CN102307046A - 一种时间分辨光子计数成像***及方法 - Google Patents

一种时间分辨光子计数成像***及方法 Download PDF

Info

Publication number
CN102307046A
CN102307046A CN201110152839A CN201110152839A CN102307046A CN 102307046 A CN102307046 A CN 102307046A CN 201110152839 A CN201110152839 A CN 201110152839A CN 201110152839 A CN201110152839 A CN 201110152839A CN 102307046 A CN102307046 A CN 102307046A
Authority
CN
China
Prior art keywords
photon
time
signal
circuit
peak value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110152839A
Other languages
English (en)
Other versions
CN102307046B (zh
Inventor
鄢秋荣
赵宝升
刘永安
盛立志
韦永林
赛小锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN201110152839.3A priority Critical patent/CN102307046B/zh
Publication of CN102307046A publication Critical patent/CN102307046A/zh
Application granted granted Critical
Publication of CN102307046B publication Critical patent/CN102307046B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明涉及一种时间分辨光子计数成像***及方法,包括光学***、探测器、采集卡和计算机,成像目标位于光学***的输入端,探测器位于光学***的输出端,探测器与采集卡相连,成像目标经过光学***成像到探测器的输入面,采集卡包括光子到达定时信号产生电路、脉冲峰值采集电路、开始信号产生电路、恒温晶振时钟电路、可编程逻辑器件、数字信号处理器、时间数字转换器芯片和通信接口电路,本发明解决了现有的光子计数方法中缺少具有时间分辨的光子计数成像方法,本发明具有时间分辨光子计数成像、时间分辨率高、空间分辨率高等优点。

Description

一种时间分辨光子计数成像***及方法
技术领域
本发明涉及微光成像技术领域,特别涉及微光成像技术领域中光子计数成像技术中的一种时间分辨光子计数成像***及方法。
背景技术
随着弱光成像在天文观测、卫星遥感、生物医学成像等领域的广泛应用,对弱光成像探测的灵敏度要求越来越高,光子计数成像是一种极微弱目标的成像方法,具有极高的灵敏度,因此光子计数成像方法可应用于许多领域,如天文观测,卫星遥感,生物医学成像、核辐射成像、空间紫外成像等。目前用于光子计数成像的探测器,主要由光电倍增管(PMT)、单光子雪崩二极管(SPAD)、微通道板(MCP)等。其中,光电倍增管(PMT)、雪崩光电二极管(APD)属于单元探测器,因此需要光机扫描才能实现成像,成像的实时性,时间分辨、空间分辨不高。基于微通道板(MCP)具有面阵结构,通过位敏阳极读出,实现光子计数成像,具有信噪比高、灵敏度高、动态范围宽、抗漂移性好等优点.如基于微通道板(MCP)的位敏阳极探测器主要由级联MCP和位敏阳极组成。基于MCP的位敏阳极探测器光子计数成像方法为,当探测器探测到一个光子时,位敏阳极输出多路电子脉冲信号。多路脉冲信号经过电子读出***,可测量出探测到光子的位置坐标。经过一定的时间积累,测量出大量的光子的位置坐标数据,根据不同位置的光子计数,合成光子计数图像。位敏阳极主要有楔条形阳极(Wedge and Strip Anode)、游标阳极(Vernier Anode)、交叉阳极(CrossStrip Anode)以及多阳极微通道阵列(MAMA)和电阻阳极(Resistive anode)等.文献(FENG Bing,KANG Ke-Jun,WANG Kui-Lu,et al.Nucl.Instrum.Meth.A,2004,535:546)报道多阳极微通道阵列(MAMA)光子计数成像。文献(Lapington J S,Sanderson B,Worth L B C,et al.Nucl.Instr.MethA,2002,447:250)报道了采用游标位敏阳极的光子计数成像。文献(MIAOZhen-hua,ZHAO Bao-sheng,ZHANG Xing-hua,et al.Chinese Physics Letters,2008,25(7),2698)报道了采用WSA阳极的光子计数成像。专利(申请号:200710018631.6单光子计数成像仪)采用的是三电极WSA阳极进行光子计数成像。但它采用波形数字化计数,将阳极输出多路脉冲信号进行全波形进行采集,然后利用软件进行峰值检测。由于这种方法要采集大量数据量无用数据,因此计数率不高。
目前报道的文献中,没有涉及时间分辨光子计数。具有时间分辨的光子计数成像,由于可以反映成像目标随时间的变换过程,因此具有非常重要的科学研究价值,可以应用到更多的领域,如荧光寿命成像,生物和医学成像,激光雷达,紫外预警、扩散光学层析以及单分子荧光光谱、时间分辨荧光显微等。
发明内容
为了解决现有的光子计数方法中缺少具有时间分辨的光子计数成像方法,本发明提出一种时间分辨光子计数成像***及方法。
本发明的技术解决方案如下:
一种时间分辨光子计数成像***,包括光学***、探测器、采集卡和计算机,成像目标位于光学***的输入端,探测器位于光学***的输出端,探测器与采集卡相连,成像目标经过光学***成像到探测器的输入面,其特殊之处在于:所述采集卡包括光子到达定时信号产生电路、脉冲峰值采集电路、开始信号产生电路、恒温晶振时钟电路(OCXO)、可编程逻辑器件(FPGA)、数字信号处理器(DSP)、时间数字转换器芯片(TDC)和通信接口电路,
所述脉冲峰值采集单元的输入端接探测器的输出端,所述脉冲峰值采集单元与可编程逻辑器件相互通信,
所述探测器的输出端通过光子到达定时信号产生电路输入到可编程逻辑器件(FPGA),
所述开始信号产生电路的输出端与可编程逻辑器件(FPGA)和时间数字转换器芯片(TDC)连接,
所述恒温晶振时钟电路(OCXO)的输出端与可编程逻辑器件(FPGA)和时间数字转换器芯片(TDC)连接,
所述时间数字转换器芯片(TDC)与可编程逻辑器件(FPGA)相互通信,
所述数字信号处理器(DSP)与可编程逻辑器件(FPGA)相互通信,所述可编程逻辑器件(FPGA)通过通信接口电路与计算机连接。
上述光子到达定时信号产生电路包括多路脉冲求和电路、峰值检测电路、低阈值比较电路、高阈值比较电路和D触发器F1,所述多路脉冲求和电路为连接成求和形式的运算放大器U1,所述运算放大器U1的输入端接收探测器输出的多路脉冲信号,所述运算放大器U1输出求和信号分别发送到峰值检测电路、低阈值比较电路和高阈值比较电路;所述峰值检测电路由电阻R4、电容C1和第一比较器U2组成;所述低阈值比较电路由第一电位器R5和第二比较器U3组成;所述高阈值比较电路由第二电位器R6和第三比较器U4组成;峰值检测电路输出至D触发器F1的CLK端,低阈值比较电路输出至D触发器F1的D端,所述D触发器F1的Q端输出光子到达定时信号,所述D触发器F1的Q端依次通过第一非门U6、第二非门U7后再与高阈值比较电路的输出信号均通过或门U5,或门U5的输出端接D触发器F1的RST端。
上述脉冲峰值采集单元包括多路并联的脉冲峰值采集电路,所述脉冲峰值采集电路包括依次串联的峰值保持芯片、放大器和A/D变换器,所述放大器采用跟随器方式,所有A/D变换器的输出端与变换端CLK相连,所述峰值保持芯片的保持端和泻放端相连。
上述可编程逻辑器件(FPGA)包括峰值采集控制单元、位置解码单元、时间测量单元、数据缓存单元和通信控制单元;
所述峰值采集控制单元用于控制脉冲峰值采集单元对所输入的脉冲峰值进行峰值同步测量,并将测量的峰值数据传输给位置解码单元;
所述位置解码单元用于与数字信号处理器(DSP)配合求解出光子的位置坐标数据;
所述时间测量单元与时间数字转换器芯片(TDC)配合,测量出光子的到达时间数据;
所述数据缓存单元用于存储光子的位置坐标数据和光子的到达时间数据;
所述通信控制单元用于控制数据缓存单元将光子的到达时间数据和光子的位置坐标数据发送到计算机。
上述时间测量单元包括计数器、控制逻辑单元和时间计算单元,光子到达定时信号、开始信号产生电路的开始信号以及同步信号输入控制逻辑单元,恒温晶振时钟电路的时钟信号、开始信号产生电路的开始信号、控制逻辑单元的控制信号输入计数器,时间数字转换器芯片(TDC)、计数器以及控制逻辑单元的输出端与时间计算单元连接。
上述恒温晶振时钟电路的时钟信号输入时间数字转换器芯片(TDC)的start端,开始信号产生电路的开始信号输入时间数字转换器芯片(TDC)的stop1端,光子到达定时信号输入时间数字转换器芯片(TDC)的stop2端。
上述恒温晶振时钟电路(OCXO)采用MDB59P3T,所述峰值保持芯片是PKD01芯片,所述A/D变换器是AD9240芯片,所述时间数字转换器芯片(TDC)为TDC-GPX芯片。
一种时间分辨的光子计数成像方法,其特殊之处在于:包括以下步骤:
1】先用光学***将目标成像至单光子探测器的输入面,单光子探测器输出多路脉冲信号;
2】对多路脉冲信号分别进行放大和整形;
3】放大和整形后的多路脉冲信号,用于产生光子到达定时信号,同时进行多路脉冲峰值的同步采集;
产生光子到达定时信号的方法:对输入的多路脉冲信号进行求和,求和后输出的脉冲幅度在高阈值和低阈值之间,同时检测到脉冲峰值时,则产生输出方波脉冲信号,上升沿代表光子到达时刻;
多路脉冲同步峰值采集的方法:对输入的多路脉冲信号进行峰值保持,利用光子到达定时信号触发同步数模变换信号,从而同步采集的多路脉冲峰值,并缓存峰值数据,采集完后,同步泻放掉保持的多路脉冲峰值,以对下一次输入的多路脉冲进行峰值采集;
4】手动触发或软件触发或外部触发产生一个开始信号测量信号,信号上升沿代表开始测量时刻;
5】开始信号产生后,光子到达定时信号,一方面触发同步数模变换信号采集的多路脉冲峰值;另一方面作为光子到达的定时信号,用于测量光子的到达时间;
测量光子到达的时间为,先测量出所有到达光子的同一起始时刻t0,利用计数器对高频时钟进行计数测量粗时间Tn,利用高精度时间数值转换器测量出光子定时信号与时钟最近输出脉冲的时间间隔tn,tn代表光子到达的细时间。因此光子到达的时间可以用下式表示:
光子的到达时间=Tn+tn-t0(n=1,2,3…)
6】采集出多路脉冲的峰值后,根据多路脉冲峰值数据和探测器阳极的解码方法,求解出光子的位置坐标;
7】对同步测量出的光子的位置坐标数据和光子到达时间数据进行处理,实现时间分辨光子计数成像;
位置坐标数据和光子到达时间数据进行处理方法为:根据连续采集的光子到达时间数据,提取出开始信号时刻到不同时刻间隔内的到达的光子的位置坐标数据,用于重建光子计数图像,从而得到不同时刻的光子计数图像。
本发明所具有的优点:
1、具有时间分辨光子计数成像,本发明通过连续记录光子的到达时间和光子的位置坐标。通过数据处理可以重建任意时间片的光子计数图像,进而反映成像目标随时间的变化过程。
2、时间分辨率高,本发明光子到达时间的测量采用粗时间测量和细时间测量相结合的方法。通过对高频稳定度恒温晶振时钟电路进行计数来测量光子到达的粗时间,采用高精度时间数字转换器芯片TDC来测量光子到达的细时间。光子到达时间测量可以达到几十皮秒的精度。光子计数成像的时间分辨可以达到光子到达时间的测量精度。
3、空间分辨率高,本发明采用峰值保持器芯片PKD01和14位的A/D变换器芯片AD9240组成峰值采集电路,比利用采样保持器组成的峰值采集电路,可以更高精度的获取脉冲的峰值,从而更精确地求解出探测到光子的位置坐标,进而获得更高分辨率的光子计数图像。
4、光子计数率高,本发明利用峰值保持器将脉冲峰值保持住,等检测到光子到达定时信号后,启动A/D变换器进行一次采集,采集值就是峰值,而不是把整个脉冲波形采集下来后通过计算求峰值。所以一个脉冲峰值只需要采集一次。因此大大减小了数据量和运算过程,因此具有非常高的计数率。
5、集成度高,本发明采用FPGA来实现峰值采集控制、位置解码、时间测量、数据缓存和传输,具有非常高的集成度和灵活性。
6、处理速度快。通过FPGA和DSP配合实现位置解码,FPGA控制数据流和进行简单的运算,DSP实现浮点数运算,具有非常高的处理速度。
7、应用范围广,本发明提出具有时间分辨的光子计数成像***及方法,可以广泛应用于荧光寿命成像,生物和医学成像,激光雷达,紫外预警、扩散光学层析以及单分子荧光光谱、时间分辨荧光显微等领域。
附图说明
图1为本发明时间分辨光子计数成像方法原理图;
图2为本发明光子到达定时电路的原理图;
图3为本发明光子到达定时信号产生的时序图;
图4为本发明多路脉冲峰值同步采集电路原理图;
图5为本发明多路脉冲峰值同步采集的时序图;
图6为本发明开始信号产生电路图;
图7为本发明恒温晶振时钟电路(OCXO)输出;
图8为本发明FPGA峰值采集控制单元、位置解码单元、时间测量单元、数据缓存和传输的工作原理图;
图9本发明光子到达时间连续测量的原理图;
图10本发明光子到达时间连续测量的时序图;
图11为本发明获得的时间分辨光子计数图像。
具体实施方式
现结合附图来说明本发明时间分辨光子计数成像方法及***,本实例采用基于MCP探测器WSA位敏阳极探测器为例进行说明。WSA位敏阳极,有3个阳极输出W、S、Z。当探测到一个光子时,探测器将输出三路脉冲信号。
图1为时间分辨光子计数成像方法原理框图,包括成像目标、光学***、基于MCP的位敏阳极探测器,三路前置放大和整形主放,本发明的用于时间分辨成像的采集卡(虚线框内部分)及计算机。
成像目标经光学***成像到探测器的输入面,当探测到一个光子时,探测器输出三路脉冲信号,三路脉冲信号经过三路前置放大器和整形主放后成三路准高斯脉冲,三路准高斯脉冲输入本发明采集卡。本发明采集卡测量出光子的位置坐标和光子到达时间,并发送到计算机。计算机通过数据处理。重建不同时间片的光子计数成像。
采集卡包括光子到达定时信号产生电路、三路脉冲峰值同步采集电路、开始信号产生电路、恒温晶振时钟电路(OCXO),可编程逻辑器件FPGA、数字信号处理器DSP、时间数字转换器芯片TDC芯片和通信接口电路。
图2为所述的光子定时信号产生电路原理图,U1为运算放大器,连接成同相求和的形式,对主放大器输出的三路脉冲信号进行求和。求和后的信号分别输入由电阻R4、电容C1和第一比较器U2连接实现的峰值检测电路、由第一电位器R5和第二比较器U3实现低阈值比较电路和由第二电位器R6和第三比较器U4实现的高阈值比较电路。D触发器F1为带有置位和清零端的D触发器,低阈值比较输出输入D触发器F1的D端,峰值检测输出输入D触发器F1的CLK端。第一U6和第二U7为非门,用于对D触发器Q端输出的信号进行延迟。高阈值比较输出和Q端延迟信号经或门U5后输入到D触发器F1的清零RST端。D触发器F1的Q端输出信号为光子到达定时信号。
图3为光子到达定时信号产生的时序图,因为探测器输出的脉冲除了代表探测到单光子外,还包括由噪声引起的小幅度脉冲,和高能粒子和脉冲堆积引起的大幅度脉冲。光子到达定时信号产生方法为,当求和后的信号输出的脉冲幅度在高阈值和低阈值之间,则D触发器F1的Q端输出方波脉冲信号,该方波脉冲信号为光子到达定时信号,代表探测到一个光子,当求和后的信号输出的脉冲幅度小于低阈值或大于高阈值时,则不输出光子时间定时信号。
图4为脉冲峰值采集单元的电路原理图,每一路包括峰值保持芯片,经过由放大器连接成的跟随器和高精度A/D变换器。峰值保持芯片采用ADI公司的PKD01芯片,A/D变换器采用ADI公司的AD9240芯片。三路峰值保持芯片的1管脚和14管脚连在一起作为峰值同步泻放信号的输入端,三路A/D变换芯片AD9240的CLK连在一起作为A/D同步变换信号。
图5为三路脉冲峰值的同步采集时序图。三路脉冲信号进入到峰值保持0-2后,峰值保持器保持住脉冲的峰值,同时,三路脉冲信号输入光子到达定时信号产生电路,如果求和后的脉冲峰值在低阈值和高阈值之间,将产生光子到达定时信号。则当采集卡上的FPGA检测到光子到达定时信号时,FPGA输出A/D同步变换信号驱动三个A/D转换器采集三个峰值保持器保持的峰值,采集完后,FPGA输出峰值同步泻放信号,使三个峰值保持器同步泻放峰值,以保持下一次三路输入脉冲的峰值。在A/D同步变换信号的第四个上升沿,三个A/D变换器向FPGA输出三路脉冲峰值数据。
图6为开始信号产生电路,按下按钮S后输出由低电平变为高电平信号。信号上升沿代表开始时刻,开始信号输入到FPGA和输入到TDC芯片的stop1端。
图7恒温晶振时钟电路(OCXO)采用美国MMDC-TECH公司的MDB59P3T,恒温晶振时钟电路(OCXO)产生高频率稳定度的时钟输入到FPGA和输入到TDC芯片的start端。
图8为可编程逻辑器件(FPGA)的结构示意图,包括峰值采集控制单元、位置解码单元、时间测量单元、数据缓存单元和通信控制单元,峰值采集控制单元用于对脉冲峰值采集电路所输入的脉冲峰值进行测量,并将测量的峰值数据传输给位置解码单元;位置解码单元用于与数字信号处理器(DSP)配合求解出光子的位置坐标数据,时间测量单元与时间数字转换器芯片(TDC)配合,测量出光子的到达时间数据,所述数据缓存单元用于存储光子的位置坐标数据和光子的到达时间数据;所述通信控制单元用于控制数据缓存单元将光子的到达时间数据和光子的位置坐标数据发送到计算机。在开始信号后,当光子到达定时信号到达时,的峰值采集控制实现对输入的三路脉冲的峰值进行测量。测量出的三路峰值数据输入位置解码单元,位置解码模块与DSP配合求解出光子的位置坐标。DSP与FPGA相连,与FPGA配合工作,根据采集的多路脉冲峰值数据,求解出光子的位置坐标,WSA位敏阳极的计算光子位置的方法为:
X=(2×Q1)/(Q1+Q2+Q3)            Y=(2×Q2)/(Q1+Q2+Q3)
时间测量单元与时间数字转换器芯片配合,测量出光子的到达时间,光子的位置坐标数据和光子到达时间数据以同步的方式存到数据缓存单元FIFO。数据缓存单元FIFO中的数据在通信控制单元的控制下,通过USB20.0接口电路,发送到计算机。
FPGA控制数据流和进行简单的运算,DSP实现复杂运算,如除法和浮点数运算。
图9为光子到达时间连续测量的原理图,虚线线框内为FPGA实现时间测量模块。时间测量模块包括计数器,控制逻辑和时间计算单元。时间测量模块与时间数字转换器芯片(TDC)配合,测量出光子的到达时间。OCXO的时钟信号输入TDC芯片的start端,开始信号输入TDC中的stop1端,光子到达定时信号输入TDC中的stop2端。
图10光子到达时间连续测量的时序。光子到达时间的测量采用粗时间测量和细时间测量相结合的方法。手动触发产生开始信号后,开始信号的上升沿对计数器进行清零,TDC的stop1通道测量出开始信号上升沿与OCXO输出脉冲的时间间隔t0,在控制器的控制下,计算数器输出的“0”和TDC输出的t0,代表所有光子到达时间的统一起时时刻。
当开始信号后,计数器对恒温晶振时钟电路OCXO输出的时钟进行计数,当一个光子到达定时信号到达时,TDC的stop2通道测量出光子定时信号上升沿与恒温晶振时钟电路(OCXO)最近输出脉冲的时间间隔t,t代表光子到达的细时间。此时计数器中的计数值T代表光子到达的粗时间。因此光子到达的时间可以用下式表示
光子的到达时间=Tn+tn-t0(n=1,2,3…)
时间计算模块根据上式计算出光子到达的时间。在控制逻辑的控制下将光子到达的时间存到数据缓存单元FIFO。
光子的位置坐标数据和光子到达时间数据以同步的方式存到FIFO缓存。FIFO缓存中的数据在USB通信控制模块的控制下,通过USB20.0接口电路,发送到计算机。开发计算机软件对光子的位置坐标数据和光子到达时间数据进行处理,计算机数据处理方法为,根据连续采集的光子到达时间数据,可找到从开始信号到任意时刻间隔内的到达的光子的位置坐标数据,重建光子计数图像,从而得到不同时刻的光子计数图像,实现时间分辨光子计数成像。时间分辨可到光子到达时间的测量精度。
时间数字转换器芯片(TDC)为德国ACAM公司的TDC-GPX芯片,TDC-GPX芯片精度的可以达到10ps,因此用本发明的方法,时间分辨光子计数成像可以达到10皮秒的时间分辨率。
图11为采用本发明采集卡获得的时间分辨光子计数图像,成像目标为分辨率板的不同时刻的光子计数成像图。
采用本***对应的方法为:
1】先用光学***将目标成像至单光子探测器的输入面,单光子探测器输出多路脉冲信号;
2】对多路脉冲信号分别进行放大和整形;
3】放大和整形后的多路脉冲信号,用于产生光子到达定时信号,同时进行多路脉冲峰值的同步采集;
产生光子到达定时信号的方法:对输入的多路脉冲信号进行求和,求和后输出的脉冲幅度在高阈值和低阈值之间,同时检测到脉冲峰值时,则产生输出方波脉冲信号,上升沿代表光子到达时刻;
多路脉冲同步峰值采集的方法:对输入的多路脉冲信号进行峰值保持,利用光子到达定时信号触发同步数模变换信号,从而同步采集的多路脉冲峰值,并缓存峰值数据,采集完后,同步泻放掉保持的多路脉冲峰值,以对下一次输入的多路脉冲进行峰值采集;
4】手动触发或软件触发或外部触发产生一个开始信号测量信号,信号上升沿代表开始测量时刻;
5】开始信号产生后,光子到达定时信号,一方面触发同步数模变换信号采集的多路脉冲峰值;另一方面作为光子到达的定时信号,用于测量光子的到达时间;
测量光子到达的时间为,先测量出所有到达光子的同一起始时刻t0,利用计数器对高频时钟进行计数测量粗时间Tn,利用高精度时间数值转换器测量出光子定时信号与时钟最近输出脉冲的时间间隔tn,tn代表光子到达的细时间。因此光子到达的时间可以用下式表示:
光子的到达时间=Tn+tn-t0(n=1,2,3…)
6】采集出多路脉冲的峰值后,根据多路脉冲峰值数据和探测器阳极的解码方法,求解出光子的位置坐标;
7】对同步测量出的光子的位置坐标数据和光子到达时间数据进行处理,实现时间分辨光子计数成像;
位置坐标数据和光子到达时间数据进行处理方法为:根据连续采集的光子到达时间数据,提取出开始信号时刻到不同时刻间隔内的到达的光子的位置坐标数据,用于重建光子计数图像,从而得到不同时刻的光子计数图像。
本实例采用基于MCP探测器WSA位敏阳极探测器为例进行说明,WSA阳极有三路输出,因此本发明实例采集卡的输入为三路,采集卡内有三路脉冲峰值采集电路,有对三路输入脉冲求和产生定时信号的电路。不能认定本发明的具体实施方式仅限于WSA阳极位敏阳极读出的MCP探测器。如果探测器的位敏阳极为游标阳极,则采集卡的输入为九路,采集卡内有九路脉冲峰值采集电路,有对九路输入脉冲求和产生定时信号的电路,位敏阳极为电阻阳极,采集卡的输入为四路,采集卡内有四路脉冲峰值采集电路,有对四路输入脉冲求和产生定时信号的电路。在不脱离本发明构思的前提下,进行若干简单的推演和变换,都应视为本发明保护范围。

Claims (8)

1.一种时间分辨光子计数成像***,包括光学***、探测器、采集卡和计算机,成像目标位于光学***的输入端,探测器位于光学***的输出端,探测器与采集卡相连,成像目标经过光学***成像到探测器的输入面,其特征在于:所述采集卡包括光子到达定时信号产生电路、脉冲峰值采集电路、开始信号产生电路、恒温晶振时钟电路(OCXO)、可编程逻辑器件(FPGA)、数字信号处理器(DSP)、时间数字转换器芯片(TDC)和通信接口电路,
所述脉冲峰值采集单元的输入端接探测器的输出端,所述脉冲峰值采集单元与可编程逻辑器件相互通信,
所述探测器的输出端通过光子到达定时信号产生电路输入到可编程逻辑器件(FPGA),
所述开始信号产生电路的输出端与可编程逻辑器件(FPGA)和时间数字转换器芯片(TDC)连接,
所述恒温晶振时钟电路(OCXO)的输出端与可编程逻辑器件(FPGA)和时间数字转换器芯片(TDC)连接,
所述时间数字转换器芯片(TDC)与可编程逻辑器件(FPGA)相互通信,
所述数字信号处理器(DSP)与可编程逻辑器件(FPGA)相互通信,所述可编程逻辑器件(FPGA)通过通信接口电路与计算机连接。
2.根据权利要求1所述的时间分辨光子计数成像***,其特征在于:所述光子到达定时信号产生电路包括多路脉冲求和电路、峰值检测电路、低阈值比较电路、高阈值比较电路和D触发器(F1),所述多路脉冲求和电路为连接成求和形式的运算放大器(U1),所述运算放大器(U1)的输入端接收探测器输出的多路脉冲信号,所述运算放大器(U1)输出求和信号分别发送到峰值检测电路、低阈值比较电路和高阈值比较电路;所述峰值检测电路由电阻(R4)、电容(C1)和第一比较器(U2)组成;所述低阈值比较电路由第一电位器(R5)和第二比较器(U3)组成;所述高阈值比较电路由第二电位器(R6)和第三比较器(U4)组成;峰值检测电路输出至D触发器(F1)的CLK端,低阈值比较电路输出至D触发器(F1)的D端,所述D触发器(F1)的Q端输出光子到达定时信号,所述D触发器(F1)的Q端依次通过第一非门(U6)、第二非门(U7)后再与高阈值比较电路的输出信号均通过或门(U5),或门(U5)的输出端接D触发器(F1)的RST端。
3.根据权利要求1或2所述的时间分辨光子计数成像***,其特征在于:所述脉冲峰值采集单元包括多路并联的脉冲峰值采集电路,所述脉冲峰值采集电路包括依次串联的峰值保持芯片、放大器和A/D变换器,所述放大器采用跟随器方式,所有A/D变换器的输出端与变换端CLK相连,所述峰值保持芯片的保持端和泻放端相连。
4.根据权利要求3所述的时间分辨光子计数成像***,其特征在于:所述可编程逻辑器件(FPGA)包括峰值采集控制单元、位置解码单元、时间测量单元、数据缓存单元和通信控制单元;
所述峰值采集控制单元用于控制脉冲峰值采集单元对所输入的脉冲峰值进行峰值同步测量,并将测量的峰值数据传输给位置解码单元;
所述位置解码单元用于与数字信号处理器(DSP)配合求解出光子的位置坐标数据;
所述时间测量单元与时间数字转换器芯片(TDC)配合,测量出光子的到达时间数据;
所述数据缓存单元用于存储光子的位置坐标数据和光子的到达时间数据;
所述通信控制单元用于控制数据缓存单元将光子的到达时间数据和光子的位置坐标数据发送到计算机。
5.根据权利要求4所述的时间分辨光子计数成像***,其特征在于:所述时间测量单元包括计数器、控制逻辑单元和时间计算单元,光子到达定时信号、开始信号产生电路的开始信号以及同步信号输入控制逻辑单元,恒温晶振时钟电路的时钟信号、开始信号产生电路的开始信号、控制逻辑单元的控制信号输入计数器,时间数字转换器芯片(TDC)、计数器以及控制逻辑单元的输出端与时间计算单元连接。
6.根据权利要求5所述的时间分辨光子计数成像***,其特征在于:所述恒温晶振时钟电路的时钟信号输入时间数字转换器芯片(TDC)的start端,开始信号产生电路的开始信号输入时间数字转换器芯片(TDC)的stop1端,光子到达定时信号输入时间数字转换器芯片(TDC)的stop2端。
7.根据权利要求6所述的时间分辨光子计数成像***,其特征在于:所述恒温晶振时钟电路(OCXO)采用MDB59P3T,所述峰值保持芯片是PKD01芯片,所述A/D变换器是AD9240芯片,所述时间数字转换器芯片(TDC)为TDC-GPX芯片。
8.一种时间分辨的光子计数成像方法,其特征在于:包括以下步骤:
1】先用光学***将目标成像至单光子探测器的输入面,单光子探测器输出多路脉冲信号;
2】对多路脉冲信号分别进行放大和整形;
3】放大和整形后的多路脉冲信号,用于产生光子到达定时信号,同时进行多路脉冲峰值的同步采集;
产生光子到达定时信号的方法:对输入的多路脉冲信号进行求和,求和后输出的脉冲幅度在高阈值和低阈值之间,同时检测到脉冲峰值时,则产生输出方波脉冲信号,上升沿代表光子到达时刻;
多路脉冲同步峰值采集的方法:对输入的多路脉冲信号进行峰值保持,利用光子到达定时信号触发同步数模变换信号,从而同步采集的多路脉冲峰值,并缓存峰值数据,采集完后,同步泻放掉保持的多路脉冲峰值,以对下一次输入的多路脉冲进行峰值采集;
4】手动触发或软件触发或外部触发产生一个开始信号测量信号,信号上升沿代表开始测量时刻;
5】开始信号产生后,光子到达定时信号,一方面触发同步数模变换信号采集的多路脉冲峰值;另一方面作为光子到达的定时信号,用于测量光子的到达时间;
测量光子到达的时间为,先测量出所有到达光子的同一起始时刻t0,利用计数器对高频时钟进行计数测量粗时间Tn,利用高精度时间数值转换器测量出光子定时信号与时钟最近输出脉冲的时间间隔tn,tn代表光子到达的细时间。因此光子到达的时间可以用下式表示:
光子的到达时间=Tn+tn-t0(n=1,2,3…)
6】采集出多路脉冲的峰值后,根据多路脉冲峰值数据和探测器阳极的解码方法,求解出光子的位置坐标;
7】对同步测量出的光子的位置坐标数据和光子到达时间数据进行处理,实现时间分辨光子计数成像;
位置坐标数据和光子到达时间数据进行处理方法为:根据连续采集的光子到达时间数据,提取出开始信号时刻到不同时刻间隔内的到达的光子的位置坐标数据,用于重建光子计数图像,从而得到不同时刻的光子计数图像。
CN201110152839.3A 2011-06-09 2011-06-09 一种时间分辨光子计数成像***及方法 Expired - Fee Related CN102307046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110152839.3A CN102307046B (zh) 2011-06-09 2011-06-09 一种时间分辨光子计数成像***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110152839.3A CN102307046B (zh) 2011-06-09 2011-06-09 一种时间分辨光子计数成像***及方法

Publications (2)

Publication Number Publication Date
CN102307046A true CN102307046A (zh) 2012-01-04
CN102307046B CN102307046B (zh) 2015-01-07

Family

ID=45380867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110152839.3A Expired - Fee Related CN102307046B (zh) 2011-06-09 2011-06-09 一种时间分辨光子计数成像***及方法

Country Status (1)

Country Link
CN (1) CN102307046B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443757A (zh) * 2016-09-23 2017-02-22 沈阳东软医疗***有限公司 一种获取湮灭事件发生时间的装置及探测器
CN107290635A (zh) * 2017-07-19 2017-10-24 中国科学院长春光学精密机械与物理研究所 应用于紫外电晕检测设备的信号处理结构及方法
CN107462898A (zh) * 2017-08-08 2017-12-12 中国科学院西安光学精密机械研究所 基于单光子阵列的选通型漫反射绕角成像***与方法
CN108471303A (zh) * 2018-03-29 2018-08-31 中国人民解放军国防科技大学 一种基于fpga的可编程纳秒级定时精度脉冲发生器
CN108848326A (zh) * 2018-06-13 2018-11-20 吉林大学 一种高动态范围mcp探测器前端读出电路及其读出方法
CN108955906A (zh) * 2018-06-27 2018-12-07 南京邮电大学 一种应用于单光子探测器的时间-模拟转换电路
CN110161552A (zh) * 2019-04-28 2019-08-23 东软医疗***股份有限公司 一种探测器的数据处理方法、装置及设备
CN110462442A (zh) * 2017-02-06 2019-11-15 通用电气公司 实现重合的光子计数检测器
CN111721411A (zh) * 2020-06-30 2020-09-29 北京工业大学 一种用于高时空分辨光子计数成像的信号处理电路
CN112197879A (zh) * 2020-09-14 2021-01-08 中国科学院西安光学精密机械研究所 一种高时间分辨单光子探测方法及单光子探测***
CN112946688A (zh) * 2021-02-02 2021-06-11 松山湖材料实验室 新型光子计数激光雷达3d成像方法及装置
CN113099209A (zh) * 2021-03-24 2021-07-09 清华大学 基于光电倍增管阵列的非视域成像装置和方法
CN114637464A (zh) * 2022-02-24 2022-06-17 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种灵活控制的十分钟阶段性计时及数据存储方法
CN115479928A (zh) * 2022-09-07 2022-12-16 山东大学 基于labview的低强度光信号的同步探测控制***及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054778A1 (en) * 2003-02-07 2006-03-16 Klaus Suhling Photon arrival time detection
CN101387548A (zh) * 2007-09-11 2009-03-18 中国科学院西安光学精密机械研究所 单光子计数成像仪
CN101881658A (zh) * 2009-05-07 2010-11-10 中国科学院西安光学精密机械研究所 一种高分辨率位敏阳极探测器及其阳极解码方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054778A1 (en) * 2003-02-07 2006-03-16 Klaus Suhling Photon arrival time detection
CN101387548A (zh) * 2007-09-11 2009-03-18 中国科学院西安光学精密机械研究所 单光子计数成像仪
CN101881658A (zh) * 2009-05-07 2010-11-10 中国科学院西安光学精密机械研究所 一种高分辨率位敏阳极探测器及其阳极解码方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鄢秋荣等: "一维游标位敏阳极光子计数探测器", 《物理学报》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443757B (zh) * 2016-09-23 2018-12-07 沈阳东软医疗***有限公司 一种获取湮灭事件发生时间的装置及探测器
CN106443757A (zh) * 2016-09-23 2017-02-22 沈阳东软医疗***有限公司 一种获取湮灭事件发生时间的装置及探测器
CN110462442B (zh) * 2017-02-06 2023-07-14 通用电气公司 实现重合的光子计数检测器
CN110462442A (zh) * 2017-02-06 2019-11-15 通用电气公司 实现重合的光子计数检测器
CN107290635A (zh) * 2017-07-19 2017-10-24 中国科学院长春光学精密机械与物理研究所 应用于紫外电晕检测设备的信号处理结构及方法
CN107290635B (zh) * 2017-07-19 2019-08-02 中国科学院长春光学精密机械与物理研究所 应用于紫外电晕检测设备的信号处理结构及方法
CN107462898A (zh) * 2017-08-08 2017-12-12 中国科学院西安光学精密机械研究所 基于单光子阵列的选通型漫反射绕角成像***与方法
CN107462898B (zh) * 2017-08-08 2019-06-28 中国科学院西安光学精密机械研究所 基于单光子阵列的选通型漫反射绕角成像***与方法
CN108471303A (zh) * 2018-03-29 2018-08-31 中国人民解放军国防科技大学 一种基于fpga的可编程纳秒级定时精度脉冲发生器
CN108471303B (zh) * 2018-03-29 2021-06-25 中国人民解放军国防科技大学 一种基于fpga的可编程纳秒级定时精度脉冲发生器
CN108848326B (zh) * 2018-06-13 2021-01-01 吉林大学 一种高动态范围mcp探测器前端读出电路及其读出方法
CN108848326A (zh) * 2018-06-13 2018-11-20 吉林大学 一种高动态范围mcp探测器前端读出电路及其读出方法
CN108955906A (zh) * 2018-06-27 2018-12-07 南京邮电大学 一种应用于单光子探测器的时间-模拟转换电路
CN110161552A (zh) * 2019-04-28 2019-08-23 东软医疗***股份有限公司 一种探测器的数据处理方法、装置及设备
CN111721411B (zh) * 2020-06-30 2021-06-04 北京工业大学 一种用于高时空分辨光子计数成像的信号处理电路
CN111721411A (zh) * 2020-06-30 2020-09-29 北京工业大学 一种用于高时空分辨光子计数成像的信号处理电路
CN112197879A (zh) * 2020-09-14 2021-01-08 中国科学院西安光学精密机械研究所 一种高时间分辨单光子探测方法及单光子探测***
CN112197879B (zh) * 2020-09-14 2021-10-12 中国科学院西安光学精密机械研究所 一种高时间分辨单光子探测方法及单光子探测***
CN112946688A (zh) * 2021-02-02 2021-06-11 松山湖材料实验室 新型光子计数激光雷达3d成像方法及装置
CN112946688B (zh) * 2021-02-02 2024-02-02 松山湖材料实验室 新型光子计数激光雷达3d成像方法及装置
CN113099209A (zh) * 2021-03-24 2021-07-09 清华大学 基于光电倍增管阵列的非视域成像装置和方法
CN114637464A (zh) * 2022-02-24 2022-06-17 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种灵活控制的十分钟阶段性计时及数据存储方法
CN114637464B (zh) * 2022-02-24 2024-05-14 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种灵活控制的十分钟阶段性计时及数据存储方法
CN115479928A (zh) * 2022-09-07 2022-12-16 山东大学 基于labview的低强度光信号的同步探测控制***及控制方法
CN115479928B (zh) * 2022-09-07 2024-06-07 山东大学 基于labview的低强度光信号的同步探测控制***及控制方法

Also Published As

Publication number Publication date
CN102307046B (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
CN102307046B (zh) 一种时间分辨光子计数成像***及方法
CN102323959B (zh) 用于时间分辨光子计数成像的采集卡
US10416293B2 (en) Histogram readout method and circuit for determining the time of flight of a photon
CN102760052B (zh) 基于光子空间和时间随机性的随机源及随机数提取方法
EP2989487B1 (en) Detection of radiation quanta using an optical detector pixel array and pixel cell trigger state sensing circuits
CN102141772B (zh) 一种光子序列到达时间的连续测量装置及方法
CN106656390B (zh) 用于测量光子时间信息的装置及方法
EP2382445B1 (en) Pulse data recorder
WO2016110141A1 (zh) 一种闪烁脉冲的数字化方法
Tyndall et al. A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13 μm CMOS imaging technology
CN104360376A (zh) 具有放射源核素识别功能的伽马相机及核素识别方法
CN202334490U (zh) 用于时间分辨光子计数成像的采集卡
US6434211B1 (en) Timing circuit
CN101937096A (zh) 多通道多道脉冲幅度分析器
CN103605148A (zh) 一种高计数率下的伽马能谱测量方法
CN105181132A (zh) 一种用于三维成像芯片的像素电路
Kong et al. An FPGA-based fast linear discharge readout scheme enabling simultaneous time and energy measurements for TOF-PET detectors
CN201600461U (zh) 多通道多道脉冲幅度分析器
CN103713306A (zh) 一种检测微通道板暗计数的装置
CN109633733B (zh) 采用粒子事件读出方式的数字化反康普顿能谱测量***
CN203672782U (zh) 一种基于单片机控制的光谱数据采集***
CN109491960B (zh) 一种减小图像畸变的位置读出电路
CN109283569A (zh) 用于测量光子信息的装置和光子测量设备
CN107462896A (zh) 一种脉冲激光侧向捕获与测量***及方法
CN203799020U (zh) 一种检测微通道板暗计数的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150107

Termination date: 20160609

CF01 Termination of patent right due to non-payment of annual fee