CN102203690B - 用于发光二极管的电流纹波抑制电路 - Google Patents

用于发光二极管的电流纹波抑制电路 Download PDF

Info

Publication number
CN102203690B
CN102203690B CN200980143497XA CN200980143497A CN102203690B CN 102203690 B CN102203690 B CN 102203690B CN 200980143497X A CN200980143497X A CN 200980143497XA CN 200980143497 A CN200980143497 A CN 200980143497A CN 102203690 B CN102203690 B CN 102203690B
Authority
CN
China
Prior art keywords
power supply
current
led
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980143497XA
Other languages
English (en)
Other versions
CN102203690A (zh
Inventor
M·G·尼格里特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices International ULC
Linear Technology LLC
Original Assignee
Linear Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linear Technology LLC filed Critical Linear Technology LLC
Publication of CN102203690A publication Critical patent/CN102203690A/zh
Application granted granted Critical
Publication of CN102203690B publication Critical patent/CN102203690B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

供电的LED电路可包括电源,所述电源被设置成产生和输送具有相当纹波成分的在可控平均值的输出电流;一个或多个连接在一起的LED;和连接至所述电源和一个或多个LED的纹波抑制电路。所述纹波抑制电路可具有与一个或多个LED串联的电流调整器,被设置成大大减少流过所述一个或多个LED的电流中由于输出电流的纹波成分造成的波动,但不减少流过所述一个或多个LED的电流中由于输出电流的平均值的变化造成的波动。

Description

用于发光二极管的电流纹波抑制电路
技术领域
本发明涉及发光二极管(LED)、调光器控制、反激式控制器和功率因数校正。背景技术
冷阴极荧光灯很久以来已用于办公室中并已在家庭中开始流行。与白炽灯相比,其每瓦流明可以非常高,节约能源。不过,它们可能需要高电压AC逆变器并可能含有有毒的汞。
发光二极管(LED)现在也能够提供很高的每瓦光输出,可与冷阴极荧光灯媲美。此外,与冷阴极荧光灯不同,它们可能不要求高电压并且通常不含汞。
不过,LED的亮度可能随着对其施加的电压的变化的平方而不同。因此,传统电源的电压纹波可能在流过LED的电流中导致相当大的波动。纹波的频率可能太高以至于人的肉眼不能觉察到。不过,大的纹波电流可能降低LED的效率以及LED发出的光的色纯度。
可利用非常大的输出滤波电容来减少纹波。不过,非常大的电容可能昂贵、体积庞大,并且易于出现故障。发明内容
供电的LED电路可包括电源,所述电源被设置成产生和传送具有相当纹波成分的在可控平均值的输出电流;连接在一起的一个或多个LED;和纹波抑制电路,所述纹波抑制电路连接至所述电源和所述一个或多个LED。所述纹波抑制电路可能具有与一个或多个LED串联的电流调整器,所述电流调整器被设置成大量减少流过一个或多个LED的电流中由于输出电流的纹波成分而造成的波动,但不减少流过一个或多个LED的电流中由于输出电流的平均值的变化而造成的波动。
供电的LED电路可包括反激式变换器。所述反激式变换器可被设置成接收被斩波成不同量的AC电压并且以平均值输送输出电流,所述以平均值输送的输出电流是基于斩波量的并且具有幅度为电源的峰值输出电压的至少10%的纹波成分。供电的LED电路可以包括连接在一起的一个或多个LED,和电流调整器,所述电流调整器连接至反激式变换器并且与一个或多个LED串联,所述电流调整器被设置成在可控范围(controllable about)左右调节流过一个或多个LED的电流。
供电的LED电路可包括电源,所述电源被设置成产生和输送具有相当纹波成分的输出电流;一个或多个LED,所述一个或多个LED连接在一起并连接至所述电源;输出电容,所述输出电容连接至电源的输出(端);MOSFET,所述MOSFET具有通过源极和漏极的电流通路,其中连接有一个或多个LED;和低通滤波器,所述低通滤波器连接至MOSFET的门极。
上述以及其它部件、步骤、特征、目的、益处和优点在通过阅读下文的示例实施例的详细描述、附图以及权利要求书后会变得清晰。附图说明
附图披露了示例实施例。附图并没有陈述所有的实施例。可以以补充或替换方式使用其它实施例。可能省略了显而易见或不必要的细节,以便节约篇幅或为了更有效率的说明。相反地,可以实施某些实施例,而不需要所披露的所有细节。当相同的附图标记出现在不同的附图中时,旨在表示相同或类似的部件或步骤。
图1是由调光控制器和反激式变换器供电的LED电路的框图。
图2示出了来自调光控制器的斩波AC输出。
图3示出了包括反激式控制器的反激式变换器的一部分,所述反激式控制器包括输出电流监控电路。
图4示出了在包含图3所示电路的反激式变换器的工作过程中可能发现的选定的波形。
图5示出了图3所示反激式变换器的一部分被设置成调节希望的峰值输入电流以实现功率因数校正。
图6示出了图5所示电路可提供的功率因数校正作为斩波AC电压的相位角的函数。
图7示出了图5所示电路可提供的功率因数校正作为反激式转换器的输出电压的函数。
图8示出了图5所示反激式变换器的一部分被设置成调节希望的平均峰值输入电流以实现功率因数校正。
图9示出了电流纹波抑制电路。
图10示出了可用于由调光控制器驱动的反激式变换器的反激式控制器的部分,以增强调光控制器的设定的变化和来自由反激式变换器驱动的一个或多个LED的光强度的相应变化之间的可感线性关系。
图11是对于不同的反激式变换器设计,输出电流作为调光控制器设定的函数的曲线图。
图12示出了反激式控制器被设置成阻止在由调光控制器驱动的反激式变换器中由于调光控制器的漏电导致的电压上升。
图13示出了可能存在于图12所示反激式控制器的波形。具体实施方式
现在讨论示例实施例。可以以补充或替代的方式使用其它的实施例。可能省略了可能显而易见或不必要的细节,以便节省篇幅或为了更有效的说明。相反,可以实施某些实施例而不需要所披露的所有细节。
图1是由调光控制器和反激式变换器供电的LED电路的框图。如图1所示,LED101可由接收交流电的电源103供电。
LED101的数量可以不同。例如,可以有两个、三个、五个、十个、二十五个、或不同的数量。尽管以复数形式表示,可能仅有一个LED。
LED101可按串联或并联或串联和并联的组合进行连接。具体的结构可能取决于可用于驱动LED101的电流和电压的量。
LED101可以具有任何类型。例如,LED可以在任何电压、任何电流下工作,和/或产生任何颜色或颜色组合。LED101可以都具有相同的类型或可以具有不同的类型。
电源103可以具有任何类型。例如,电源103可包括调光控制器105和反激式变换器107。
调光控制器105可以具有任何类型。例如,调光控制器可包括双向可控硅开关元件(triac)109,所述双向可控硅开关元件109被设置成与相关电路一起根据调光控制器的设定提供斩波的AC电压输出,所述调光控制器的设定包括例如旋钮的旋转位置、滑动器的纵向位置、和/或触摸板被触摸的时间量。
双向可控硅开关元件可被设置成用作开关。当打开时,除了漏电外可能基本上没有从双向可控硅开关元件的输出。当闭合时,AC电压的全部量可被传输至输出。
双向可控硅开关元件由断开到开启的切换可通过将一信号注入双向可控硅开关元件的门极来控制。与双向可控硅开关元件相关的电路可导致在一个时间点被注入门极的信号对应于与调光控制器的设定对应的交流电的相位角。
图2示出了调光控制器的斩波AC输出。如图2所示,在断开周期203期间斩波AC输出201可能处于关。通过在其门极以对应于调光控制器的设定的相位角(例如图2所示的60度)的信号可开启双向可控硅开关元件。调光控制器的斩波AC输出随后可能在闭合(工作)周期205保持开(接通),直到AC电压的幅值在180度的相位角处达到接近于零。一旦通过双向可控硅开关元件109的电流达到接近于零,双向可控硅开关元件109的固有特征可使双向可控硅开关元件109关断。这能够阻止调光控制器105的任何进一步的输出,直到双向可控硅开关元件再次被至其门极的另一信号启动。
双向可控硅开关元件109的门极可以再次以根据调光控制器的设定由调光控制器105中的相关电路设定的相位角再次被通电。这可导致图2所示的周期重复。不过,这可结合AC周期的剩余负半周期(图2中未示出)进行。因此,下一个周期可以是负周期,但在其它方面可能与图2所示相同。
可以另外或可替换的使用不同于双向可控硅开关元件109的装置。例如,可替换的可以使用两个SCR。甚至可以使用单个SCR,但这可能导致只有AC电压的正或负部分从调光控制器105输出。
回到图1,反激式变换器107可以具有任何类型。反激式变换器107可包括整流***111,输出滤波器113,反激式控制器115,切换***117,变压器119,整流***121,和/或输出滤波器123。
整流***111可以具有任何类型。例如,它可以包括全波桥式整流器。所述全波桥式整流器可被设置成将由调光控制器105输送的AC电压的正和负斩波部分转换成全部正斩波部分或全部负斩波部分,即转换成斩波和整流的AC电压。可替换的可使用半波桥式整流器,在这种情况可能丢失从调光控制器105输出的正或负斩波部分。
输出滤波器113可以具有任何类型。输出滤波器113可被设置成对来自整流***111的斩波和整流的AC电压进行滤波。例如,输出滤波器113可以是低通滤波器。为了使成本、尺寸最小化以及为了其它原因,由输出滤波器113提供的滤波量可能是最小的。如果使用低通滤波器,例如,所述低通滤波器可能具有的截止频率大大高于来自整流***111的斩波和整流的AC电压的纹波频率。例如,可能足以滤出斩波和整流的AC电压中的高频噪声,但是在斩波和整流的AC电压的关断周期的大部分期间不能承受输出滤波器113的输出。
输出滤波器113可包括电容。电容可以具有任意值。它可以是小于1微法拉,例如约.5微法拉或.1微法拉。
输出滤波器113的输出可被输送至反激式控制器115和切换***117。
反激式控制器115可以具有任何类型。反激式控制器115可被设置成产生切换信号,用于控制输送电流进入变压器119的初级线圈。反激式控制器115可被设置成以这样的方式产生切换信号,所述方式使得要输送至LED101的恒定的平均输出电流是斩波和整流的AC电压的平均值的函数。
为了实现该控制,反激式控制器115可以将切换信号输送至切换***117。切换***117可被设置成将变压器119的初级线圈连至输出滤波器113的斩波和整流的AC电压,符合从反激式控制器115收到的切换信号。
切换***117可以具有任何类型。例如,它可包括一个或多个电子开关,例如一个或多个FET,MOSFET,IGBT,和/或BJT。切换***117可包括一个或多个逻辑装置,所述逻辑装置可用于使得电子开关根据来自反激式控制器115的切换信号在输出滤波器113的输出和接地之间切换变压器119的初级线圈。
变压器119可以具有任何类型。如前所述,变压器可具有初级线圈,所述初级线圈根据切换信号通过切换***117连接至输出滤波器113的输出(端)。变压器119可包括次级线圈,所述次级线圈可连接至整流***121。变压器119可包括一个或多个额外的初级线圈和/或次级线圈,所述额外的初级线圈和/或次级线圈可用于其它目的。变压器119的匝数比和其它特征可以改变。
整流***可被设置成对变压器119的次级线圈的输出进行整流。例如,整流***121可包括一个或多个二极管。可以使用半波整流。
整流***121的输出可连接至输出滤波器123。所述输出滤波器可被设置成对整流***121的输出进行滤波。所述输出滤波器可包括电容。所述电容可能足以或可能不足以实质承受整流***121的输出经过斩波和整流的AC电压的断开周期。
反激式变换器107可被设置成将输出滤波器123的输出输送至LED101,所述输出是DC从调光控制器105(输出)的斩波AC电压分开。反激式变换器107可被设置成在没有使用任何光隔离器的情况下进行上述操作,所述光隔离器例如提供表示变压器119中次级线圈的输出电流的反馈的光隔离器。
图3示出了包括反激式控制器的反激式变换器的一部分,所述反激式控制器包括输出电流监控电路。图3所示的电路可结合图1中所示的调光器供电的LED电路使用,(用于)其它类型的调光器供电的LED电路,或用于其它类型的电路,例如用于被设置成产生恒流输出的通用反激式变换器。类似地,图1所示的调光器供电的LED电路可以与除图3所示之外的电路结合实施。
如图3所示,变压器301可具有初级线圈303和次级线圈305。变压器301可对应于图1所示的变压器119。变压器301可以具有任何类型。变压器301可具有一个或多个额外的初级和/或次级线圈,并且它可具有任意的匝数比。
变压器301的初级线圈303可连接至电源。可以使用任何类型的电源。例如,电源可以是DC电源、全波整流AC电源、半波整流AC电源、或来自调光控制器的斩波和整流的电源,例如图1所示输出滤波器113的输出。
变压器301的次级线圈305可通过二极管307进行整流。二极管307可对应于图1所示的整流***121。二极管307的输出可通过电容309进行滤波。电容309可对应于图1所示的输出滤波器123。电容309可能足以或可能不足以实质承受整流***121的输出经过斩波和整流的AC电压的断开周期。
一个或多个LED可连接至电容309的输出端,例如LED311,313,和315。LED311,313,和315可对应于图1中所示的LED101并且可以是上文结合图1所讨论的类型中的任何一种。尽管示出为串联,LED311,313,和315可以是并联和/或串联和并联的组合。可替换的可以使用任何不同数量的LED。
可利用FET317可控地将初级线圈303的另一侧通过感测电阻319接地。FET317可对应于图1中所示的切换***117。可以另外或可替换的可使用其它类型的切换***。可替换的切换***可被***与变压器301的初级线圈303的另一侧串联。
图3所示的电路可被设置成使次级线圈305中的平均输出电流保持基本恒定,这会在下文的讨论中变得更显而易见。为了实现这目的,电路可以监控次级线圈中的电流。
可以在次级线圈305传导电流的时间周期中通过测量初级线圈303上的电压来监控电流。不过,图3中采用了不同的方法。现在对该不同方法下的原理进行说明。
在反激式变换器中,例如图3部分所示的,变压器的初级线圈(例如变压器301的初级线圈)可通过切换***(例如FET317)连接至电流源。这可能导致电流基于所施加的电压量和初级线圈中的电感量在初级线圈303中逐步积聚。可能同时在变压器的次级线圈(例如次级线圈305)上产生相应的电压。不过,因为可能连接至次级线圈的半波整流***(例如二极管307)可能反向偏压,可能还没有电流流入次级线圈。
初级线圈中的电流可能持续增长直到达到希望的峰值时。此时,可断开切换***。这可能导致电流停止通过初级线圈。
由于初级线圈中的电流而在变压器中积聚起来的磁场此时可能开始移至次级线圈。这可能导致次级线圈上的输出电压改变极性,使得半波切换***(例如二极管307)成为正向偏压。转而,这可能导致电流在次级线圈中流动。
次级线圈中的电流可能开始于峰值处并以近似线性的方式降至零。一旦达到零,初级线圈的切换***可能再次开启。电流随后可再次在初级线圈中积聚。这整个过程可以重复。
这种在初级线圈中输送电流随后电流在变压器的次级线圈中流动的方式能够以非常快的频率重复。所述频率可大于100KHz,例如为约200KHz。
如上文所述,电流在初级线圈中流动时可能不在次级线圈中流动。电流在次级线圈中流动期间的相对时间量与电流不在次级线圈中流动期间的时间量之比被称为电流在次级线圈中的占空比(工作周期)。
在次级线圈中流动的电流的平均量可能与最初在次级线圈中流动的电流的峰值乘以该电流的占空比的乘积成比例。随着峰值增大,例如,电流的平均量也增大,即使占空比不变。类似地,如果占空比增大,次级线圈中的电流的平均值可增大,即使峰值保持相同。
最初在次级线圈中流动的电流的峰值可能与切换***切断初级线圈中的电流之前在初级线圈中所达到的电流的峰值成比例。因此,在次级线圈中流动的电流的平均值可能与在初级线圈中所达到的电流的峰值乘以在次级线圈中电流的占空比(的乘积)成比例。
输出电流监控电路可能因此被设置成产生一信号,所述信号基于初级线圈303中的峰值输入电流和次级线圈305中电流的占空比表示次级线圈305中的平均输出电流。可使用任何电路来测量这些量和产生该信号。例如,如图3所示,输出电流监控电路可包括感测电阻319、峰值输入电流感测电路321、脉宽调制器323、和由电阻325和电容327构成的低通滤波器。
感测电阻319可产生输入电流信号330,所述信号330具有一电压表示变压器301的初级线圈303中的电流。感测电阻319可具有较低的电阻以便不浪费电力。由感测电阻319产生的电压可通过峰值输入电流感测电路321处理。峰值输入电流感测电路321可被设置成产生表示初级线圈303中电流的峰值的输出。为了实现这一目的,峰值输入电流感测电路321可包括采样和保持电路。采样和保持电路可被设置成当电流在初级线圈303中流动时采样来自感测电阻319的输出,并且保持在FET317被断开前瞬间流动的电流的值。由于电流可能逐步上升直到FET317被断开这一事实,该值可能是初级线圈303中电流的峰值。
占空比信号329可表示次级线圈305中电流的占空比。占空比信号329可从存储器(例如D存储器331)获得。D存储器331的工作将在下文讨论。
脉宽调制器可被设置成产生表示来自峰值输入电流感测电路321的峰值输入电流乘以占空比信号329的输出,从而产生峰值输入电流信号的脉宽调制形式。由电阻325和电容327构成的低通滤波器可被设置成提取脉宽调制峰值输入电流的平均值,从而产生平均输出电流信号333。因此平均输出电流信号333可表示次级线圈305中的平均输出电流,因为正如上文所解释的,次级线圈305中的平均输出电流可与初级线圈303中峰值输入电流的平均值乘以次级线圈305中输出电流的占空比(的乘积)成比例。
由电阻325和电容327构成的低通滤波器可具有截止频率,所述截止频率比斩波和整流的AC电压的频率低至少五倍,例如低大约十倍。当AC电压的频率是60赫兹时,例如,斩波和整流AC电压的频率可为120赫兹。在本示例中,由电阻325和电容327构成的低通滤波器的截止频率因此可以是约12赫兹。该低截止频率的净效应可以是产生平均输出电流信号333,所述信号333将斩波和整流AC电压的若干周期上的次级线圈305中的输出电流进行平均。
放大器335可被设置成与电容327和电阻325连接(结合),以便形成积分器,所述积分器将希望的平均输出电流信号337和平均输出电流信号333之间的差值进行积分。放大器335的输出可在电路中被看作希望的峰值输入电流信号339,即,表示在次级线圈305中提供所希望的平均输出电流所需要的初级线圈303中峰值电流量的信号。
FET317的状态可由D存储器331控制。当D存储器331由信号设定为其设定S输入时,D存储器输出端的Q输出可变为高电平。在设置时,这可导致FET317开启,转而可开始将电流输送入变压器301的初级线圈303。
当信号被输送至D存储器的重置R输入时,D存储器的Q输出可变为低电平。当重置时,这可导致FET317断开,转而可停止将电流输送入变压器301的初级线圈303。
D存储器的
Figure BPA00001357838500091
输出可表示与Q输出互补的输出。
边界检测电路341可用于设置D存储器331。边界检测电路341可被设置成根据几种不同类型的定时方案中的任意一种启动变压器301的初级线圈303中的电流。例如,边界检测电路341可被设置成在次级线圈305中的电流达到零的时刻启动初级线圈303中的电流。边界检测电路341可被设置成通过监控电流在次级线圈305中流动时跨初级线圈303两端的电压来检测次级线圈305中的电流何时停止。
比较器343可被设置成输出一信号,所述信号重置D存储器331并因此在例如输入电流信号330达到希望的峰值输入电流信号339的水平时断开FET317。
当平均输出电流信号333小于希望的平均输出电流信号337时,上文所讨论的电路设置(结构)可能因此使得希望的峰值输入电流信号339增大直到例如平均输出电流信号333达到希望的平均输出电流信号337的水平时。相反地,当平均输出电流信号333大于希望的平均输出电流信号337时,上文所讨论的电路设置(结构)可使得希望的峰值输入电流信号339变小直到例如平均输出电流信号333回落到希望的平均输出电流信号337的水平时。
因此前文所述的电路的总体效果可能是使得由次级线圈305输送的恒定的平均电流对应于希望的平均输出电流信号337。当反激式变换器的输出与AC电压电隔离时电路可以如此工作,均不需要使用任何光隔离器,例如被设置成提供表示来自次级线圈305的输出电流的反馈的光隔离器。
如上文所述,自输出滤波器111的斩波和整流AC电压可被用作初级线圈303的电源。在该结构中,边界检测电路341可被设置成在斩波和整流AC电压的断开周期中不设定D存储器331。相应的,由放大器335、电阻325和电容327构成的积分器可在这些断开周期期间被禁用,以便使得积分值不被这些断开周期改变。换句话说,图3所示的电路可被设置成在斩波和整流AC电压的闭合(工作)周期而不是在其断开周期期间,使得次级线圈305中输出电流的平均值匹配由希望的平均输出电流信号337表示的值。
可以设置单独的电源电路以生成自斩波和整流AC电压的恒定的DC电源,而不考虑该电压的斩波性质。该单独的电源电路的输出可被用于在斩波和整流AC电压的断开周期以及在其闭合(工作)周期期间对反激式控制器(包括图3所示的电路)供电。
图4示出了在包含图3所示类型的电路的反激式变换器的工作期间可以发现的选定的波形。如图4所示,在每次FET317开启(接通)后输入电流401可开始上升。输入电流可能持续上升直到它达到希望的峰值输入电流403。一旦输入电流401达到希望的峰值输入电流403,比较器343可能向D存储器331的重置R输入(端)发送一信号,导致FET317断开。
此时,通过次级线圈305的电流可能开始流动。在次级线圈305中流动的电流的占空比(工作周期)可在D存储器331的
Figure BPA00001357838500101
输出端反映。脉宽调制器323可将来自峰值输入电流检测电路321的峰值输入电流信号乘以占空比信号329,从而生成脉宽调制的峰值输入电流信号405。脉宽调制的峰值输入电流信号405的平均值随后可通过由电阻325和电容327构成的低通滤波器提取,从而生成平均输出电流信号333。如果平均输出电流信号333不匹配希望的平均输出电流信号337,由放大器335和电容327构成的积分器可能持续调节希望的峰值输入电流信号339直到匹配。
图3所示的电路可能导致从AC电压抽取的电流的波形非常不同于AC电压。例如,当AC电压的值下降时,例如当AC电压的相位角从90到180度时(参见图2),图3中的电路可导致由反激式变换器抽取的平均电流保持基本恒定。这可能导致低功率因数,例如在.6和.7之间。这样的低功率因数可能要求供应线电压的设施(电网)提供比实际所需更多的电流。这也可能由于尖电流尖峰而引起电磁干扰的问题。
图5示出了图3所示反激式变换器的一部分被设置成调节希望的峰值输入电流以实现功率因数校正。可能显而易见,图5所示的电路与图3所示的电路相同,除了在放大器335的输出端***了乘法器501、增加了由电阻503和505构成的分压器网络、和增加了斩波和整流AC电压输入507之外。
电路改动可能导致由放大器335、电阻325和电容327构成的积分器的输出与表示斩波和整流AC电压的信号相乘。这可能使得希望的峰值输入电流信号339能够跟踪斩波和整流AC电压的瞬时值。因此,当斩波和整流AC电压的瞬时值增大或减小时,希望的峰值输入电流信号339的值可随其增大和减小。这可使得从斩波和整流AC电压(例如从输出滤波器113的输出端)抽取的平均电流的波形更密切匹配斩波和整流AC电压,从而增大电路的功率因数。同时,在图5中保留并在上文结合图3所讨论的反馈回路仍可确保在斩波和整流AC电压的每个闭合(工作)周期期间平均输出电流匹配希望的平均输出电流信号337。
图6示出了图5所示电路可提供的功率因数校正作为斩波AC电压的相位角的函数。如图6所示,反激式变换器抽取的输入电流601可能在设定调光控制器的相位角的整个范围上紧紧跟踪输入电压603。
图5所示的电路的功率因数可根据反激式变换器的输出电压而改变。图6所示的曲线图表示对于约50伏特的输出电压,输入电流和输入电压之间的关系。当输出处于该电压水平时,在每个可能的调光器相位角处的功率因数可能为至少.8,至少.9,至少.95,或至少.98。
图7示出了图5所示电路可提供的功率因数校正作为反激式转换器的输出电压的函数。从图7可以看到,功率因数可能在输出电压的很大范围上保持非常高。
图5中的电路通过使希望的峰值输入电流跟踪输入电压的变化试图提供功率因数校正。不过,平均输入电流可能不直接与希望的峰值输入电流成比例。平均输入电流还可以是(输入)初级线圈303的输入电流的占空比的函数,它可作为输入电压变化的函数而变化。因此,通过使至初级线圈303的希望的平均输入电流跟踪输入电压的变化而非希望的峰值输入电流可实现更多的功率因数校正。
图8示出了图5所示的反激式变换器的一部分被设置成调节希望的平均峰值输入电流以实现功率因数校正。可能显而易见,图8所示的电路与图6所示的电路相同,除了增加了由放大器801、电容803和电阻805构成的第二积分器以及第二脉宽调制器807之外。
输入电流监控电路可被设置成产生一信号,所述信号表示至初级线圈的平均输入电流。如图8中所示,输入电流监控电路可包括感测电阻319、峰值输入电流感测电路321、第二脉宽调制器807、以及由电阻805和电容803构成的低通滤波器。在这里,第二脉宽调制器807可将由峰值输入电流感测电路321感测到的峰值输入电流与表示初级线圈303中电流的占空比(工作周期)的占空比信号815相乘。占空比信号815可从D存储器331的Q输出端获得。该脉宽调制信号可通过由电阻805和电容803构成的低通滤波器进行滤波,从而在放大器801的负输入端产生平均输入电流信号811。低通滤波器可被设置成具有截止频率,所述截止频率在至FET317的切换信号的频率与斩波和整流AC电压的频率之间。例如,当切换信号在约200KHz并且斩波和整流AC电压在约120赫兹时,低通滤波器的截止频率可为约10KHz。
这个结构可能改变乘法器501的输出所表示的性质。在图8中,乘法器501的输出可能现在表示希望的平均输入电流信号815。放大器801、电容803和电阻805可构成第二积分器,所述第二积分器将希望的平均输入电流815和平均输入电流信号811之间的差值进行积分,从而生成希望的峰值输入电流信号339。
通过使希望的平均输入电流信号跟踪输入电压而非希望的峰值输入电流信号,对于调光控制器105的所有设定功率因数可被增大到至少.99。
图1、3、5和8中所示的电路可能在输送至LED的输出电流中产生纹波。该纹波的量可取决于用于输出滤波器123(例如电容309)的输出电容的量,以及LED所需的电压和电流的量。
所述纹波可具有两种成分。第一成分可能是由于来自反激式控制器的切换信号。不过,这在频率上可能非常高,例如在约200KHz,并因此易于被小值输出电容滤波。
第二成分可能是由于斩波和整流AC电压。该第二成分可能在频率上要低的多,例如在约120赫兹,并且可能要求极大值的电容进行滤波。例如,在50伏特下工作的10瓦特组的LED可能要求超过10,000微法拉的电容以便足以过滤120赫兹的纹波。所述电容可能是昂贵的、体积庞大的、和易于出故障的。
图9示出了电流纹波抑制电路。图9所示的电路可结合图1、3、5和8所示的电路使用,以及结合其它类型的LED电路使用。类似地,图1、3、5和8中所示的电路可结合其它类型的电流纹波抑制电路使用。
电流纹波抑制电路可连接至电源。电源可包括整流二极管,例如二极管906。
电流纹波抑制电路可连接至串联、并联、或串联和并联的一个或多个LED。例如并如图9所示,LED 901、903和905可串联。LED 901、903和905可以是上文讨论的LED类型的任何一种,并且可替换地可使用不同数量的LED。
电流纹波抑制电路可包括电容,例如电容904。电容904可被设置成在由二极管(例如二极管906)整流后过滤反激式变换器中变压器的次级线圈的输出。可以选择电容的值,以便过滤由反激式变换器中的切换信号引起的高频电流纹波,但只是部分过滤由低频斩波和整流AC电压源的斩波(例如通过调光控制器)引起的电流纹波。例如,可以使用在1-1000微法拉或2-20微法拉的范围内的值。电容904的值可使得由斩波和整流AC电压引起的该电容两端的输出电压中的纹波多达输出电压的峰值的10%。
电流纹波抑制电路可包括电流调整器(例如电流调整器902),所述电流调整器与LED串联。电流调整器902可被设置成大大降低流过LED的电流中由于输出电流的低频纹波成分而造成的波动,但不是(不降低)流过LED的电流中由于输出电流的平均值的变化而导致的波动。
电流调整器902可包括可控的恒定电流源,例如FET908。FET908可被设置成传导从源极907通过漏极909的恒定量的电流,所述恒定量的电流大致与门极911处的输入电压成比例。至门极911的输入电压可由低通滤波器产生,所述低通滤波器可包括电阻和电容,例如分别是电阻913和电容915。
低通滤波器可被设置成向FET908的门极911输送一电压,所述电压基本与输出电流的平均值成比例,其中低频纹波成分大大减弱。为了实现这个目的,低通滤波器可被设置成具有截止频率,所述截止频率比斩波和整流AC电压的低频纹波小(低)至少五倍,例如约小(低)十倍。
尽管示出了LED901、903和905与FET908的源极串联,可替换的它们可以与FET908的漏极909串联。另外,可以使用其它类型的电流调整器,而非图9所示的电流调整器。
图10示出了由调光控制器驱动的可用于反激式变换器的反激式控制器的一部分,以增强调光控制器的设定的变化和来自由反激式变换器驱动的一个或多个LED的光强度的相应的变化之间的可感线性(关系)。图10所示的电路通过用放大器1001来替换放大器335以及增加图10所示和现在描述的其它部件可结合图3、5和8中所示的电路使用。
如图10所示,跟踪输入1003可被设置成接收调光器输出跟踪信号,所述信号表示调光控制器的输出的瞬时幅值。例如,调光器输出跟踪信号可以是由图1所示整流***111的输出所输送的斩波和整流AC电压的成比例形式。例如,整流***111可以是全波桥式整流器。
平均电路可被设置成在跟踪输入端1003处取调光器输出跟踪信号平均值,以便生成平均调光器输出信号1005,所述信号表示调光器输出跟踪信号的平均值。平均电路可包括低通滤波器,所述低通滤波器可包括电阻1007、电阻1009、和电容1011。低通滤波器可被设置成具有截止频率,所述截止频率比调光器输出跟踪信号的频率低至少五倍,例如比该频率低大约10倍。例如,调光器输出跟踪信号可具有约120赫兹的频率,在这种情况低通滤波器可具有约12赫兹的截止频率。
放大器1001可被设置成具有电阻325和电容327,以便用作积分器。放大器1001可包括最小值电路1013,所述最小值电路1013被设置成输出希望的平均输出电流信号337和平均调光器输出信号1005的较小者。放大器1001可被设置成将最小值电路1013的输出和平均输出电流信号333的差值进行积分。
该电路改动的净效应可能是在例如平均调光器输出信号1005小于希望的平均输出电流信号337时用平均调光器输出信号1005替代希望的平均输出电流信号337。这可有助于确保在已经调整了调光控制器上的设定要求低电流输出后反激式变换器不会尝试和保持输出电流在高水平。
希望的平均输出电流信号337可结合调光控制器105输出的斩波AC电压的相位角用作阈值。例如,希望的平均输出电流信号337可被设定在0度相位角处超过平均调光器信号1005。这可使得平均调光器信号1005在调光控制器的所有不同的相位角设定上能够控制反激式变换器的平均电流输出。
可替换的,希望的平均输出电流信号337可以在0和180度之间(例如约90度)的相位角处被设定成与平均调光器信号1005相等。通过该设定,希望的平均输出电流信号337可对小于90度的所有相位角控制希望的平均输出电流,而平均调光器信号1005可在所有较大的相位角控制希望的平均输出电流。可替代地希望的平均输出电流信号337在其它相位角(例如45度)被设定成等于平均调光器信号1005。
图11是对于不同的反激式变换器设计输出电流作为调光控制器设定的函数的曲线图。缺少图10所示电路的反激式变换器设计在其输出电流和调光控制器设定的相位角之间具有线性关系,如图11中由直线1101所示。如果希望的平均输出电流信号337被设定成在0度相位角处超过平均调光器信号1005,扇形边曲线1103可示出调光器的设定和反激式变换器的电流输出之间的关系。作为替代的,如果希望的平均输出电流信号337被设定为在约90度的相位角处等于平均调光控制器信号1005,那么分为两支的曲线1105可示出调光控制器的设定和输出电流之间的关系。
使用所述“跨越交叉(cross-over)”设定可在调光控制器的低相位角设定期间在线电压中提供更大的抗噪声度。将跨越交叉(cross-over)点设定在约90度还可使得LED发出的光强度使人眼看上去以与调光控制器的设定更线性变化的方式对大于90度的相位角跟踪调光控制器的设定的变化。由于其中人脑解释亮度水平的变化的非线性方式,这可能发生。
正如前文背景技术中所陈述,调光控制器可能在其双向可控硅未启动时漏电流。这可导致反激式变换器中的电压在斩波和整流AC电压的断开周期期间上升。转而,这可能产生噪声、闪烁、和/或其它的问题或担心。
图12示出了反激式控制器被设置成阻止在由调光控制器驱动的反激式变换器中由于调光控制器中的漏电导致的电压上升。图12所示的特征以及现在将要讨论的内容可结合图1,3,5,8,和10中所示的反激式控制器或其部分使用,或可用于任何其它类型的反激式控制器。类似地,图1,3,5,8,和10中所示的反激式控制器或其部分可结合其它类型的电路使用,以阻止由于调光控制器中的漏电造成的电压上升。
如图12所示,反激式控制器1201可被设置成产生可输送至切换***的切换信号1203,例如上文结合图1,3,5和/或8所述。反激式控制器可具有切换信号发生器电路1204,所述切换信号发生器电路1204可被设置成产生切换信号1203以符合任何希望的反激式控制器切换信号定时,例如上文结合图1-10所讨论的定时中的一个。切换信号发生器电路1204可包括任何类型的电路,例如上文结合图1-10所讨论的电路类型中的一种。
反激式控制器1201可具有控制电路1205。控制电路可具有比较器1207,阈值发生器电路1209,和OR门(或门)1211。阈值发生器电路1209可被设置成生成一阈值;高于所述阈值,表示斩波和整流AC电压的信号可被认为是处于闭合(工作)周期;而低于所述阈值,表示斩波和整流AC电压的信号可被认为是处于断开周期。例如,阈值可被设定在小于表示斩波和整流AC电压的信号的峰值的10%,小于该峰值的5%,或一些其它值。
比较器1207被设置成将表示斩波和整流AC电压的信号的瞬时值和由阈值发生器电路1209生成的阈值进行比较。在表示斩波和整流AC电压的信号高于阈值期间,没有信号可被输送至OR门(或门)1211,导致切换信号1203由切换信号发生器电路1204的输出控制。不过,在表示斩波和整流AC电压的信号小于阈值期间,比较器1207可产生正输出,导致切换信号1203处于其导通状态(开态),而不管来自切换信号发生器电路1204的信号。
图13示出了可能在图12所示的反激式控制器中出现的波形。如图13所示,当斩波和整流AC电压1301为关(断开)时,切换信号1203可能在周期1303中保持为高(电平)。另一方面,当在周期1305中斩波和整流AC电压1301启动时,切换信号1203可能如同其通常那样振荡,以使反激式控制器的次级线圈中的平均输出电流处于希望的水平。
如图13中还示出,切换信号1203可能在周期1305的开始处保持高电平,从而在斩波和整流AC电压从断开周期切换至闭合(工作)周期之后开始切换信号的第一次振荡。
图12中所示的电路的净效应可以是在调光控制器不启动时以变压器的初级线圈加载调光控制器。这可能放出任何漏电流并从而在所述断开周期中阻止电压上升,而不需要任何其它的有源高电压装置或多个其它的有源高电压装置。可以另外或以替代方式使用实现相同类型的切换***的信号控制的其它电路技术。
上述的不同部件能够以任何方式进行打包(包装)。例如,包括反激式控制器的部件可被包装成与其它有源和无源部件的单个集成电路,与其它有源和无源部件的一组集成电路,或与其它有源和无源部件的一组分立晶体管电路。
上述所有的不同电路可以以任何和所有的组合彼此结合使用。
上述的部件、步骤、特征、目的、益处和优点仅是说明性的。它们本身以及与其相关的讨论均不旨在以任何方式限制保护范围。还可以实施多个其它的实施例,包括具有更少、附加和/或不同的部件、步骤、特征、目的、益处和优点的实施例。还可以对部件或步骤进行不同的设置和按不同顺序设置。
权利要求中所用的短语“用于……的装置”包含上文所述的相应结构和材料及其等同物。类似地,权利要求中所用的短语“用于……的步骤”包含上文所述的相应动作及其等同物。缺少上述短语表示权利要求不限于相应的结构、材料或动作的任何一种或不限于其等同物。
本文所陈述或示例的内容并不旨在使任何部件、步骤、特征、目的、益处、优点或等同物无偿贡献给公众,而不论是否在权利要求书中有记载。简而言之,保护范围完全由所附权利要求书限定。所述保护范围旨在尽可能的宽泛,与权利要求书中所用的语言合理一致并且包含所有的结构和功能性的等同物。

Claims (18)

1.一种供电的LED电路,包括:
恒定直流电流电源,所述电源被设置成产生和输送具有相当AC电流成分的恒定DC输出电流;
一个或多个连接在一起的LED;和
纹波抑制电路,所述纹波抑制电路独立于并连接至所述电源和连接至一个或多个LED,所述纹波抑制电路具有电流调整器与所述一个或多个LED串联,所述电流调整器被设置成大大减少流过所述一个或多个LED的电流中由于输出电流的AC电流成分而造成的波动,但不大大减少流过所述一个或多个LED的电流中由于恒定DC电流电源的输出电流的低频变化而造成的波动。
2.根据权利要求1所述的供电的LED电路,其中所述电源是反激式变换器。
3.根据权利要求2所述的供电的LED电路,其中所述电源被设置成由被斩波成不同量的AC电压驱动。
4.根据权利要求3所述的供电的LED电路,其中所述电源被设置成使得所述电源的输出电流的平均值取决于被斩波的AC电压的量。
5.根据权利要求4所述的供电的LED电路,其中所述一个或多个LED从电源抽取至少10瓦特,其中所述电源包括连接至电源的输出端的输出电容以便对电源的输出进行滤波,并且其中输出电容不大于1000微法拉。
6.根据权利要求3所述的供电的LED电路,其中所述电源被设置成使得AC电流成分的频率为约120Hz。
7.根据权利要求3所述的供电的LED电路,其中所述电源被设置成使得AC电流成分的幅度为电源的输出电压的峰值的至少10%。
8.根据权利要求1所述的供电的LED电路,其中所述电流调整器包括低通滤波器。
9.根据权利要求1所述的供电的LED电路,其中所述电流调整器包括MOSFET。
10.根据权利要求9所述的供电的LED电路,其中所述MOSFET具有从源极到漏极的电流通路并且其中所述LED与所述电流通路串联。
11.根据权利要求10所述的供电的LED电路,其中所述电流调整器包括低通滤波器。
12.根据权利要求11所述的供电的LED电路,其中所述AC电流成分具有纹波频率并且其中所述低通滤波器具有的截止频率比纹波频率低至少五倍。
13.根据权利要求12所述的供电的LED电路,其中所述低通滤波器被设置成向MOSFET的门极输送一电压,所述电压基本上与AC电流成分被大量减弱的输出电流的平均值成比例。
14.根据权利要求13所述的供电的LED电路,其中所述低通滤波器包括电阻分压器网络和电容。
15.根据权利要求1所述的供电的LED电路,其中所述LED是串联连接的。
16.一种供电的LED电路,包括:
反激式变换器,所述反激式变换器被设置成接收AC电压,所述AC电压被斩波成不同的量并且输送平均值的输出电流,所述输出电流基于斩波量并且具有幅度为电源的峰值输出电压的至少10%的AC电流成分;
一个或多个LED,所述一个或多个LED连接在一起;
电流调整器,所述电流调整器连接至反激式变换器并且与所述一个或多个LED串联,所述电流调整器被设置成在可控量调整流过所述一个或多个LED的电流,和
低通滤波器,所述低通滤波器具有连接至表示输出电流的信号的输入端和连接至电流调整器的输出端,以便控制流过所述一个或多个LED的电流量,
其中,所述AC电流成分具有纹波频率并且其中所述低通滤波器具有的截止频率比纹波频率低至少五倍。
17.根据权利要求16所述的供电的LED电路,其中所述电流调整器被设置成减少流过所述一个或多个LED的电流中由于输出电流的AC电流成分而造成的波动,但不减少流过所述一个或多个LED的电流中由于输出电流的平均值的变化而造成的波动。
18.一种供电的LED电路,包括:
恒定DC电流电源,所述恒定DC电流电源被设置成产生和输送恒定DC输出电流,所述输出电流具有相当AC电流成分;
一个或多个LED,所述一个或多个LED连接在一起并连接至电源;和
用于减少流过所述一个或多个LED的电流中由于输出电流的纹波成分而造成的波动但不显著减少流过所述一个或多个LED的电流中由于来自恒定DC电流电源的输出电流的低频变化而造成的波动的装置,所述用于减少波动的装置独立于所述恒定DC电流电源。
CN200980143497XA 2008-12-10 2009-12-09 用于发光二极管的电流纹波抑制电路 Active CN102203690B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/332,288 2008-12-10
US12/332,288 US8310172B2 (en) 2008-12-10 2008-12-10 Current ripple reduction circuit for LEDs
PCT/US2009/067241 WO2010068640A1 (en) 2008-12-10 2009-12-09 Current ripple reduction circuit for leds

Publications (2)

Publication Number Publication Date
CN102203690A CN102203690A (zh) 2011-09-28
CN102203690B true CN102203690B (zh) 2013-11-27

Family

ID=42230324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980143497XA Active CN102203690B (zh) 2008-12-10 2009-12-09 用于发光二极管的电流纹波抑制电路

Country Status (5)

Country Link
US (1) US8310172B2 (zh)
EP (1) EP2356532B1 (zh)
CN (1) CN102203690B (zh)
TW (1) TWI526117B (zh)
WO (1) WO2010068640A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692481B2 (en) * 2008-12-10 2014-04-08 Linear Technology Corporation Dimmer-controlled LEDs using flyback converter with high power factor
US8310172B2 (en) 2008-12-10 2012-11-13 Linear Technology Corporation Current ripple reduction circuit for LEDs
US8089216B2 (en) * 2008-12-10 2012-01-03 Linear Technology Corporation Linearity in LED dimmer control
US9871404B2 (en) 2011-12-12 2018-01-16 Cree, Inc. Emergency lighting devices with LED strings
US10117295B2 (en) 2013-01-24 2018-10-30 Cree, Inc. LED lighting apparatus for use with AC-output lighting ballasts
US9137866B2 (en) 2011-12-12 2015-09-15 Cree, Inc. Emergency lighting conversion for LED strings
US9560703B2 (en) 2011-12-12 2017-01-31 Cree, Inc. Dimming control for emergency lighting systems
CN103167674B (zh) * 2011-12-14 2016-08-03 常州洪荒谷电子科技有限公司 一种led驱动电路及led灯具
CN103176150B (zh) 2011-12-21 2015-08-26 通用电气公司 梯度放大器***及其控制方法
US8901832B2 (en) * 2012-02-13 2014-12-02 Intersil Americas LLC LED driver system with dimmer detection
CN102904427B (zh) * 2012-09-27 2015-02-11 成都芯源***有限公司 一种供电***及其抑制纹波电流的方法
CN103066817A (zh) * 2012-12-24 2013-04-24 成都芯源***有限公司 一种纹波抑制电路及其供电***和纹波抑制方法
US9439249B2 (en) 2013-01-24 2016-09-06 Cree, Inc. LED lighting apparatus for use with AC-output lighting ballasts
US10104723B2 (en) 2013-01-24 2018-10-16 Cree, Inc. Solid-state lighting apparatus with filament imitation for use with florescent ballasts
US10045406B2 (en) 2013-01-24 2018-08-07 Cree, Inc. Solid-state lighting apparatus for use with fluorescent ballasts
CN103200734B (zh) 2013-02-20 2015-09-02 英飞特电子(杭州)股份有限公司 一种降低电流源输出电流纹波的方法及电路
US9398649B2 (en) 2013-04-19 2016-07-19 Iota Engineering Llc Constant power supply for LED emergency lighting using smart output resetting circuit for no load conditions
EP3092871B1 (en) 2014-01-06 2020-03-18 Signify Holding B.V. Ripple based light emitting diode driving
CN103889113B (zh) * 2014-03-03 2017-01-25 深圳市明微电子股份有限公司 一种led电流纹波消除电路及led发光装置
TW201545602A (zh) * 2014-05-23 2015-12-01 Richtek Technology Corp 發光元件驅動電路及其中之電流漣波抑制電路與用以抑制其電流漣波方法
US9306461B2 (en) * 2014-06-26 2016-04-05 Hong Kong Applied Science and Technology Research Institute Company, Limited LED driver with small output ripple without requiring a high-voltage primary-side electrolytic capacitor
TWI595734B (zh) * 2015-09-04 2017-08-11 通嘉科技股份有限公司 漣波遏止器
CN105242737B (zh) * 2015-11-06 2016-08-17 广州金升阳科技有限公司 一种纹波电流产生方法与电路
EP3340740B1 (en) 2016-12-22 2020-09-23 Helvar Oy Ab Method and circuit for eliminating flicker from the light emitted by leds
CN108811230B (zh) * 2017-05-05 2021-11-30 朗德万斯公司 用于led灯的灯驱动器和用于布置在荧光灯灯具中的led灯
US10462861B2 (en) * 2018-04-20 2019-10-29 Advanced Regulated Power Technology, Inc. Adaptive power regulation of LED driver module for emergency lighting
US10264634B2 (en) * 2018-04-20 2019-04-16 Advanced Regulated Power Technology, Inc. Adaptive power regulation of LED driver module for emergency lighting
CN110971849A (zh) * 2018-09-28 2020-04-07 强弦科技股份有限公司 液晶电视的电源供应器
CN111697802B (zh) * 2020-06-30 2022-03-01 钰泰半导体股份有限公司 纹波消除电路和开关电源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030025120A1 (en) * 2001-08-03 2003-02-06 Koninklijke Philips Electronics N.V. Integrated LED driving device with current sharing for multiple LED strings
CN201094166Y (zh) * 2007-03-29 2008-07-30 徐燕 一种led驱动电路
CN101267695A (zh) * 2007-03-12 2008-09-17 徐奂 一种直流供电的led照明灯具用升压恒流驱动电路
US20080278092A1 (en) * 2007-05-07 2008-11-13 Philips Solid-State Lighting Solutions, Inc. High power factor led-based lighting apparatus and methods

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336976A (en) * 1993-04-26 1994-08-09 Hewlett-Packard Company Illumination warm-up control in a document scanner
US5481161A (en) * 1995-02-10 1996-01-02 General Electric Company Variable frequency generator for resonant power feedback
US5872429A (en) 1995-03-31 1999-02-16 Philips Electronics North America Corporation Coded communication system and method for controlling an electric lamp
DE19805732A1 (de) 1997-02-12 1998-08-20 Int Rectifier Corp Verfahren und Schaltung zur Steuerung der Betriebsleistung einer Leuchtstofflampe
US5841643A (en) 1997-10-01 1998-11-24 Linear Technology Corporation Method and apparatus for isolated flyback regulator control and load compensation
EP1147686B1 (en) 1999-07-07 2004-01-07 Koninklijke Philips Electronics N.V. Flyback converter as led driver
US6153985A (en) 1999-07-09 2000-11-28 Dialight Corporation LED driving circuitry with light intensity feedback to control output light intensity of an LED
KR100342588B1 (ko) 1999-09-06 2002-07-04 김덕중 안정기를 구비한 램프 시스템
US7038399B2 (en) 2001-03-13 2006-05-02 Color Kinetics Incorporated Methods and apparatus for providing power to lighting devices
DE10245626A1 (de) * 2002-09-30 2004-04-08 Osram Opto Semiconductors Gmbh Restwelligkeitsreduzierung bei LED-Ampelanwendungen bzw.Lichtsignaleinrichtungen
US20040189555A1 (en) 2003-03-26 2004-09-30 Capen Larry Stephen Use of track lighting switching power supplies to efficiently drive LED arrays
AU2005222987B9 (en) 2004-03-15 2009-10-22 Signify North America Corporation Power control methods and apparatus
US7333027B2 (en) 2004-12-15 2008-02-19 Lumination Llc Power supply for LED signal
KR100628716B1 (ko) 2005-02-02 2006-09-28 삼성전자주식회사 Led구동장치
US7102902B1 (en) 2005-02-17 2006-09-05 Ledtronics, Inc. Dimmer circuit for LED
DE102006022819A1 (de) * 2005-05-23 2007-01-04 Infineon Technologies Ag Schaltungsanordnung zum Versorgen einer Last mit einem Ausgangsstrom
US7872881B2 (en) 2005-08-17 2011-01-18 Adc Dsl Systems, Inc. Secondary regulation in a multiple output flyback topology
US7561452B2 (en) 2005-11-28 2009-07-14 Supertex, Inc. Transformer-isolated flyback converters and methods for regulating output current thereof
JP2009526365A (ja) * 2006-02-10 2009-07-16 フィリップス ソリッド−ステート ライティング ソリューションズ インコーポレイテッド 負荷当たり単一のスイッチング段を使用した高力率の制御された電力供給のための方法及び装置
US8188682B2 (en) 2006-07-07 2012-05-29 Maxim Integrated Products, Inc. High current fast rise and fall time LED driver
TW200816868A (en) * 2006-09-18 2008-04-01 Vast View Technology Inc Light emitting diode (LED) driving system and method
US7642762B2 (en) 2007-01-29 2010-01-05 Linear Technology Corporation Current source with indirect load current signal extraction
US20080290819A1 (en) 2007-02-06 2008-11-27 Luminus Devices, Inc. Light-emitting device driver circuits and related applications
US8110835B2 (en) 2007-04-19 2012-02-07 Luminus Devices, Inc. Switching device integrated with light emitting device
US7936132B2 (en) * 2008-07-16 2011-05-03 Iwatt Inc. LED lamp
US8089216B2 (en) 2008-12-10 2012-01-03 Linear Technology Corporation Linearity in LED dimmer control
US8692481B2 (en) 2008-12-10 2014-04-08 Linear Technology Corporation Dimmer-controlled LEDs using flyback converter with high power factor
US8310172B2 (en) 2008-12-10 2012-11-13 Linear Technology Corporation Current ripple reduction circuit for LEDs
US8013544B2 (en) 2008-12-10 2011-09-06 Linear Technology Corporation Dimmer control leakage pull down using main power device in flyback converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030025120A1 (en) * 2001-08-03 2003-02-06 Koninklijke Philips Electronics N.V. Integrated LED driving device with current sharing for multiple LED strings
CN101267695A (zh) * 2007-03-12 2008-09-17 徐奂 一种直流供电的led照明灯具用升压恒流驱动电路
CN201094166Y (zh) * 2007-03-29 2008-07-30 徐燕 一种led驱动电路
US20080278092A1 (en) * 2007-05-07 2008-11-13 Philips Solid-State Lighting Solutions, Inc. High power factor led-based lighting apparatus and methods

Also Published As

Publication number Publication date
EP2356532B1 (en) 2018-07-25
CN102203690A (zh) 2011-09-28
EP2356532A1 (en) 2011-08-17
TW201028042A (en) 2010-07-16
US20100141174A1 (en) 2010-06-10
EP2356532A4 (en) 2012-08-01
WO2010068640A1 (en) 2010-06-17
US8310172B2 (en) 2012-11-13
TWI526117B (zh) 2016-03-11

Similar Documents

Publication Publication Date Title
CN102203690B (zh) 用于发光二极管的电流纹波抑制电路
CN102246114B (zh) 利用反激式转换器中的主要功率器件降低调光控制器漏电
CN102282522B (zh) Led调光控制中改进的线性度
CN102273327B (zh) 使用具有高功率因子的回扫转换器的调光受控led
CN102264179B (zh) Led点亮装置
US8492989B2 (en) Switched-mode power supply, LED lighting system and driver comprising the same, and method for electrically driving a load
CN104170528B (zh) 电路装置
CN209170244U (zh) 可逆转换器
CN107409448B (zh) 相切调光控制和保护
CN101990344A (zh) Led驱动器的浪涌电流限流器
CN1981564A (zh) 一种调光装置
CN101843169A (zh) Led驱动器
CN104025711B (zh) 用于至少一个负载的驱动器电路以及对其进行操作的方法
CN109586584A (zh) 交流电压导通及截止相角同步调控电路
TWI276295B (en) Switch power
CN106489303B (zh) 相位切割功率控制的装置和方法
CN103368374A (zh) 电源装置
EP2298029A2 (en) Switched-mode power supply, led lighting system and driver comprising the same, and method for electrically driving a load

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: California, USA

Patentee after: LINEAR TECHNOLOGY Corp.

Address before: California, USA

Patentee before: LINEAR TECHNOLOGY Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211229

Address after: Limerick

Patentee after: ANALOG DEVICES INTERNATIONAL UNLIMITED Co.

Address before: California, USA

Patentee before: LINEAR TECHNOLOGY Corp.