CN102230100A - Method for preparing Ti-Nb-Zr-Sn alloy by using powder metallurgical process - Google Patents

Method for preparing Ti-Nb-Zr-Sn alloy by using powder metallurgical process Download PDF

Info

Publication number
CN102230100A
CN102230100A CN2011101827836A CN201110182783A CN102230100A CN 102230100 A CN102230100 A CN 102230100A CN 2011101827836 A CN2011101827836 A CN 2011101827836A CN 201110182783 A CN201110182783 A CN 201110182783A CN 102230100 A CN102230100 A CN 102230100A
Authority
CN
China
Prior art keywords
powder
alloy
sintering
power
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101827836A
Other languages
Chinese (zh)
Other versions
CN102230100B (en
Inventor
郭世柏
蔡春波
康启平
张勇强
肖勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN 201110182783 priority Critical patent/CN102230100B/en
Publication of CN102230100A publication Critical patent/CN102230100A/en
Application granted granted Critical
Publication of CN102230100B publication Critical patent/CN102230100B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

The invention provides a method for preparing a Ti-Nb-Zr-Sn alloy by using a powder metallurgical process and belongs to the technical field of powder metallurgy. The method comprises the following steps of: (a) preparing TiH2 powder, Nb powder, Zr powder and Sn powder wherein the mass ratio of TiH2:Nb:Zr:Sn is 66.1:24:4:7.9; (b) dry-mixing the prepared powders for 5 hours; (c) pressing for forming the powder mixture obtained by dry mixing in a universal material testing machine under such conditions that the pressing pressure is 350 MPa and the pressure maintaining time is 7 to 8 seconds; and (d) sintering the formed sample in a vacuum sintering furnace. Compared with the prior art, the preparation method provided by the invention has the advantages that the sintering temperature is low, the sintering time is short, and the obtained product has a high density and a small and uniform crystal grain size, low impurity content, high tensile strength and high hardness.

Description

A kind of powder metallurgic method prepares the method for Ti-Nb-Zr-Sn alloy
Technical field
The invention belongs to powder metallurgical technology, particularly a kind of powder metallurgic method prepares the method for Ti-Nb-Zr-Sn alloy.
Background technology
Titanium and titanium alloy thereof have the excellent properties such as erosion resistance of low density, high specific strength, good high-temperature intensity, brilliance, are widely used in fields such as automobile, biotechnology and aerospace.But the machinability of titanium and alloy thereof is poor, and hardness is machining difficulty especially during greater than HB350, sticking cutter phenomenon then appears during less than HB300 easily, also be difficult to cutting, become the obstacle of mass production complicated shape part, thereby produce titanium part with powder metallurgic method and enjoy and gaze at.
Titanium is nontoxic, light weight, intensity high and have good biocompatibility, is unusual ideal medical metal material, can be used as the implant of implant into body etc.At present, widely usedly in medical field be still Ti-6Al-4V ELI alloy, but can separate out the vanadium and the aluminum ion of denier, reduced its cell adapted property and might work the mischief human body.The U.S. as far back as 20th century the mid-80 just begin to develop no aluminium, do not have vanadium, have the titanium alloy of biocompatibility, use it for orthopaedy.Number of research projects is also being done by Japan, Britain etc. aspect this, and obtains some new progresses.For example, Japan has developed a series of alpha+beta titanium alloys with good biocompatibility, and the corrosion strength of these alloys, fatigue strength and corrosion resistance all are better than Ti-6Al-4V ELI.Compare with alpha+beta titanium alloys, beta-titanium alloy has higher strength level, and better otch performance and toughness, is more suitable for as the implant implant into body.
Beta titanium alloy is a titanium alloy priority research areas in recent years, Japan TKK company adopts Ti powder and 39Al-26V-17.5Fe-17.5Mo master alloyed powder, pass through batch mixing, mold pressing and vacuum sintering have prepared the SP-700 titanium alloy, Ti-15Mo-3Nb is a kind of novel low elastic modulus that American TI MET company develops on the Ti-15Mo-3Nb-3Al basis, high strength and a kind of metastable beta-type biological titanium alloy with better corrosion resistance, the Ti-24Nb-4Zr-7.9Sn alloy is the special beta titanium alloy of a class, the Yang Rui of laboratory engineering alloy research department of Shenyang Materials science country of metal institute of the Chinese Academy of Sciences (associating), experts such as Hao Yulin adopt fusion casting to succeed in developing and in clinic trial, this method is to experiment material, experimental situations etc. require than higher, and it is simple because of its preparation technology to adopt powder metallurgic method to prepare the Ti-24Nb-4Zr-7.9Sn alloy, cost is low, has become one of focus of titanium matrix composite research field in recent years.
Powder metallurgy be produce metal or with metal-powder (or mixture of metal-powder and non-metal powder) as raw material, through being shaped and sintering, make the Technology of metallic substance, compound and all kinds goods.Powder metallurgic method has similar place to the production pottery, and therefore, a series of powder metallurgy new technologies also can be used for the preparation of stupalith.
The powder metallurgy new technology is different from the characteristics of conventional sintering method:
(1) can to reduce alloying constituent to greatest extent poly-partially for powder metallurgy technology, eliminates thick, uneven cast structure.Has important effect at preparation high-performance rare-earth permanent magnet material, rare earth hydrogen storage material, rare earth luminescent material, rare earth catalyst, high temperature superconducting materia, new metallic material (as Al-Li alloy, heat-resisting Al alloy, superalloy, powder corrosion resisting stainless steel, powder rapid steel, intermetallic compound high-temperature structural material etc.).  
(2) can prepare the non-equilibrium materials of a series of high-performance such as amorphous, crystallite, accurate brilliant, nanocrystalline and over-saturation sosoloid, these materials have electricity, magnetics, optics and the mechanical property of excellence.
(3) can easily realize polytype compoundly, give full play to each group element material characteristic separately, be the Technology of a kind of low cost production high-performance metal base and ceramic composite.
(4) can produce material with special construction and performance and the goods that common smelting process can't be produced, as novel porous biomaterial, porous diffusion barrier material, high performance structure ceramic grinding tool and ceramic material etc.
(5) can realize nearly clean shape and the automatic batch production of forming, thereby, the resource and the energy consumption of production can be reduced effectively.
Because the advantage of powder metallurgy technology, it has become the key that solves the novel material problem, plays a part very important in the development of novel material.But existing powder metallurgy technology exists also that sintering temperature is higher, and sintering time is longer, and prepared Ti-Nb-Zr-Sn alloy impurity is more, and grain-size is inhomogeneous under microscopic observation, and defective such as the space is more.
Summary of the invention
For solving the above-mentioned technical problem that existing Ti-Nb-Zr-Sn alloy preparation method exists, the invention provides the method that a kind of powder metallurgic method prepares the Ti-Nb-Zr-Sn alloy, preparation method provided by the present invention has the advantage that sintering temperature is low, sintering time is short, products therefrom density height, grain-size are more tiny evenly, and impurity is few.
The technical scheme that the present invention solves the problems of the technologies described above may further comprise the steps: a. is with TiH 2Powder, Nb powder, Zr powder and Sn powder are pressed mass ratio TiH 2: the Nb:Zr:Sn=66.1:24:4:7.9 configuration; B. the powder that configures is done and mixed 5 hours; C. will do the powder press forming in universal testing machine after mixing, wherein pressing pressure is 350 Mpa, and the dwell time is 7~8 s; D. with sample sintering in vacuum sintering furnace of press forming.
Sintering process step among the above-mentioned steps d is: at first with heating-up time 60min, vacuum sintering furnace power is that the speed of 30KW power is warming up to 300 ℃, under this temperature, be incubated 30min, again with heating-up time 90min, vacuum sintering furnace power is that the speed of 50KW power is warming up to 750 ℃, under this temperature, be incubated 20min, then with heating-up time 20min, vacuum sintering furnace power is that the speed of 60KW power is warming up to 1000 ℃, under this temperature, be incubated 20min, at last with heating-up time 30min, vacuum sintering furnace power is that the speed of 70KW power is warming up to sintering temperature, furnace cooling after being incubated 1-4 hour under this temperature.
Furthermore, in the sintering process step among the above-mentioned steps d, at last with heating-up time 30min, vacuum sintering furnace power be the speed of 70KW power to be warming up to sintering temperature be 1150 ℃-1350 ℃, at the furnace cooling after 1-4 hour of insulation under this temperature.
Technique effect of the present invention is:
1) with common smelting process relatively, adopt powder metallurgic method to prepare fertile material and goods with special construction and performance, and the sintering densification time significantly reduce, sintering temperature also significantly reduces.
2) the Ti-Nb-Zr-Sn alloy density for preparing of powder metallurgical reaches as high as 97.7%, and grain-size is about 48 μ m, and microtexture is good, hole seldom, alloy possesses the tensile strength height, the advantage that hardness is big.
Description of drawings
Fig. 1 is the fracture apperance of embodiment 1 prepared Ti-Nb-Zr-Sn alloy.
Fig. 2 is the fracture apperance of embodiment 2 prepared Ti-Nb-Zr-Sn alloys.
Fig. 3 is the fracture apperance of embodiment 3 prepared Ti-Nb-Zr-Sn alloys.
Fig. 4 is the fracture apperance of embodiment 4 prepared Ti-Nb-Zr-Sn alloys.
Fig. 5 is the fracture apperance of embodiment 5 prepared Ti-Nb-Zr-Sn alloys.
Fig. 6 is the fracture apperance of embodiment 5 prepared Ti-Nb-Zr-Sn alloys.
Fig. 7 is the fracture apperance of embodiment 5 prepared Ti-Nb-Zr-Sn alloys.
Fig. 8 is the fracture apperance of embodiment 5 prepared Ti-Nb-Zr-Sn alloys.
Embodiment
By embodiment the present invention is further detailed below, but the present invention is not limited only to following examples, can not limits scope of the present invention with this.
Embodiment 1
With TiH 2Powder, Nb powder, Zr powder and Sn powder are pressed mass ratio TiH 2: the Nb:Zr:Sn=66.1:24:4:7.9 configuration, the powder that configures was done in four jars of blenders mixed 5 hours, adopt universal testing machine, under pressing pressure 350 Mpa, pressurize 7~8 s are with sample sintering in the vacuum molybdenum wire furnace.Sintering process is: at first with heating-up time 60min, vacuum molybdenum wire furnace power is that the speed of 30KW power is warming up to 300 ℃, under this temperature, be incubated 30min, again with heating-up time 90min, vacuum molybdenum wire furnace power is that the speed of 50KW power is warming up to 750 ℃, under this temperature, be incubated 20min, then with heating-up time 20min, vacuum molybdenum wire furnace power is that the speed of 60KW power is warming up to 1000 ℃, under this temperature, be incubated 20min, at last with heating-up time 30min, vacuum molybdenum wire furnace power is that the speed of 70KW power is warming up to 1150 ℃ of sintering temperatures, furnace cooling behind insulation 2h under this temperature, obtaining density is 93.5%, and average grain size is the Ti-Nb-Zr-Sn alloy of 45 μ m.As seen from Figure 1, the fracture of the Ti-Nb-Zr-Sn alloy of preparation is particulate state, and hole is more, and dimple is arranged.
Embodiment 2
Not existing together of present embodiment and embodiment 1 only is, last in the sintering process step is that 30min, vacuum molybdenum wire furnace power are that the speed of 70KW power is warming up to 1200 ℃ of sintering temperatures with the heating-up time, furnace cooling behind insulation 2h under this temperature, obtaining density is 95.7%, and average grain size is the Ti-Nb-Zr-Sn alloy of 47 μ m.As seen from Figure 2, the Ti-Nb-Zr-Sn fracture of preparation is particulate state, and a small amount of hole is arranged, and dimple is arranged.
Embodiment 3
Not existing together of present embodiment and embodiment 1 only is, last in the sintering process step is that 30min, vacuum molybdenum wire furnace power are that the speed of 70KW power is warming up to 1250 ℃ of sintering temperatures with the heating-up time, furnace cooling behind insulation 2h under this temperature, obtaining density is 97.2%, and average grain size is the Ti-Nb-Zr-Sn alloy of 50 μ m.As seen from Figure 3, the Ti-Nb-Zr-Sn alloy fracture of preparation is particulate state, and a small amount of hole is arranged, and has a large amount of dimples to exist.
Embodiment 4
Not existing together of present embodiment and embodiment 1 only is, last in the sintering process step is that 30min, vacuum molybdenum wire furnace power are that the speed of 70KW power is warming up to 1300 ℃ of sintering temperatures with the heating-up time, furnace cooling behind insulation 2h under this temperature, obtaining density is 97.5%, and average grain size is the Ti-Nb-Zr-Sn alloy of 55 μ m.As seen from Figure 4, the Ti-Nb-Zr-Sn alloy fracture of preparation is particulate state, and a small amount of hole is arranged, and has a large amount of dimples to exist.
Embodiment 5
Not existing together of present embodiment and embodiment 1 only is, last in the sintering process step is that 30min, vacuum molybdenum wire furnace power are that the speed of 70KW power is warming up to 1350 ℃ of sintering temperatures with the heating-up time, furnace cooling behind insulation 2h under this temperature, obtaining density is 97.7%, and average grain size is the Ti-Nb-Zr-Sn alloy of 60 μ m.As seen from Figure 5, the Ti-Nb-Zr-Sn alloy fracture of preparation is particulate state, and a small amount of hole is arranged, and has dimple to exist, and crystal grain has a little growing up.
Embodiment 6
Not existing together of present embodiment and embodiment 1 only is, last in the sintering process step is that 30min, vacuum molybdenum wire furnace power are that the speed of 70KW power is warming up to 1250 ℃ with the heating-up time, furnace cooling behind insulation 1h under this temperature, obtaining density is 97.7%, and average grain size is the Ti-Nb-Zr-Sn alloy of 47 μ m.As seen from Figure 6, the Ti-Nb-Zr-Sn alloy fracture of preparation is particulate state, and a small amount of hole is arranged, and has dimple to exist.
Embodiment 7
Not existing together of present embodiment and embodiment 1 only is, last in the sintering process step is that 30min, vacuum molybdenum wire furnace power are that the speed of 70KW power is warming up to 1250 ℃ with the heating-up time, furnace cooling behind insulation 3h under this temperature, obtaining density is 97.7%, and average grain size is the Ti-Nb-Zr-Sn alloy of 52 μ m.As seen from Figure 7, the Ti-Nb-Zr-Sn alloy fracture of preparation is particulate state, and a small amount of hole is arranged, and has dimple to exist.
Embodiment 8
Not existing together of present embodiment and embodiment 1 only is, last in the sintering process step is that 30min, vacuum molybdenum wire furnace power are that the speed of 70KW power is warming up to 1250 ℃ with the heating-up time, furnace cooling behind insulation 4h under this temperature, obtaining density is 97.7%, and average grain size is the Ti-Nb-Zr-Sn alloy of 56 μ m.As seen from Figure 8, the Ti-Nb-Zr-Sn alloy fracture of preparation is particulate state, and a small amount of hole is arranged, and has dimple to exist, and crystal grain has a little growing up.
The relevant performance perameter of the Ti-Nb-Zr-Sn alloy of embodiment 1-8 preparation is as shown in table 1.
Table 1
Figure 97317DEST_PATH_IMAGE001

Claims (6)

1. a powder metallurgic method prepares the method for Ti-Nb-Zr-Sn alloy, and may further comprise the steps: a. is with TiH 2Powder, Nb powder, Zr powder and Sn powder are pressed mass ratio TiH 2: the Nb:Zr:Sn=66.1:24:4:7.9 configuration; B. the powder that configures is done and mixed 5 hours; C. will do the powder press forming in universal testing machine after mixing, wherein pressing pressure is 350 Mpa, and the dwell time is 7~8 s; D. with sample sintering in vacuum sintering furnace of press forming.
2. powder metallurgic method according to claim 1 prepares the method for Ti-Nb-Zr-Sn alloy, the sintering process step is in the described steps d: at first with heating-up time 60min, vacuum sintering furnace power is that the speed of 30KW power is warming up to 300 ℃, under this temperature, be incubated 30min, again with heating-up time 90min, vacuum sintering furnace power is that the speed of 50KW power is warming up to 750 ℃, under this temperature, be incubated 20min, then with heating-up time 20min, vacuum sintering furnace power is that the speed of 60KW power is warming up to 1000 ℃, under this temperature, be incubated 20min, at last with heating-up time 30min, vacuum sintering furnace power is that the speed of 70KW power is warming up to sintering temperature, furnace cooling after being incubated 1-4 hour under this temperature.
3. powder metallurgic method according to claim 2 prepares the method for Ti-Nb-Zr-Sn alloy, and described sintering temperature is 1150 ℃-1350 ℃, furnace cooling after being incubated 1-4 hour under this temperature.
4. powder metallurgic method according to claim 3 prepares the method for Ti-Nb-Zr-Sn alloy, under the described sintering temperature insulation 2 hours after furnace cooling.
5. powder metallurgic method according to claim 1 prepares the method for Ti-Nb-Zr-Sn alloy, and the vacuum sintering furnace in the described steps d is the vacuum molybdenum wire furnace.
6. powder metallurgic method according to claim 1 prepares the method for Ti-Nb-Zr-Sn alloy, does the powder that configures mixed in four jars of blenders among the described step b.
CN 201110182783 2011-07-01 2011-07-01 Method for preparing Ti-Nb-Zr-Sn alloy by using powder metallurgical process Expired - Fee Related CN102230100B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110182783 CN102230100B (en) 2011-07-01 2011-07-01 Method for preparing Ti-Nb-Zr-Sn alloy by using powder metallurgical process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110182783 CN102230100B (en) 2011-07-01 2011-07-01 Method for preparing Ti-Nb-Zr-Sn alloy by using powder metallurgical process

Publications (2)

Publication Number Publication Date
CN102230100A true CN102230100A (en) 2011-11-02
CN102230100B CN102230100B (en) 2013-03-06

Family

ID=44842703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110182783 Expired - Fee Related CN102230100B (en) 2011-07-01 2011-07-01 Method for preparing Ti-Nb-Zr-Sn alloy by using powder metallurgical process

Country Status (1)

Country Link
CN (1) CN102230100B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719700A (en) * 2012-06-04 2012-10-10 天津大学 Ti-Nb-O high damping titanium alloy and powder metallurgy preparation method thereof
CN102732747A (en) * 2012-02-14 2012-10-17 湘潭正和矫形器技术发展有限公司 Method for preparing Ti-24Nb-8Sn alloy by using TiH2 powder as raw material though powder metallurgy
CN103643066A (en) * 2013-12-03 2014-03-19 天津大学 Preparation method of high-damping titanium alloy
CN111992711A (en) * 2019-05-10 2020-11-27 天津大学 Method for improving tensile property of titanium alloy additive manufacturing by adding Nb powder
CN112475303A (en) * 2020-11-23 2021-03-12 江南大学 Based on TiH2Powder metallurgy preparation method of Ti-Nb-Sn bone repair alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1982504A (en) * 2005-12-16 2007-06-20 中国科学院金属研究所 Production of titanium and titanium-alloy glass ceramic coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1982504A (en) * 2005-12-16 2007-06-20 中国科学院金属研究所 Production of titanium and titanium-alloy glass ceramic coating

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
喻岚等: "粉末冶金钛合金的制备", 《轻金属》 *
张晗亮等: "锡钛合金的粉末冶金法制备", 《功能材料》 *
赵瑶等: "粉末冶金钛合金SP-700的制备", 《粉末冶金材料科学与工程》 *
魏强等: "粉末冶金法制备医用Ti28Nb24.5Zr合金.", 《第九次全国热处理大会论文集》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732747A (en) * 2012-02-14 2012-10-17 湘潭正和矫形器技术发展有限公司 Method for preparing Ti-24Nb-8Sn alloy by using TiH2 powder as raw material though powder metallurgy
CN102719700A (en) * 2012-06-04 2012-10-10 天津大学 Ti-Nb-O high damping titanium alloy and powder metallurgy preparation method thereof
CN103643066A (en) * 2013-12-03 2014-03-19 天津大学 Preparation method of high-damping titanium alloy
CN111992711A (en) * 2019-05-10 2020-11-27 天津大学 Method for improving tensile property of titanium alloy additive manufacturing by adding Nb powder
CN112475303A (en) * 2020-11-23 2021-03-12 江南大学 Based on TiH2Powder metallurgy preparation method of Ti-Nb-Sn bone repair alloy
WO2022105438A1 (en) * 2020-11-23 2022-05-27 江南大学 Tih2-based preparation method for ti-nb-sn bone repair alloy by powder metallurgy

Also Published As

Publication number Publication date
CN102230100B (en) 2013-03-06

Similar Documents

Publication Publication Date Title
CN101333607B (en) Process for preparing TiBw/Ti alloy-based composite material
CN109182854B (en) 1GPa high-strength aluminum-based light medium-entropy alloy and preparation method thereof
CN107142410B (en) CrMoNbTiZr high entropy alloy materials and preparation method thereof
CN108425037B (en) A kind of powder metallurgy superalloy and preparation method thereof
CN109852830B (en) Superfine carbide particle reinforced metal matrix composite material and preparation method thereof
CN106756407B (en) A kind of CrMnFeCoNiZr high-entropy alloy and preparation method thereof
CN102230100B (en) Method for preparing Ti-Nb-Zr-Sn alloy by using powder metallurgical process
CN110273092A (en) A kind of CoCrNi particle reinforced magnesium base compound material and preparation method thereof
CN102534275B (en) TiNi alloy-based composite material with near-zero thermal expansion characteristic and preparation method thereof
CN104004942B (en) TiC particle-reinforced nickel-based composite material and preparation method thereof
CN108220681B (en) A kind of β solidification multidirectional canned forging method of TiAl alloy containing Cr and Mo
CN109252082A (en) A kind of multi-element alloyed infusibility high-entropy alloy and preparation method thereof
CN103866165A (en) Isotropical high-strength high-toughness particle reinforced aluminium-based composite material and preparation method thereof
CN108251695A (en) A kind of preparation method of titanium aluminium niobium zirconium molybdenum alloy
CN107858579A (en) The method for improving high-entropy alloy magnetic property is heat-treated using Constant charge soil
CN102732747A (en) Method for preparing Ti-24Nb-8Sn alloy by using TiH2 powder as raw material though powder metallurgy
CN115198162A (en) Entropy alloy in high-toughness heterogeneous multi-phase core-shell organization structure and preparation method thereof
CN109878170A (en) A kind of through-hole titanium alloy layer Strengthening and Toughening TiAl base alloy plate and preparation method thereof that periodically misplaces
CN107234196A (en) The atomic ratio Ti-Ni alloy large-sized casting ingot forging method such as one kind
CN103934453B (en) Utilize the method for modified metal power forging gasoline engine connecting rod blank
CN107937753A (en) A kind of TiAl duplex grain structures alloy and preparation method with bimodal character
CN112143925A (en) Preparation method of high-strength high-plasticity titanium-magnesium composite material
CN102392150A (en) Method for rapid sintering preparation of Ti-24Nb-4Zr-7.9Sn alloy
CN107937840B (en) A kind of titanium-aluminium alloy composite material and preparation method
CN109536760A (en) A kind of high-fracture toughness bifurcation titanium-aluminium matrix composites and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130306

Termination date: 20160701

CF01 Termination of patent right due to non-payment of annual fee