箱中80 oC烘干,得到Li4Ti5O12-TiO2前驱体;空气气氛下,将所得的前驱体升温至600 oC保温2小时,随炉冷却至室温制得Li4Ti5O12-TiO2粉体,其中,TiO2在Li4Ti5O12-TiO2粉体中的含量约为19%;称取0.450 g Li4Ti5O12-TiO2粉体、0.026 g淀粉,将两者在无水乙醇中混合,搅拌至均匀,通过旋转蒸发,碳源均匀包覆在Li4Ti5O12-TiO2颗粒表面;在高纯氮气保护性气氛下,将粉体升温至600 oC保温1小时,然后随炉冷却至室温,制得Li4Ti5O12-TiO2/C复合负极材料,C在Li4Ti5O12-TiO2/C复合负极材料中的含量约为2%。 Weigh 2.383 g of analytically pure tetrabutyl titanate (purity ≥ 99.0%) and dissolve it in 50 ml of absolute ethanol, stir well to make a clear and transparent solution; according to the atomic ratio Li/Ti = 1.4, weigh 1.000 g of lithium acetate (purity ≥ 99.0%), add to the clear solution, continue to stir until a uniform solution is formed; add 1 ml of ammonia water to the solution drop by drop, mix well, transfer the mixture to a 100 ml autoclave, and place in an oven, 180 o C for 24 hours, cooled to room temperature, the resulting product was washed with absolute ethanol, filtered, and dried in an oven at 80 o C to obtain the Li 4 Ti 5 O 12 -TiO 2 precursor; under air atmosphere, Raise the temperature of the obtained precursor to 600 o C for 2 hours, then cool to room temperature with the furnace to prepare Li 4 Ti 5 O 12 -TiO 2 powder, wherein TiO 2 is in Li 4 Ti 5 O 12 -TiO 2 powder The content of Li 4 Ti 5 O 12 -TiO 2 -TiO 2 powder and 0.026 g of starch were weighed, and the two were mixed in absolute ethanol, stirred until uniform, and the carbon source was uniformly coated by rotary evaporation On the surface of Li 4 Ti 5 O 12 -TiO 2 particles; under the protective atmosphere of high-purity nitrogen, raise the temperature of the powder to 600 o C for 1 hour, and then cool to room temperature with the furnace to obtain Li 4 Ti 5 O 12 - TiO 2 /C composite negative electrode material, the content of C in Li 4 Ti 5 O 12 -TiO 2 /C composite negative electrode material is about 2%.
电化学性能测试与实施例1相同。结果表明,其最大可逆比容量达165.5 mAh/g,100次循环后,容量保持在150 mAh/g左右。 The electrochemical performance test is the same as in Example 1. The results show that its maximum reversible specific capacity reaches 165.5 mAh/g, and the capacity remains around 150 mAh/g after 100 cycles.
实施例3: Example 3:
称取2.383 g分析纯钛酸四丁酯(纯度≥99.0%)溶解于50 ml无水乙醇中,搅拌均匀,制成澄清透明溶液;按照原子比Li/Ti = 1.2,称取0.857 g醋酸锂(纯度≥99.0%),加入到澄清溶液中,继续搅拌直至形成均匀溶液;逐滴加入2 ml氨水至溶液中,混合均匀后将混合液转移至100 ml高压釜内,并置于烘箱中,180 oC保温24小时,冷却至室温,所得的产物用无水乙醇洗涤、过滤后,置于烘箱中80 oC烘干,得到Li4Ti5O12-TiO2前驱体;空气气氛下,将所得的前驱体升温至600 oC保温2小时,随炉冷却至室温制得Li4Ti5O12-TiO2粉体,其中,TiO2在Li4Ti5O12-TiO2粉体中的含量约为25%;称取0.450 g Li4Ti5O12-TiO2粉体、0.044 g葡萄糖,将两者在无水乙醇中混合,搅拌至均匀,通过旋转蒸发,碳源均匀包覆在Li4Ti5O12-TiO2颗粒表面;在高纯氮气保护性气氛下,将粉体升温至600 oC保温1小时,然后随炉冷却至室温,制得Li4Ti5O12-TiO2/C复合负极材料,C在Li4Ti5O12-TiO2/C复合负极材料中的含量约为2%。 Weigh 2.383 g of analytically pure tetrabutyl titanate (purity ≥ 99.0%) and dissolve it in 50 ml of absolute ethanol, stir well to make a clear and transparent solution; according to the atomic ratio Li/Ti = 1.2, weigh 0.857 g of lithium acetate (purity ≥ 99.0%), add to the clear solution, continue to stir until a uniform solution is formed; add 2 ml of ammonia water to the solution drop by drop, mix well, transfer the mixture to a 100 ml autoclave, and place in an oven, 180 o C for 24 hours, cooled to room temperature, the resulting product was washed with absolute ethanol, filtered, and dried in an oven at 80 o C to obtain the Li 4 Ti 5 O 12 -TiO 2 precursor; under air atmosphere, Raise the temperature of the obtained precursor to 600 o C for 2 hours, then cool to room temperature with the furnace to prepare Li 4 Ti 5 O 12 -TiO 2 powder, wherein TiO 2 is in Li 4 Ti 5 O 12 -TiO 2 powder The content of Li 4 Ti 5 O 12 -TiO 2 -TiO 2 powder and 0.044 g glucose were weighed, and the two were mixed in absolute ethanol, stirred until uniform, and the carbon source was uniformly coated by rotary evaporation On the surface of Li 4 Ti 5 O 12 -TiO 2 particles; under the protective atmosphere of high-purity nitrogen, raise the temperature of the powder to 600 o C for 1 hour, and then cool to room temperature with the furnace to obtain Li 4 Ti 5 O 12 - TiO 2 /C composite negative electrode material, the content of C in Li 4 Ti 5 O 12 -TiO 2 /C composite negative electrode material is about 2%.
电化学性能测试与实施例1相同。结果表明,其最大可逆比容量达131.4 mAh/g,100次循环后,容量保持在115 mAh/g左右。 The electrochemical performance test is the same as in Example 1. The results show that its maximum reversible specific capacity reaches 131.4 mAh/g, and after 100 cycles, the capacity remains at about 115 mAh/g.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103034947A CN102324511B (en) | 2011-10-09 | 2011-10-09 | Preparation method for lithium ion battery composite cathode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103034947A CN102324511B (en) | 2011-10-09 | 2011-10-09 | Preparation method for lithium ion battery composite cathode material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102324511A CN102324511A (en) | 2012-01-18 |
CN102324511B true CN102324511B (en) | 2013-06-12 |
Family
ID=45452211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103034947A Expired - Fee Related CN102324511B (en) | 2011-10-09 | 2011-10-09 | Preparation method for lithium ion battery composite cathode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102324511B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102544468B (en) * | 2012-02-10 | 2016-12-14 | 中国科学院福建物质结构研究所 | Mesoporous lithium titanate lithium ion battery negative material of carbon cladding and preparation method thereof |
CN102931401B (en) * | 2012-10-12 | 2015-12-02 | 中航锂电(洛阳)有限公司 | A kind of preparation method of composite ferric lithium phosphate material |
CN102891289A (en) * | 2012-10-23 | 2013-01-23 | 中国科学院过程工程研究所 | Multi-dimensional LTO/C nano composite material, preparation method and application thereof |
CN102916170B (en) * | 2012-11-01 | 2015-04-01 | 多氟多(焦作)新能源科技有限公司 | Method for preparing carbon-coated nano-particle lithium titanate electrode material |
CN103700816B (en) * | 2013-12-12 | 2016-02-03 | 天津巴莫科技股份有限公司 | A kind of preparation method of lithium ion battery silicon based composite material |
CN105845901B (en) * | 2016-03-28 | 2018-09-21 | 辽宁大学 | A kind of lithium ion battery negative material Li4Ti5O12/TiO2/ RGO and preparation method thereof |
CN105789583B (en) * | 2016-03-28 | 2018-08-14 | 辽宁大学 | A kind of lithium ion battery negative material Li4Ti5O12/TiO2/ Ag and preparation method thereof |
CN105932238A (en) * | 2016-05-11 | 2016-09-07 | 新疆大学 | Preparation method of lithium ion battery negative electrode material lithium titanate coated by spherical rare earth metal oxide |
JP6361841B2 (en) * | 2016-05-30 | 2018-07-25 | 日立金属株式会社 | Positive electrode active material for lithium ion secondary battery, positive electrode including the same, and lithium ion secondary battery including the positive electrode |
CN107651705B (en) * | 2016-07-26 | 2019-07-16 | 河北银隆新能源有限公司 | Preparation method of lithium titanate |
CN106910879B (en) * | 2017-03-29 | 2019-09-20 | 天津巴莫科技股份有限公司 | In-situ preparation lithium titanate-composite titania material and preparation method thereof |
CN109904439B (en) * | 2017-12-11 | 2022-02-22 | 中信国安盟固利动力科技有限公司 | Low-temperature preparation method of novel titanium-based material |
CN109319830A (en) * | 2018-11-13 | 2019-02-12 | 北方奥钛纳米技术有限公司 | Lithium titanate material and preparation method thereof, negative electrode tab, battery |
CN112736236B (en) * | 2021-01-15 | 2024-02-20 | 辽宁大学 | Novel lithium ion battery anode material biomass carbon coated diphasic Li 4 Ti 5 O 12 -TiO 2 And applications thereof |
CN114702065A (en) * | 2022-03-25 | 2022-07-05 | 扬州大学 | Oxygen-enriched defective TiO2Carbon composite material, preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101378119A (en) * | 2008-10-06 | 2009-03-04 | 天津巴莫科技股份有限公司 | Method for preparing carbon-coating type lithium titanate for lithium ion battery |
CN101944591A (en) * | 2010-09-14 | 2011-01-12 | 耿世达 | Lithium titanate anode material for lithium ion batteries and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6645673B2 (en) * | 1999-02-16 | 2003-11-11 | Toho Titanium Co., Ltd. | Process for producing lithium titanate and lithium ion battery and negative electrode therein |
-
2011
- 2011-10-09 CN CN2011103034947A patent/CN102324511B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101378119A (en) * | 2008-10-06 | 2009-03-04 | 天津巴莫科技股份有限公司 | Method for preparing carbon-coating type lithium titanate for lithium ion battery |
CN101944591A (en) * | 2010-09-14 | 2011-01-12 | 耿世达 | Lithium titanate anode material for lithium ion batteries and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
单宇 等.溶胶_凝胶法制备Li4Ti5O12/C复合负极材料及性能研究.《电源技术》.2010,第34卷(第12期),1236-1238. |
溶胶_凝胶法制备Li4Ti5O12/C复合负极材料及性能研究;单宇 等;《电源技术》;20101231;第34卷(第12期);1236-1238 * |
Also Published As
Publication number | Publication date |
---|---|
CN102324511A (en) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102324511B (en) | Preparation method for lithium ion battery composite cathode material | |
CN102969492B (en) | Carbon-coated doping modified lithium titanate and preparation method thereof | |
CN102386385B (en) | Preparation method of Li4Ti5O12-TiO2 composite electrode material | |
CN105226285B (en) | A kind of porous Si-C composite material and preparation method thereof | |
CN103972497B (en) | Lithium-ion battery Co2SnO4/C nanocomposite negative electrode material and its preparation and application | |
CN102569756A (en) | Preparation method of silicon/graphene nanocomposite material for cathode of lithium ion battery | |
CN103078087B (en) | A kind of preparation method of lithium titanate/carbon nano tube composite cathode material | |
CN108346788A (en) | A kind of preparation method of carbon coating Antaciron composite negative pole material | |
CN103208625A (en) | Preparation method of ferroferric-oxide-based high-performance negative electrode material for lithium ion battery | |
CN105938904A (en) | Composite positive electrode material for sodium-ion battery and preparation method of composite positive electrode material | |
CN110085847B (en) | Germanium/carbon composite cathode material of lithium ion battery and preparation method and application thereof | |
CN103227324A (en) | Preparation method of iron oxide cathode material for lithium ion battery | |
CN107170968A (en) | A kind of positive electrode material of secondary Mg battery and preparation method thereof | |
CN101752562A (en) | Compound doped modified lithium ion battery anode material and preparation method thereof | |
CN102208638A (en) | High-capacity lithium ion battery cathode composite material and preparation method thereof | |
CN102832376A (en) | Preparation method for silicon carbon composite material for lithium ion battery negative electrode | |
CN104638261A (en) | A kind of high rate LiFePO4/C cathode material and its preparation method | |
CN104779390B (en) | Spherical nano lithium manganese phosphate of lithium and its preparation method and application | |
CN104022282A (en) | High temperature solid state preparation method of lithium ion battery cathode material lithium metasilicate | |
WO2024045174A1 (en) | Ammonium manganese iron phosphate precursor and preparation method therefor, lithium manganese iron phosphate positive electrode active material, and secondary battery | |
CN102104149A (en) | Lithium iron phosphate composite anode material in lithium-ion battery and preparation method thereof | |
CN108598458B (en) | Nitrogen-doped lithium titanate composite material and preparation method thereof and lithium ion battery | |
CN105514375B (en) | A kind of carbon coating Na0.55Mn2O4·1.5H2O nanocomposite and preparation method thereof | |
CN107910528B (en) | Lithium titanate composite material, preparation method thereof, negative plate and lithium ion battery | |
CN106025180A (en) | Core-shell structure lithium ion battery negative electrode material GeO2/C and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130612 Termination date: 20151009 |
|
EXPY | Termination of patent right or utility model |