CN102288583A - 透射式金属光栅耦合spr检测芯片及检测仪 - Google Patents

透射式金属光栅耦合spr检测芯片及检测仪 Download PDF

Info

Publication number
CN102288583A
CN102288583A CN2011101982403A CN201110198240A CN102288583A CN 102288583 A CN102288583 A CN 102288583A CN 2011101982403 A CN2011101982403 A CN 2011101982403A CN 201110198240 A CN201110198240 A CN 201110198240A CN 102288583 A CN102288583 A CN 102288583A
Authority
CN
China
Prior art keywords
detection chip
metal grating
grating coupling
transmissive metal
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101982403A
Other languages
English (en)
Inventor
***
刘帆
李海军
付凯
刘冬
杨乐臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN2011101982403A priority Critical patent/CN102288583A/zh
Publication of CN102288583A publication Critical patent/CN102288583A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种透射式金属光栅耦合SPR检测芯片及检测仪,用于检测微流体中目标分析物。该检测芯片包括:透光性基底;形成于基底上的、具有光栅结构的金属膜层;以及覆设于金属膜层表面的微流体层,所述微流体层中分布有微流体通道,且所述微流体通道与金属膜表面接触。该检测仪包括光源、光谱仪及前述检测芯片。本发明利用表面等离子体激元的局域特性和光栅的选频特性,实现了信号的增强和滤波,并通过入射光经过光栅耦合后,测得透射率峰值的变化,来检测被测物体的生物信息或者浓度的变化。本发明检测时无需改变入射角的角度,具有可实时监控、灵敏度高、稳定快速、仪器体积小、携带与操作方便等优点。

Description

透射式金属光栅耦合SPR检测芯片及检测仪
技术领域
本发明特别涉及表面等离子体共振(SPR)生物、化学检测技术领域的一种透射式金属光栅耦合SPR检测芯片及检测仪。
背景技术
1983年,Nylander和Liedberg将SPR技术用于气体检测和生物传感器中,此后该技术受到了广大研究人员的关注并持续快速的发展起来,出现了检测物理、化学、生物量的多种类型的新型SPR传感结构和器件。SPR技术具有灵敏度高、无需标记、稳定快速、便捷实时等特点,特别适合研究生物分子相互作用。
SPR技术是基于光波与金属电子相互作用的物理现象。当入射光和金属表面的自由电子相互作用,在一定的条件下入射光波将激发电荷密度波,从而导致透射光的强度大大增强,这一现象被称为表面等离子体共振透射增强,此时的入射角被称为谐振角。谐振角与金属表面物质的折射率变化有关,而折射率的变化与吸附或者特异性结合在金属表面的物质有关,因此金属敏感膜表面的变化会导致共振峰的移动。通过检测吸共振的变化,即可检测生化反应的动态过程,并通过与标准曲线比较即可得到被检测样品的浓度。
根据激发共振方式的差别,表面等离子体共振传感器的类型主要分为棱镜型、波导型和光栅型,即三种耦合方式。其中,大多数SPR装置采用棱镜耦合入射光,因为其制作相对简单,但也存在局限性,例如:棱镜上直接镀金属薄膜存在一定的困难,而且检测生物样品时,需要调节入射光的角度,增大了仪器的体积,不利于小型化的发展。波导耦合方式通常采用光纤做波导,剥去光纤某段包层,再镀上金属,但这种方式实验难度比较大。而传统的光栅耦合仅利用光栅的选频特性来选择入射光的波长,仍然是测试反射光谱,即共振峰的强度随入射光的角度变化的曲线。这种耦合方式仅仅比棱镜耦合方式中芯片的体积减小,但仍需要调节入射光的角度,增大检测仪的体积。
利用透射式光栅耦合入射光,只需要固定入射角度,通过检测透射率随波长的变化,即测定SPR峰位置的变化来检测生物信息。利用光栅耦合式SPR生物检测技术,可以使得检测仪器机构更简单、检测更稳定和检测芯片及检测仪器更小型化。
发明内容
本发明的目的在于提供一种透射式金属光栅耦合SPR检测芯片及检测仪,其可以通过固定入射光角度实时检测样品,从而克服了现有技术中的不足。
一种透射式金属光栅耦合SPR检测芯片,其特征在于,它包括:
透光性基底;
形成于基底上的、具有光栅结构的金属膜层;
以及,覆设于金属膜层表面的微流体层,所述微流体层中分布有微流体通道,且所述微流体通道与金属膜表面接触。
作为优选的方案,所述金属膜层表面还可修饰有能够与被检测物中的目标成分结合的材料。
所述微流体层与金属膜层键合。
优选的,所述金属膜层的厚度不超过200nm。
优选的,所述光栅结构的周期不超过3000nm
作为一种更为优选的方案,所述光栅结构由矩形条阵列组成,占空比的范围为10%-25%。
所述金属膜层由Au形成。
所述微流体层由有机材料形成,所述有机材料包括聚二甲基硅氧烷。
一种透射式金属光栅耦合SPR检测仪,包括光源以及光谱仪,其特征在于,所述检测仪还包括设于光源和光谱仪之间形成的光路上的如上所述的透射式金属光栅耦合SPR检测芯片,且该检测芯片的透光性基底所在一侧面向光源。
所述透射式金属光栅耦合SPR检测芯片与光源和光谱仪之间还分别设有聚焦棱镜单元。
通过前述芯片结构设计,本发明利用光栅耦合入射光与金属表面的自由电子发生共振,形成沿着金属表面传播的电子疏密波即表面等离子体激元,检测透射光谱的峰位变化即SPR的响应峰的峰位变化检测生物分子、液体浓度等。
具体而言,入射光直接入射到金属表面无法产生表面等离子体激元共振,这是由材料的色散关系决定的。表面等离子体波的色散曲线处于入射光波色散曲线的右侧,同一频率下,表面等离子体的波矢Ko比平面Ksp大,两者无交点,也就是说表面等离子体波传播模式与入射光的传播模式无法实现耦合,因此必须采用适当的方法引入水平波矢来改变表面等离子体波色散曲线与入射光波色散曲线的相对位置,使二者具有相同的频率和波数,也就是要满足动量守恒定律,从而激发产生表面等离子体共振。光栅耦合方式是引入一个额外的波矢量得增量实现波矢匹配,以满足表面等离子体激元的激发条件。为此,本发明将金属膜做成周期变化的光栅结构即形成金属光栅来实现对入射光的耦合增强。
同时,金属光栅的周期、金属的介电常数以及光栅上下介质的介电常数决定了表面等离子体响应峰值的位置,即决定了等离子体共振增强的波长位置,当吸附在纳米金属薄膜材料上的被检测样品与金属表面蛋白反应,或者被检测样品浓度发生改变时,都会使金属表面上介质的介电常数改变,从而使随波长变化的响应峰的峰位发生位移,进而可以反映出被测样品的生物信息的变化。
与传统棱镜耦合SPR生物检测器等现有技术相比,本发明的积极效果在于:该透射式金属光栅耦合SPR检测芯片和检测仪可以通过检测透射光谱的峰位变化即SPR的响应峰的峰位变化对被检测样品进行分析,无需改变入射角的角度,进而大大减少了仪器体积和成本,检测更加稳定准确,具有可实时监控、灵敏度高、稳定快速、体积小、携带与操作方便等优点。
附图说明
图1为本发明实施例1中透射式金属光栅耦合SPR检测仪的结构示意图;
图2为本发明实施例1中透射式金属光栅耦合SPR检测芯片的剖面结构示意图;
图3a为图2中所示金属光栅耦合层的立体图;
图3b为图2中所示金属光栅耦合层的剖面结构示意图;
图4为本发明实施例2中应用透射式金属光栅耦合SPR检测芯片检测乙醇浓度时的曲线图。
具体实施方式
以下接合附图及若干较佳实施例对本发明的技术方案作进一步的说明。
实施例1参阅图1,该透射式金属光栅耦合SPR检测仪包括光源1、光谱仪2以及由一片以上透射式金属光栅耦合SPR检测芯片3组成的芯片组,该芯片组置于光源1和光谱仪2之间形成的光路上,且芯片组和光源1及光谱仪2之间还分别设有聚焦棱镜4、5。
前述光源优选采用近红外激光器,其发射光波长范围根据检测芯片3中光栅结构而定。
前述光谱仪优选采用带光纤传输的光谱仪,其接收光波长范围与激光器的发射光波长对应,比如,可在350-1200nm。
前述检测芯片3包括透光性衬底31、金属光栅耦合层32以及微流体层33,该微流体层中分布微流体通道34,微流体通道与金属光栅耦合层交叉接触。
前述透光性衬底优选采用常见玻璃衬底,当然也可采用其他透明的无机或有机衬底;
前述金属光栅耦合层是由形成于衬底表面的金属薄膜构成,该金属薄膜具有光栅结构。该光栅结构可以是由长方形条组成的阵列,其周期不超过3000nm,优选为1μm~3μm,尤其优选为1μm。该光栅结构的占空比范围可为10%-25%,优选的是阵列中两个长方形体中心之间距离为1μm,每一长方形条宽500nm。
该金属薄膜厚度不超过200nm,优选为100nm~200nm,尤其优选采用厚100nm的Au膜。
前述微流体层由具有较好透光性的材料形成,例如,可选用聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)作为主体材料。
前述检测芯片3的制备和应用方法如下:
1)在衬底上以磁控溅射等工艺生长金属薄膜;
2)采用步进式光刻机,制备出金属光栅的图形掩膜,再用IBE刻蚀机刻蚀金属薄膜,其后去掉掩膜用的光刻胶,形成金属光栅结构;
3)将制备好的芯片组以生物蛋白修饰,即使生物蛋白键合、粘附在金属光栅耦合层表面,当含有某种病毒的样品通过金属表面时,就能粘附在对应这种病毒的蛋白键上,使得金属表面介质的介电常数改变;
4)微流体层的制作:以聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)为主体材料,通过光刻胶的掩膜,用紫外曝光机制备出微流体通道的图形,然后刻蚀图形;
5)将制好的金属光栅耦合层和微流体层键合;
6)搭建检测平台(即前述透射式金属光栅耦合SPR检测仪),由光源发射的光从芯片3的衬底处入射到芯片3中,芯片3正面用光谱仪接收信号;
7)在微流体通道中滴入被检测样品,开始测试。
实施例2本实施例透射式金属光栅耦合SPR检测芯片的结构、制备和应用方法与实施例基本相同,但在金属光栅耦合层表面未作修饰。其在应用时,可在搭建测试平台后,通过向芯片中的微流体通道中直接滴入被测样品,进而测试某样品浓度的变化。
例如检测酒精挥发致使的介质层介电常数改变引共振峰的位移。首先将一定浓度的乙醇滴在有光栅结构的金属耦合层表面,根据其透射光谱,得到一个共振峰。随时间的增长金膜表面的乙醇浓度逐渐降低,界面层的介电常数会改变,导致共振峰的移动,如图4所示。此检测仪还可以运用于除酒精之外的其他样品的检测等。
上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种透射式金属光栅耦合SPR检测芯片,其特征在于,它包括:
透光性基底;
形成于基底上的、具有光栅结构的金属膜层;
以及,覆设于金属膜层表面的微流体层,所述微流体层中分布有微流体通道,且所述微流体通道与金属膜表面接触。
2.根据权利要求1所述的透射式金属光栅耦合SPR检测芯片,其特征在于:所述金属膜层表面还修饰有能够与被检测物中的目标成分结合的材料。
3.根据权利要求1所述的透射式金属光栅耦合SPR检测芯片,其特征在于:所述微流体层与金属膜层键合。
4.根据权利要求1-3中任一项所述的透射式金属光栅耦合SPR检测芯片,其特征在于:所述金属膜层的厚度≤200nm。
5.根据权利要求1所述的透射式金属光栅耦合SPR检测芯片,其特征在于:所述光栅结构的周期≤3000nm。
6.根据权利要求1或5所述的透射式金属光栅耦合SPR检测芯片,其特征在于:所述光栅结构由矩形条阵列组成,占空比的范围为10%-25%。
7.根据权利要求4所述的透射式金属光栅耦合SPR检测芯片,其特征在于:所述金属膜层由Au形成。
8.根据权利要求1所述的透射式金属光栅耦合SPR检测芯片,其特征在于:所述微流体层由有机材料形成,所述有机材料包括聚二甲基硅氧烷。
9.一种透射式金属光栅耦合SPR检测仪,包括光源以及光谱仪,其特征在于,所述检测仪还包括设于光源和光谱仪之间形成的光路上的如权利要求1所述的透射式金属光栅耦合SPR检测芯片,且该检测芯片的透光性基底所在一侧面向光源。
10.如权利要求9所述的透射式金属光栅耦合SPR检测仪,其特征在于:所述透射式金属光栅耦合SPR检测芯片与光源和光谱仪之间还分别设有聚焦棱镜单元。
CN2011101982403A 2011-07-15 2011-07-15 透射式金属光栅耦合spr检测芯片及检测仪 Pending CN102288583A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101982403A CN102288583A (zh) 2011-07-15 2011-07-15 透射式金属光栅耦合spr检测芯片及检测仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101982403A CN102288583A (zh) 2011-07-15 2011-07-15 透射式金属光栅耦合spr检测芯片及检测仪

Publications (1)

Publication Number Publication Date
CN102288583A true CN102288583A (zh) 2011-12-21

Family

ID=45335180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101982403A Pending CN102288583A (zh) 2011-07-15 2011-07-15 透射式金属光栅耦合spr检测芯片及检测仪

Country Status (1)

Country Link
CN (1) CN102288583A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217739A (zh) * 2013-04-22 2013-07-24 上海理工大学 一种复合周期的三通道太赫兹金属光栅波导及运用方法
CN103499534A (zh) * 2013-07-25 2014-01-08 中国科学院苏州纳米技术与纳米仿生研究所 高灵敏太赫兹微流通道传感器及其制备方法
CN104458660A (zh) * 2014-11-15 2015-03-25 新疆大学 基于透射式多孔硅光子晶体微腔角度检测装置的生物分子检测方法
CN104730038A (zh) * 2014-12-25 2015-06-24 中北大学 一种手持式高通量生物传感器
CN105548179A (zh) * 2015-12-04 2016-05-04 深圳市赛尔生物技术有限公司 一种基于透射光或自发光测定生物芯片的方法及***
CN105675536A (zh) * 2016-01-19 2016-06-15 首都师范大学 用于THz-TDS***的金属光栅表面等离子体效应生物检测芯片
CN108548807A (zh) * 2018-03-15 2018-09-18 国家纳米科学中心 用于增强红外吸收信号的石墨烯等离激元器件及其制备方法
CN108593590A (zh) * 2018-06-21 2018-09-28 国家纳米科学中心 一种石墨烯等离激元液体传感器
CN108593585A (zh) * 2018-06-21 2018-09-28 国家纳米科学中心 一种石墨烯等离激元气体传感器
CN108917927A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 色散装置和光谱仪
CN108982424A (zh) * 2018-07-23 2018-12-11 量准(上海)医疗器械有限公司 一种基于等离光子谐振技术的crp浓度检测装置及检测方法
CN112934281A (zh) * 2021-03-20 2021-06-11 山东大学 一种基于周期性结构的人工表面等离激元的微流控检测芯片结构及其制备、检测方法
US11256012B2 (en) 2019-02-27 2022-02-22 Boe Technology Group Co., Ltd. Color dispersion apparatus and spectrometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051025A (zh) * 2007-05-11 2007-10-10 中国科学院光电技术研究所 表面等离子体生化传感检测装置
CN101514985A (zh) * 2009-02-26 2009-08-26 中国科学院光电技术研究所 一种局域表面等离子体共振增强生化检测仪
US7652768B2 (en) * 2006-12-01 2010-01-26 Canon Kabushiki Kaisha Chemical sensing apparatus and chemical sensing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7652768B2 (en) * 2006-12-01 2010-01-26 Canon Kabushiki Kaisha Chemical sensing apparatus and chemical sensing method
CN101051025A (zh) * 2007-05-11 2007-10-10 中国科学院光电技术研究所 表面等离子体生化传感检测装置
CN101514985A (zh) * 2009-02-26 2009-08-26 中国科学院光电技术研究所 一种局域表面等离子体共振增强生化检测仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴世康等: "表面等离子共振(SPR)-一种新型化学检测方法的原理", 《影像科学与光化学》, vol. 26, no. 2, 31 March 2008 (2008-03-31), pages 157 - 168 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217739B (zh) * 2013-04-22 2015-07-22 上海理工大学 一种复合周期的三通道太赫兹金属光栅波导
CN103217739A (zh) * 2013-04-22 2013-07-24 上海理工大学 一种复合周期的三通道太赫兹金属光栅波导及运用方法
CN103499534A (zh) * 2013-07-25 2014-01-08 中国科学院苏州纳米技术与纳米仿生研究所 高灵敏太赫兹微流通道传感器及其制备方法
CN103499534B (zh) * 2013-07-25 2015-09-09 中国科学院苏州纳米技术与纳米仿生研究所 高灵敏太赫兹微流通道传感器及其制备方法
CN104458660B (zh) * 2014-11-15 2017-07-18 新疆大学 基于透射式多孔硅光子晶体微腔角度检测装置的生物分子检测方法
CN104458660A (zh) * 2014-11-15 2015-03-25 新疆大学 基于透射式多孔硅光子晶体微腔角度检测装置的生物分子检测方法
CN104730038A (zh) * 2014-12-25 2015-06-24 中北大学 一种手持式高通量生物传感器
CN105548179A (zh) * 2015-12-04 2016-05-04 深圳市赛尔生物技术有限公司 一种基于透射光或自发光测定生物芯片的方法及***
CN105675536A (zh) * 2016-01-19 2016-06-15 首都师范大学 用于THz-TDS***的金属光栅表面等离子体效应生物检测芯片
CN105675536B (zh) * 2016-01-19 2018-05-04 首都师范大学 用于THz-TDS***的金属光栅表面等离子体效应生物检测芯片
CN108548807A (zh) * 2018-03-15 2018-09-18 国家纳米科学中心 用于增强红外吸收信号的石墨烯等离激元器件及其制备方法
CN108593590A (zh) * 2018-06-21 2018-09-28 国家纳米科学中心 一种石墨烯等离激元液体传感器
CN108593585A (zh) * 2018-06-21 2018-09-28 国家纳米科学中心 一种石墨烯等离激元气体传感器
CN108982424A (zh) * 2018-07-23 2018-12-11 量准(上海)医疗器械有限公司 一种基于等离光子谐振技术的crp浓度检测装置及检测方法
CN108917927A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 色散装置和光谱仪
CN108917927B (zh) * 2018-07-27 2020-08-25 京东方科技集团股份有限公司 色散装置和光谱仪
US11256012B2 (en) 2019-02-27 2022-02-22 Boe Technology Group Co., Ltd. Color dispersion apparatus and spectrometer
CN112934281A (zh) * 2021-03-20 2021-06-11 山东大学 一种基于周期性结构的人工表面等离激元的微流控检测芯片结构及其制备、检测方法

Similar Documents

Publication Publication Date Title
CN102288583A (zh) 透射式金属光栅耦合spr检测芯片及检测仪
JP3816072B2 (ja) 光導波路型センサおよびそれを用いた測定装置
TWI364533B (en) A method for improving surface plasmon resonance by using conducting metal oxide as adhesive layer
US8506887B2 (en) Porous membrane waveguide sensors and sensing systems therefrom for detecting biological or chemical targets
US7915053B2 (en) Substrate for target substance detecting device, target substance detecting device, target substance detecting apparatus and method using the same, and kit therefor
US20030132406A1 (en) Sensor element for optically detecting chemical or biochemical analytes
US8969805B2 (en) Terahertz wave measurement device and method
CN103308476B (zh) 基于游标效应的双微环谐振腔光学生化传感芯片
JP2009162754A (ja) 測定チップ
CN102305774A (zh) 一种基于单孔环形谐振腔的光子晶体生物传感器的实现方法
CN112461787A (zh) 一种基于布洛赫表面波的铌酸锂光学传感器及方法
CN104990871A (zh) 一种光栅微环互调结构的光波导生化传感器
CN101825629B (zh) 波导耦合金属光子晶体生物传感器及其检测方法
CN106568747A (zh) 光波导荧光增强检测仪
TW201305549A (zh) 具金屬緩衝層之波導共振生物感測器
US9046484B2 (en) Plasmon sensor
CN103558183B (zh) 嵌有fp腔的mz干涉式光学生化传感芯片
CN107543814A (zh) 一种基于45°双驱动对称结构弹光调制的生物传感***
CN107064061A (zh) 超高分辨折射率仪
Perino et al. Characterization of grating coupled surface plasmon polaritons using diffracted rays transmittance
Shi et al. Joint optimization of quality factor and sensitivity: Research on the performance quantification of two dimensional photonic crystal biosensor
CN106198459B (zh) 基于纳米表面等离子共振传感器的生物分析传感装置
CN101660997B (zh) 一种降低背景干扰的表面等离子共振传感器及其检测方法
CN201434868Y (zh) 波导耦合金属光子晶体生物传感器
CN103293103A (zh) 外延光栅fp腔与微环谐振腔级联型光学生化传感芯片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111221