CN102220088A - 一种用于氧化锌化学机械平坦化的碱性纳米抛光液及应用 - Google Patents

一种用于氧化锌化学机械平坦化的碱性纳米抛光液及应用 Download PDF

Info

Publication number
CN102220088A
CN102220088A CN2011101193031A CN201110119303A CN102220088A CN 102220088 A CN102220088 A CN 102220088A CN 2011101193031 A CN2011101193031 A CN 2011101193031A CN 201110119303 A CN201110119303 A CN 201110119303A CN 102220088 A CN102220088 A CN 102220088A
Authority
CN
China
Prior art keywords
zinc oxide
agent
mechanical planarization
polishing fluid
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101193031A
Other languages
English (en)
Inventor
张楷亮
张涛峰
王芳
刘宇航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN2011101193031A priority Critical patent/CN102220088A/zh
Publication of CN102220088A publication Critical patent/CN102220088A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

一种用于氧化锌化学机械平坦化的碱性纳米抛光液,由纳米研磨料、pH调节剂、表面活性剂、消泡剂、杀菌剂、助清洗剂和溶剂组成,纳米研磨料为氧化钛、氧化铈或二氧化硅,pH调节剂包括无机碱为KOH和有机碱四甲基氢氧化铵、四乙基氢氧化铵或羟基胺,表面活性剂为硅烷聚二乙醇醚、聚二乙醇醚或十二烷基乙二醇醚,消泡剂为聚二甲基硅烷,杀菌剂为异构噻唑啉酮,助清洗剂为异丙醇;溶剂为去离子水。本发明的优点是:抛光速率稳定可控、薄膜表面损伤少、易清洗、不腐蚀设备、不污染环境、储存时间长。利用该抛光液对氧化锌薄膜材料进行化学机械平坦化来制备阻变存储器,方法简单易行,而且与集成电路工艺完全兼容。

Description

一种用于氧化锌化学机械平坦化的碱性纳米抛光液及应用
技术领域
本发明属于一种抛光液,涉及微电子辅助材料及加工工艺技术领域,特别是涉及一种用于氧化锌化学机械平坦化的碱性纳米抛光液及应用。
背景技术
近几年来,由于氧化锌材料有着较大的能带宽度(3.37eV)和较高的激子束缚能量,所以氧化锌在深紫外光电子器件、蓝光发光器件、激光器件、压电传感器、声表面波器件,非挥发性阻变存储器件,掺杂氧化锌用作透明电极等领域有了广泛的应用,而且其作用也显得越来越重要了。同时氧化锌也被用来做为衬底直接在上面外延生长GaN薄膜,或者作为蓝宝石和SiC上的一个缓冲层在其上面外延生长GaN薄膜。但是现有的各种生长氧化锌的方法比如:溅射、脉冲激光沉积、低压化学气相沉积、喷雾热解法等生长的氧化锌薄膜都有着很大的表面粗糙度而且表面含有针孔缺陷,这些都将严重影响后续薄膜的生长,从而严重影响到整个器件的性能。尤其是当工艺结点进入40nm以后,由于生长出来的氧化锌表面较大的粗糙度限制了高精度的光刻的实现,从而严重制约了氧化锌薄膜及其相关器件的制造与应用。所以生长氧化锌薄膜必须经过表面平坦化以降低其表面粗糙度才能应用到实际的器件制造中去,下面就以具有阻变特性的氧化锌制作非挥发性阻变存储器为例,进一步说明抛光的重要性。
随着微电子技术和计算机技术的迅速发展,对大容量的非挥发性的存储器的需求越来越紧迫。而基于浮栅结构的快闪(flash)存储器由于较高的操作电压、复杂的电路结构和浮栅结构不能无限减薄等问题,严重制约了快闪存储器的进一步应用于各个领域。特别是当工艺结点进入45nm以后由于无法进一步提高集成密度使得寻求新型存储器替代快闪存储器的需求更为迫切。于是基于新理论新材料的各种非挥发性存储器应运而生,而利用电流致电阻转变效应开发的电阻式存储器(又叫阻变存储器)就是其中之一。阻变存储器(Resistive Random Access Memory, RRAM)是一种新型的非挥发性存储器,它具有操作电压低、读写速度快、反复操作耐久性强、存储密度高、数据保持时间长、功耗低、成本低、与CMOS工艺兼容等特点,被誉为下一代非挥发性存储器最有力的竞争者。阻变存储器的关键材料是可记录的二元过渡金属氧化物薄膜材料,其中具有阻变特性的氧化锌材料已经被广泛应用于激光二极管、发光二极管、薄膜晶体管、太阳能电池、液晶显示屏等制造领域。而且其在阻变存储器器件领域也将会有很好的应用前景。基于氧化锌薄膜材料的阻变存储器制作关键技术在于如何形成阻变材料的镶嵌结构,进而形成存储单元。结合化学机械平坦化在器件互连领域的广泛应用,如何通过氧化锌的化学机械平坦化制作基于氧化锌的阻变存储器成为当前的研究热点,有关氧化锌的化学机械平坦化工作也成为该领域的关注焦点之一。
目前,化学机械平坦化(Chemical Mechanical Planarization, CMP)作为唯一一种能够实现全局平坦化的技术,已经成为超大规模集成电路工艺中一种不可或缺的工艺,而且被广泛应用于深亚微米多层铜互***当中。国际半导体技术发展路线图(International Technology Roadmap for Semiconductors,ITRS)在2007年提出,用于非挥发性存储器中的新材料的化学机械平坦化的研究工作亟需进行,深沟槽结构的形成及多余材料的去除都需要化学机械平坦化来完成。
为不断提高存储密度,降低阻变时的电压、功耗,要求阻变存储器器件单元中特征尺寸缩小至纳米级。鉴于半导体工艺中0.25微米以下的技术,材料表面必须通过化学机械平坦化进行全局平坦化,方可利用通用的光刻曝光工艺进行亚微米尺寸的加工。其次,通过化学机械平坦化,可以提高薄膜的平整度,增加介面间的接触面积,降低电极与阻变薄膜之间的介面捕获电流密度,进而改善阻变薄膜材料的电特性和抗疲劳性,同时降低缺陷,增强器件的可靠性。而且,为了阻变存储器器件的制备工艺与CMOS工艺相兼容,以使制作成本最低,需要对阻变材料的化学机械平坦化这一关键工艺进行研究。阻变存储器器件单元结构涉及纳米结构的形成,包括纳米孔的形成、纳米填充和多余材料的化学机械平坦化。为形成填充结构,只能通过阻变材料的填充及化学机械平坦化形成器件单元。
目前,有关材料氧化锌的抛光的文献和专利都很少。日本东北大学的Makoto MINAKATA课题组提出在ECR***中用等离子体来抛光氧化锌薄膜的表面,美国休斯顿大学的H.Chen课题组提出的用气体等离子束来平坦化氧化锌薄膜的表面。以上两种方法的本质上是一样的,都是用离子来轰击氧化锌薄膜的表面,通过轰击过程中原子的再沉积使表面趋于平坦化,但是这样的平坦化的效果有限而且还会引入薄膜晶格的损伤;美国俄克拉荷马州立大学的D.A.Lucca课题组用纯机械法抛光光致发光材料氧化锌,主要研究了机械抛光对发光器件的影响,不过抛光过程会引入位错缺陷;美国佛罗里达大学的Sushant Gupta课题组研究了氧化锌薄膜的化学机械平坦化,但主要集中对工艺参数方面的研究,并未涉及抛光液的组份等的研究。而抛光液的组份对抛光的实用性和抛光后表面质量有着非常大的影响,因此研究抛光液的组份不仅决定了抛光的质量还决定了抛光的效率。可以预知阻变存储材料氧化锌薄膜化学机械平坦化的开展将为阻变存储器器件的进一步高性能、低成本发展提供了可能。由于深亚微米IC工艺材料必须全局平坦化,对于阻变存储薄膜材料的化学机械平坦化研究,将成为下一代更高性能阻变存储器发展的瓶颈技术,只有实现了材料表面的高度平坦,才可以进行高分辨的光刻曝光形成纳米级特征尺寸,使得存储器材料阻变时所需电压更低、功耗更小、体积缩小、存储密度增大、成本降低。因此RRAM阻变薄膜材料的研究不仅具有较大的科学意义,而且具有潜在的巨大的商业价值。
发明内容
发明内容
本发明的目的是针对上述技术分析,提供一种用于氧化锌化学机械平坦化的碱性纳米抛光液并利用该抛光液对氧化锌薄膜材料进行化学机械平坦化来制备阻变存储器的方法,采用该碱性纳米抛光液,可实现氧化锌二元过渡金属氧化物阻变薄膜材料的全局平坦化,满足制备高性能阻变存储器的要求,具有很好的应用前景。
本发明的技术方案:
一种用于氧化锌化学机械平坦化的碱性纳米抛光液,由纳米研磨料、pH调节剂、表面活性剂、消泡剂、杀菌剂、助清洗剂和溶剂组成,各组分占抛光液总量的含量分别是:纳米研磨料为1.0wt%-30.0wt%、pH调节剂加入量是使碱性纳米抛光液pH值为8~12、表面活性剂为0.01wt%-1.0wt%、消泡剂为20-200ppm、杀菌剂为10-50ppm、助清洗剂为0.01wt%-0.1wt%、余量为溶剂。
所述纳米研磨料为氧化钛、氧化铈和二氧化硅中的一种或两种任意比例的混合物,其中氧化钛和氧化铈为其水分散体,二氧化硅为胶体溶液;纳米研磨料的平均粒径小于200nm。
所述pH调节剂为由无机碱pH调节剂和有机碱pH调节剂组成的复合碱pH调节剂,无机碱pH调节剂和有机碱pH调节剂的体积比为1:1~8;无机碱pH调节剂中无机碱为KOH,有机碱pH调节剂中的有机碱为四甲基氢氧化铵、四乙基氢氧化铵和羟基胺中的一种或两种任意比例的混合物。
所述表面活性剂为硅烷聚二乙醇醚、聚二乙醇醚和十二烷基乙二醇醚中的一种或两种任意比例的混合物。
所述消泡剂为聚二甲基硅烷。
所述杀菌剂为异构噻唑啉酮。
所述助清洗剂为异丙醇。
所述溶剂为去离子水。
一种所述用于氧化锌化学机械平坦化的碱性纳米抛光液的应用,用于制备阻变存储器,步骤如下:
1)在衬底Si/SiO2上沉积底电极,在底电极上沉积SiO2介质层,对SiO2介质层进行开孔刻蚀,然后沉积氧化锌阻变薄膜材料,填充覆盖所有阵列孔;
2)通过化学机械平坦化,利用所述的碱性纳米抛光液将多余的氧化锌阻变薄膜材料层进行去除并平坦化处理;
3)做出上电极,并引线制成器件。
本发明的技术分析:
研磨料的主要作用是CMP时的机械摩擦。pH调节剂主要是调节抛光液的pH值,使得抛光液稳定,有助于CMP的进行;选用复合碱作为pH调节剂,无机碱KOH能够增强抛光液的化学作用,有机碱能够很好的保持溶液的pH值稳定,确保化学作用的一致稳定,从而实现抛光速率的稳定。表面活性剂的作用是使得抛光液中研磨料的高稳定性,CMP过程中优先吸附在材料表面,化学腐蚀作用降低,由于凹处受到摩擦力小,因而凸处比凹处抛光速率大,起到了提高抛光凸凹选择性,增强了高低选择比,降低了表面张力,减少了表面损伤。抛光液中表面活性剂的加入通常导致泡沫的产生,不利用工艺生产的控制,通过加入极少量消泡剂实现低泡或无泡抛光液,便于操作使用。抛光液中含有许多有机物,长期存放容易形成霉菌,导致抛光液变质,为此向抛光液中加入少量杀菌剂。助清洗剂的加入有助于减少颗粒的吸附,降低后期的清洗成本。
本发明的优点是:抛光速率稳定可控、包膜表面损伤少、易清洗、不腐蚀设备、不污染环境、储存时间长。通过采用本发明提供的碱性纳米抛光液,可以实现氧化锌阻变薄膜材料的全局平坦化,抛光后表面的粗糙度RMS(5μm×5μm)小于1.0nm,满足制备高性能RRAM的要求。利用该抛光液对氧化锌薄膜材料进行化学机械平坦化来制备阻变存储器,方法简单易行,而且与集成电路工艺完全兼容。
附图说明
图1 为在带有阵列孔的SiO2上沉积氧化锌抛光样品的结构示意图。
图2 为对氧化锌多余部分CMP后结构示意图。
图3为阻变存储器结构示意图。
具体实施方式
通过以下实施例进一步阐明本发明的实质性特点和显著进步。但本发明决非仅局限于实施例。
实施例1:
碱性纳米抛光液的配制:抛光液中含有10~30nm的二氧化硅胶体20wt%;十二烷基乙二醇醚0.2wt%;聚二甲基硅烷50ppm;异构噻唑啉酮10ppm;异丙醇0.03wt%;KOH、四甲基氢氧化铵(1:1)为pH调节剂,pH为8,其余为去离子水。配制时将上述原料混合,使用磁力搅拌机搅拌均匀后直接上机实验。
抛光工艺的实现:采用美国Strasbaugh的6EC nSpire抛光机,抛光垫为Rohm&Haas IC1000,抛光头转速为35rpm及抛光盘转速为40rpm,抛光液流速100ml/min,下压力为2psi。
抛光的样品制备如下:1)在衬底Si/SiO2上沉积厚度100nm的底电极W层;2)在底电极W层上沉积厚度200nm的介质层SiO2;3)通过光刻工艺对SiO2层刻蚀,形成1000nm的阵列孔;4)在带阵列孔的SiO2上沉积氧化锌阻变薄膜材料,填充覆盖所有阵列孔。图1为抛光样品的结构示意图。
抛光效果测试:有Dektak 150轮廓仪测量抛光前后的氧化锌薄膜的厚度差,除以抛光时间就可以得到抛光的速率,用Agilent公司的原子力显微镜(AFM)来测量抛光前后氧化锌薄膜的表面形貌和粗糙度。
抛光效果:氧化锌抛光速率52nm/min,SiO2抛光速率12nm/min,抛光前表面粗糙度RMS(5μm×5μm)为8.7nm,抛光后表面粗糙度RMS(5μm×5μm)为0.9nm,ZnO/SiO2选择比为4.3:1。图2为对氧化锌多余部分CMP后结构示意图。
实施例2:
碱性纳米抛光液的配制:抛光液中含有10~30nm的二氧化硅胶体5wt%,40nm的二氧化钛4wt%;聚二乙醇醚0.1wt%,十二烷基乙二醇醚0.1wt%;聚二甲基硅烷50ppm;异构噻唑啉酮10ppm;异丙醇0.03wt%;KOH、羟胺(1:3)为pH调节剂,pH为9.01,其余为去离子水。配制时将上述原料混合,使用磁力搅拌机搅拌均匀后直接上机实验。
抛光工艺、抛光样品制备和抛光效果测试同实施例1。
抛光效果:氧化锌抛光速率104nm/min,SiO2抛光速率16nm/min,抛光前表面粗糙度RMS(5μm×5μm)为12.4nm,抛光后表面粗糙度RMS(5μm×5μm)为0.83nm,ZnO /SiO2选择比为6.5:1。
实施例3:
碱性纳米抛光液的配制:抛光液中含有10~30nm的二氧化硅胶体5wt%,80nm的二氧化铈2wt%;聚二乙醇醚0.3wt%;聚二甲基硅烷50ppm;异构噻唑啉酮10ppm;异丙醇0.03wt%;KOH、四甲基氢氧化铵(1:3)为pH调节剂,pH为9.98,其余为去离子水。配制时将上述原料混合,使用磁力搅拌机搅拌均匀后直接上机实验。
抛光工艺、抛光样品制备和抛光效果测试同实施例1。
抛光效果:氧化锌抛光速率196nm/min,SiO2抛光速率19nm/min,抛光前表面粗糙度RMS(5μm×5μm)为13.7nm,抛光后表面粗糙度RMS(5μm×5μm)为0.75nm,ZnO /SiO2选择比为10.3:1。
实施例4:
碱性纳米抛光液的配制:抛光液中含有80nm的二氧化铈5wt%;硅烷聚二乙醇醚0.5wt%;聚二甲基硅烷50ppm;异构噻唑啉酮10ppm;异丙醇0.03wt%;KOH、羟胺(1:2)为pH调节剂,pH为11.02,其余为去离子水。配制时将上述原料混合,使用磁力搅拌机搅拌均匀后直接上机实验。
抛光工艺、抛光样品制备和抛光效果测试同实施例1。
抛光效果:氧化锌抛光速率63.7nm/min,SiO2抛光速率20nm/min,抛光前表面粗糙度RMS为9.8nm,抛光后表面粗糙度RMS(5μm×5μm)为0.78nm,ZnO /SiO2选择比为3.2:1。
实施例5:
制备阻变存储器,步骤如下:
1)在衬底平坦光滑的Si/SiO2上沉积100nm厚的底电极W,在底电极上沉积200nm厚的SiO2介质层,利用反应离子刻蚀的工艺对SiO2介质层进行开孔刻蚀,然后在刻好孔的沉底阵列上沉积氧化锌阻变薄膜材料,使其填充覆盖所有阵列孔;
2)对沉积完氧化锌薄膜的样品进行化学机械平坦化,利用本发明提供的碱性纳米抛光液将多余的氧化锌阻变薄膜材料层进行去除并平坦化处理;
3)在抛光之后的样品表面在沉积一层100nm的上电极W,即可。
图3为该阻变存储结构示意图。
通过采用本发明提供的酸性纳米抛光液,可以实现氧化锌阻变薄膜材料的全局平坦化,抛光后表面的粗糙度RMS(5μm×5μm)小于1.0nm,满足制备高性能RRAM的要求。利用该抛光液对氧化锌薄膜材料进行化学机械平坦化来制备阻变存储器,方法简单易行,而且与集成电路工艺完全兼容。

Claims (9)

1. 一种用于氧化锌化学机械平坦化的碱性纳米抛光液,其特征在于:由纳米研磨料、pH调节剂、表面活性剂、消泡剂、杀菌剂、助清洗剂和溶剂组成,各组分占抛光液总量的含量分别是:纳米研磨料为1.0wt%-30.0wt%、pH调节剂加入量是使碱性纳米抛光液pH值为8~12、表面活性剂为0.01wt%-1.0wt%、消泡剂为20-200ppm、杀菌剂为10-50ppm、助清洗剂为0.01wt%-0.1wt%、余量为溶剂。
2.根据权利要求1所述用于氧化锌化学机械平坦化的碱性纳米抛光液,其特征在于:所述纳米研磨料为氧化钛、氧化铈和二氧化硅中的一种或两种任意比例的混合物,其中氧化钛和氧化铈为其水分散体,二氧化硅为胶体溶液;纳米研磨料的平均粒径小于200nm。
3.根据权利要求1所述用于氧化锌化学机械平坦化的碱性纳米抛光液,其特征在于:所述pH调节剂为由无机碱pH调节剂和有机碱pH调节剂组成的复合碱pH调节剂,无机碱pH调节剂和有机碱pH调节剂的比例为1:1~8;无机碱pH调节剂中无机碱为KOH,有机碱pH调节剂中的有机碱为四甲基氢氧化铵、四乙基氢氧化铵和羟基胺中的一种或两种任意比例的混合物。
4.根据权利要求1所述用于氧化锌化学机械平坦化的碱性纳米抛光液,其特征在于:所述表面活性剂为硅烷聚二乙醇醚、聚二乙醇醚和十二烷基乙二醇醚中的一种或两种任意比例的混合物。
5.根据权利要求1所述用于氧化锌化学机械平坦化的碱性纳米抛光液,其特征在于:所述消泡剂为聚二甲基硅烷。
6.根据权利要求1所述用于氧化锌化学机械平坦化的碱性纳米抛光液,其特征在于:所述杀菌剂为异构噻唑啉酮。
7.根据权利要求1所述用于氧化锌化学机械平坦化的碱性纳米抛光液,其特征在于:所述助清洗剂为异丙醇。
8.根据权利要求1所述用于氧化锌化学机械平坦化的碱性纳米抛光液,其特征在于:溶剂为去离子水。
9.一种如权利要求1所述用于氧化锌化学机械平坦化的碱性纳米抛光液的应用,其特征在于用于制备阻变存储器,步骤如下:
1)在衬底Si/SiO2上沉积底电极,在底电极上沉积SiO2介质层,对SiO2介质层进行开孔刻蚀,然后沉积氧化锌阻变薄膜材料,填充覆盖所有阵列孔;
2)通过化学机械平坦化,利用所述的碱性纳米抛光液将多余的氧化锌阻变薄膜材料层进行去除并平坦化处理;
3)做出上电极,并引线制成器件。
CN2011101193031A 2011-05-10 2011-05-10 一种用于氧化锌化学机械平坦化的碱性纳米抛光液及应用 Pending CN102220088A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101193031A CN102220088A (zh) 2011-05-10 2011-05-10 一种用于氧化锌化学机械平坦化的碱性纳米抛光液及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101193031A CN102220088A (zh) 2011-05-10 2011-05-10 一种用于氧化锌化学机械平坦化的碱性纳米抛光液及应用

Publications (1)

Publication Number Publication Date
CN102220088A true CN102220088A (zh) 2011-10-19

Family

ID=44776805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101193031A Pending CN102220088A (zh) 2011-05-10 2011-05-10 一种用于氧化锌化学机械平坦化的碱性纳米抛光液及应用

Country Status (1)

Country Link
CN (1) CN102220088A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938378A (zh) * 2019-10-23 2020-03-31 宁波日晟新材料有限公司 一种用于氧化锌晶体氧面抛光的抛光液及其制备方法
CN114621683A (zh) * 2020-12-11 2022-06-14 安集微电子(上海)有限公司 一种化学机械抛光液及其使用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648190A (zh) * 2004-12-22 2005-08-03 中国科学院上海微***与信息技术研究所 高介电材料钛酸锶钡化学机械抛光用的纳米抛光液
CN102127372A (zh) * 2010-12-17 2011-07-20 天津理工大学 一种用于氧化钒化学机械抛光的纳米抛光液及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648190A (zh) * 2004-12-22 2005-08-03 中国科学院上海微***与信息技术研究所 高介电材料钛酸锶钡化学机械抛光用的纳米抛光液
CN102127372A (zh) * 2010-12-17 2011-07-20 天津理工大学 一种用于氧化钒化学机械抛光的纳米抛光液及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938378A (zh) * 2019-10-23 2020-03-31 宁波日晟新材料有限公司 一种用于氧化锌晶体氧面抛光的抛光液及其制备方法
CN110938378B (zh) * 2019-10-23 2021-08-27 宁波日晟新材料有限公司 一种用于氧化锌晶体氧面抛光的抛光液及其制备方法
CN114621683A (zh) * 2020-12-11 2022-06-14 安集微电子(上海)有限公司 一种化学机械抛光液及其使用方法
WO2022121822A1 (zh) * 2020-12-11 2022-06-16 安集微电子(上海)有限公司 一种化学机械抛光液及其使用方法

Similar Documents

Publication Publication Date Title
CN102127372B (zh) 一种用于氧化钒化学机械抛光的纳米抛光液及其应用
CN102408836A (zh) 一种用于氧化钛薄膜化学机械平坦化的纳米抛光液及应用
CN1300271C (zh) 硫系化合物相变材料化学机械抛光的纳米抛光液及其应用
Lee et al. Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces
CN101372606B (zh) 用氧化铈化学机械抛光液抛光硫系化合物相变材料的方法
CN102212316A (zh) 一种用于氧化锌化学机械平坦化的酸性纳米抛光液及应用
CN102441819A (zh) 一种用于硫系相变材料的化学机械抛光方法及抛光液
CN104804649A (zh) 一种用于氮化镓的抛光液
CN1290962C (zh) 高介电材料钛酸锶钡化学机械抛光用的纳米抛光液
Cho et al. Role of hydrogen peroxide in alkaline slurry on the polishing rate of polycrystalline Ge2Sb2Te5 film in chemical mechanical polishing
CN100335581C (zh) 硫系相变材料化学机械抛光的无磨料抛光液及其应用
US20140008567A1 (en) Chemical mechanical polishing slurry
CN102220088A (zh) 一种用于氧化锌化学机械平坦化的碱性纳米抛光液及应用
CN101333420A (zh) 用于化学机械抛光的浆料组合物及抛光方法
CN101764195B (zh) 一种制作纳米尺寸相变存储器的方法
KR20130081599A (ko) 연마 조성물 및 이를 이용한 화학기계적 평탄화 방법
Lo et al. Defect selective passivation in GaN epitaxial growth and its application to light emitting diodes
CN103897603B (zh) 一种gst中性化学机械抛光液
CN106531683B (zh) 一种绝缘体上半导体材料衬底结构及其制备方法
CN102408835A (zh) 一种用于氧化镍薄膜化学机械平坦化的纳米抛光液及应用
CN101483220A (zh) 制备相变存储器的方法
Park et al. Effect of alkaline agent on polishing rate of nitrogen-doped Ge2Sb2Te5 film in chemical mechanical polishing
CN100492695C (zh) 用硅湿法刻蚀和键合工艺制备相变存储器的方法
Yun et al. Impact of wet ceria abrasive size on initial step height removal efficiency for Isolated SiO 2 film chemical mechanical planarization
CN103484025B (zh) 一种自停止的gst化学机械抛光液及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111019