CN102183562A - 一种非标记型电流型免疫传感器及其制备方法和应用 - Google Patents

一种非标记型电流型免疫传感器及其制备方法和应用 Download PDF

Info

Publication number
CN102183562A
CN102183562A CN2011100434331A CN201110043433A CN102183562A CN 102183562 A CN102183562 A CN 102183562A CN 2011100434331 A CN2011100434331 A CN 2011100434331A CN 201110043433 A CN201110043433 A CN 201110043433A CN 102183562 A CN102183562 A CN 102183562A
Authority
CN
China
Prior art keywords
aqueous solution
working electrode
solution
current mode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100434331A
Other languages
English (en)
Other versions
CN102183562B (zh
Inventor
马占芳
石文韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capital Normal University
Original Assignee
Capital Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capital Normal University filed Critical Capital Normal University
Priority to CN 201110043433 priority Critical patent/CN102183562B/zh
Publication of CN102183562A publication Critical patent/CN102183562A/zh
Application granted granted Critical
Publication of CN102183562B publication Critical patent/CN102183562B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

本发明涉及一种非标记型电流型免疫传感器。本发明免疫传感器的工作电极表面覆盖有4层膜:第一层为壳聚糖、铁***和金属纳米材料的混合物在电极表面形成的氧化还原层;第二层为全氟化质子交换树脂与金属纳米材料混合物在所述氧化还原层表面形成的保护层;第三层为在所述保护层表面形成的聚乙烯亚胺层;第四层为将所述第三层用戊二醛处理后再化学吸附抗体的聚乙烯亚胺层。本发明的免疫传感器以铁***作为氧化还原探针物质,以壳聚糖作为固定基质,有效提高了电流型免疫传感器的重现性。

Description

一种非标记型电流型免疫传感器及其制备方法和应用
技术领域
本发明涉及一种以铁***作为氧化还原探针物质,以壳聚糖作为固定基质的电流型免疫传感器,属于电化学传感器领域。
背景技术
电化学免疫传感器与传统的放射免疫分析、酶联免疫分析、化学发光免疫分析相比,具有相对较为简单的预处理过程、较短的分析时间、低检出限以及对仪器要求较低等优点,因而受到了广泛的关注(临床检验杂志,2003,03,181.中国医学物理学杂志,2006,2,132.)。人们开发出了多种类型的电化学免疫传感器,如电流型、电压型、电容型以及阻抗型的传感器(Anal.Chem.2001,73,3219.Electrochem.Commun.2004,6,1222.Sens.Actuators B 1999,57,201.Anal.Chem.2002,74,4814.),这些传感器都是通过抗体抗原反应后导致传感器的电化学信号发生改变来实现免疫检测的。
利用纳米材料增强检测灵敏度的电流型免疫传感器,主要分为标记型和非标记型两种。标记型电流型免疫传感器是将抗体或者抗原分子固定在电极表面上,当传感器在含有待测抗原和酶标抗体的溶液中孵育后,通过测定标记在抗体上的酶与底物作用产生的电化学活性物质的电化学信号,间接测定待测抗原含量。辣根过氧化酶、碱性磷酸酶、葡萄糖氧化酶等经常被用作抗体的标记酶(即酶标抗体)。现有的标记型电流型免疫传感器需要在待测溶液中加入具有氧化还原能力的电活性物质作为媒介体或者上述酶标抗体的酶促底物等非免疫试剂,这些试剂将影响测定结果的稳定性。
非标记型电流型免疫传感器是通过在电极表面先形成一层具有电化学活性的氧化还原探针物质膜,然后在氧化还原探针物质膜的表面连接抗体分子,接着对待测抗原进行免疫识别并进行电化学免疫检测。非标记型的电化学免疫传感器不需要具有氧化还原能力的电活性物质作为媒介体,也不需要标记型电流型免疫传感器中的酶标抗体的酶促底物的介入,因此非标记型的电化学免疫传感器具有简单和快速等优点,同时也避免了标记型电流型免疫传感器存在的媒介体对电极表面污染的问题。尽管如此,非标记型电流型免疫传感器主要通过静电作用连接抗体,难以确保每次抗体固定量一致,因而影响传感器的重现性。
为了克服现有的非标记型电流型免疫传感器存在的缺点,本发明首次利用壳聚糖将氧化还原探针物质直接固定到电极表面,在电极上形成氧化还原探针物质膜,并将抗体通过化学修饰固定到氧化还原探针物质膜上,制备出新型非标记型电流型免疫传感器。
发明内容
本发明的目的在于提供一种非标记型电流型免疫传感器,从而解决现有技术免疫传感器重现性差的缺陷。
本发明是通过以下技术方案来实现的:
一种非标记型电流型免疫传感器,其特征在于,工作电极表面覆盖有4层膜:第一层为壳聚糖、铁***和金属纳米材料的混合物在电极表面形成的氧化还原层;第二层为全氟化质子交换树脂与金属纳米材料的混合物在所述氧化还原层表面形成的保护层;第三层为在所述保护层表面形成的聚乙烯亚胺层;第四层为将所述第三层用戊二醛处理后再化学吸附抗体的聚乙烯亚胺层。
所述抗体可以是本领域常用的免疫抗体,如免疫球蛋白及其家族、癌胚抗体以及其他癌症标志物抗体等。
其中,所述第一层中,所述金属纳米材料为金纳米颗粒或银纳米颗粒。
所述金属纳米材料的粒径为10-60nm。
所述全氟化质子交换树脂为全氟磺酸交换树脂(nafion)。
将所述工作电极与对电极和参比电极组成免疫传感器来检测抗原。
所述抗原可以是本领域常用的免疫抗原,如免疫球蛋白及其家族、癌胚抗原以及其他癌症标志物抗原等。
在本发明的实施例中,对电极为大面积铂片电极。
参比电极为饱和氯化钾Ag/AgCl电极或饱和甘汞电极。
本发明的另一目的在于提供一种制备所述非标记型电流型免疫传感器的方法,其中,所述工作电极的制备包括以下步骤:
1)将壳聚糖水溶液与铁***水溶液混合,并加入金属纳米材料水溶液,将所得混合物涂刷到工作电极表面,并在常温晾干或在烘箱中以50-80℃烘干;
2)将全氟磺酸交换树脂的乙醇溶液与金属纳米材料的乙醇溶液混合,将所得混合物涂刷到经步骤1)处理后的工作电极上,并在常温晾干或在烘箱中以50-80℃烘干;
3)将经步骤2)处理后的工作电极浸入聚乙烯亚胺水溶液中,取出后水洗并用氮气吹干,形成聚乙烯亚胺层;
4)将经步骤3)处理后的工作电极浸入戊二醛水溶液中,形成富醛基表面;
5)将经步骤4)处理后的工作电极浸入抗体水溶液中,取出后用牛血清白蛋白水溶液封闭。
其中,
步骤1)中,所述壳聚糖水溶液的浓度为0.5-2wt%,铁***水溶液的浓度为1-10mM,金属纳米材料水溶液在最大可见吸收峰波长下的吸光度为1-5;壳聚糖水溶液∶铁***水溶液∶金属纳米材料水溶液的体积比为0.05-0.2∶0.01-0.1∶0.02-0.1;
步骤2)中,所述全氟化质子交换树脂的乙醇溶液的浓度为1-5wt%,金属纳米材料的乙醇溶液在最大可见吸收峰波长下的吸光度为1-5,全氟化质子交换树脂的乙醇溶液∶金属纳米材料的乙醇溶液的体积比为0.05-0.2∶0.02-0.1;
步骤3)中,聚乙烯亚胺水溶液的浓度为10-50mg/mL;工作电极浸入聚乙烯亚胺水溶液的时间为5-30min;
步骤4)中,戊二醛水溶液的浓度为1.0-5.0mg/mL;工作电极浸入戊二醛水溶液的时间为5-30min;
步骤5)中,所述抗体水溶液的浓度为100-300ug/mL;工作电极浸入所述抗体水溶液的时间为2-4小时;
所述牛血清白蛋白水溶液的浓度为5-20mg/mL;工作电极浸入所述牛血清白蛋白水溶液的时间为20-40min。
本发明的又一目的在于提供一种所述非标记型电流型免疫传感器的使用方法,具体为:
1)测定抗原的工作曲线。
配置浓度范围在0~1000ng/mL的抗原标准水溶液,所用抗原需与工作电极中所吸附的抗体相对应。在30~40℃下,将本发明的工作电极在抗原标准水溶液中孵育30~70min后,取出,使用二次蒸馏水洗涤,以孵育后的工作电极作为传感器的工作电极、以大面积铂片电极作为对电极,以饱和甘汞电极或者饱和氯化钾Ag/AgCl电极作为参比电极,在pH为6.5~7.3的磷酸缓冲溶液或者Tris-HCl缓冲溶液中采用循环伏安法、方波伏安法、差示脉冲伏安法进行检测,得到该待测抗原的测定工作曲线;
2)测定待测抗原。
将免疫传感器在30~40℃下,在含待测抗原的水溶液中孵育30~70min,取出,使用二次蒸馏水洗涤,以孵育后的非标记型电流型免疫传感器作为工作电极、以大面积铂片电极作为对电极,以饱和甘汞电极或者饱和氯化钾Ag/AgCl电极作为参比电极,在pH为6.5~7.3的磷酸缓冲溶液或者Tris-HCl缓冲溶液中采用循环伏安法、方波伏安法或差示脉冲伏安法进行检测,将检测结果与该抗原的测定工作曲线对照,查出其相应的浓度。
本发明的免疫传感器具有制备过程简便、成本低廉、重现性优良、检测灵敏度高等优点,可广泛用于各种免疫分析和检测。
附图说明
图1为癌胚抗原(CEA)测定标准曲线;
图2为人IgG的测定标准曲线。
具体实施方式
下面结合实施例对本发明作进一步说明,应该理解的是,这些实施例仅用于例证的目的,决不限制本发明的保护范围。
实施例1
一、制备用于CEA检测的非标记型电流型免疫传感器
选择盘状平面玻碳电极,以CEA为检测抗原,以CEA抗体为固定抗体:
1)将0.1mL的1%的壳聚糖水溶液与0.05mL的5mM的铁***水溶液混合,并加入0.05mL的粒径为25nm且在最大可见吸收峰波长下吸光度为5的金纳米颗粒水溶液,混合均匀后涂刷到电极表面,在烘箱中以50℃烘干;
2)将0.1mL的1.25%nafion的乙醇溶液与0.05mL的粒径为25nm且在最大可见吸收峰波长下吸光度为5的金纳米颗粒的乙醇溶液混合,将所得混合物涂刷到步骤1)处理后的电极表面,在烘箱中以50℃烘干;
3)将步骤2)中所得修饰电极浸入聚乙烯亚胺水溶液(50mg/mL)中15min,取出后水洗并用氮气吹干,形成聚乙烯亚胺层;
4)将步骤3)中所得修饰电极浸入2.5mg/mL戊二醛水溶液15min,形成富醛基的表面;
5)将步骤4)中所得修饰电极浸入200μg/mL的CEA抗体水溶液中孵育3小时,取出后放入10mg/mL的牛血清白蛋白水溶液中30min,得到可检测CEA的非标记型电流型免疫传感器。
二、CEA的检测:
1)测定CEA的工作曲线
配置浓度范围在0~1000ng/mL的CEA标准水溶液,在30℃下,将制备的CEA抗体修饰的非标记型电流型免疫传感器分别在不同浓度的CEA标准水溶液中孵育30min后,取出,使用二次蒸馏水洗涤,以其作为工作电极,以大面积铂片电极作为对电极,以饱和氯化钾Ag/AgCl电极作为参比电极,在pH为7.0的磷酸缓冲溶液中采用方波伏安法进行检测,得到CEA的测定工作曲线,如图1所示。
2)测定CEA
将CEA抗体修饰的非标记型电流型免疫传感器在35℃下,在含待测抗原的水溶液中孵育30min,取出,使用二次蒸馏水洗涤,以其作为工作电极,以大面积铂片电极作为对电极,以饱和氯化钾Ag/AgCl电极作为参比电极,在pH为7.0的磷酸缓冲溶液中采用方波伏安法进行检测,将检测结果与步骤1)的CEA的测定工作曲线相对照,查出相应浓度。
结果显示,对CEA的检测限为3pg/mL。
实施例2
一、制备用于人IgG检测的非标记型电流型免疫传感器
选择盘状平面金电极,以人IgG为检测对象,以抗人IgG作为固定抗体:
1)将0.2mL的2%的壳聚糖水溶液与0.1mL的10mM的铁***水溶液混合,并加入0.1mL的粒径为20nm在最大可见吸收峰波长下吸光度为1的银纳米颗粒的水溶液,混合均匀后将所得混合物涂刷到电极表面,在烘箱中以80℃烘干;
2)将0.2mL的1%nafion水溶液与0.1mL的粒径为20nm且在最大可见吸收峰波长下吸光度为1的银纳米颗粒的乙醇溶液混合,并将所得混合物涂刷到步骤1)处理后的电极表面,在烘箱中以80℃烘干;
3)将步骤2)中所得修饰电极浸入聚乙烯亚胺水溶液(浓度为20mg/mL)中30min,取出后水洗并用氮气吹干,形成聚乙烯亚胺层;
4)将步骤3)中所得修饰电极浸入5mg/mL戊二醛水溶液30min,形成富醛基的表面;
5)将步骤4)中所得修饰电极浸入300μg/mL的人IgG抗体水溶液中孵育3小时,取出后放入20mg/mL的牛血清白蛋白水溶液中30min,得到可以检测人IgG的非标记型电流型免疫传感器。
二、人IgG的检测:
1)测定人IgG的工作曲线
配置浓度范围在0~1000ng/mL的人IgG标准水溶液,在40℃下,将制备的可以检测人IgG的非标记型电流型免疫传感器,分别在不同浓度的人IgG标准水溶液中孵育35min后,取出,使用二次蒸馏水洗涤,以其作为工作电极,以大面积铂片电极作为对电极,以饱和甘汞电极作为参比电极,在pH为7.0的磷酸缓冲溶液中采用循环伏安法进行检测,得到人IgG的测定工作曲线,如图2所示;
2)测定人IgG
在35℃下,将可以检测人IgG的非标记型电流型免疫传感器在含待测抗原的水溶液中孵育30min,取出,使用二次蒸馏水洗涤,以其作为工作电极,以大面积铂片电极作为对电极,以饱和甘汞电极作为参比电极,在pH为7.0的磷酸缓冲溶液中采用循环伏安法进行检测,将检测结果与步骤1)的人IgG的测定工作曲线相对照,查出相应浓度。
结果显示,对人IgG的检测限为10pg/mL。
本发明利用壳聚糖将氧化还原探针物质直接固定到电极表面,在电极上形成氧化还原探针物质膜,并将抗体修饰于氧化还原探针物质膜上,得到了本发明的非标记型电流型免疫传感器,克服了现有的非标记型电流型免疫传感器制备过程繁琐耗时、重现性不够好、制备传感器成本较高等缺陷。
本发明的优点主要表现在:
1)本发明非标记型免疫传感器中的氧化还原探针物质膜制备过程简单;
2)固定抗体时采用化学键固定,使每次固定的抗体量趋于一致,解决了通常固定抗体中使用的物理吸附导致的重现性差等问题;
3)本发明的非标记型电流型免疫传感器对相应抗原具有极高的检测灵敏度。
本发明的非标记型电流型免疫传感器制备过程更为简便、成本更加低廉、重现性更加优良、检测更为灵敏,可广泛用于各种免疫分析和检测。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (10)

1.一种非标记型电流型免疫传感器,其特征在于,工作电极表面覆盖有4层膜:第一层为壳聚糖、铁***和金属纳米材料混合物在电极表面形成的氧化还原层;第二层为全氟化质子交换树脂与金属纳米材料混合物在所述氧化还原层表面形成的保护层;第三层为在所述保护层表面形成的聚乙烯亚胺层;第四层为将所述第三层用戊二醛处理后再化学吸附抗体的聚乙烯亚胺层。
2.根据权利要求1所述的非标记型电流型免疫传感器,其特征在于,
所述金属纳米材料为金纳米颗粒或银纳米颗粒。
3.根据权利要求2所述的非标记型电流型免疫传感器,其特征在于,所述金属纳米材料的粒径为10-60nm。
4.根据权利要求1或2所述的非标记型电流型免疫传感器,其特征在于,所述全氟化质子交换树脂为全氟磺酸交换树脂。
5.一种制备以上权利要求所述非标记型电流型免疫传感器的方法,其特征在于,所述工作电极的制备包括以下步骤:
1)将壳聚糖水溶液与铁***水溶液混合,并加入金属纳米材料水溶液,将所得混合物涂刷到工作电极表面,并在常温晾干或在烘箱中以50-80℃烘干;
2)将全氟化质子交换树脂的乙醇溶液与金属纳米材料的乙醇溶液混合,将所得混合物涂刷到经步骤1)处理后的工作电极上,并在常温晾干或在烘箱中以50-80℃烘干;
3)将经步骤2)处理后的工作电极浸入聚乙烯亚胺水溶液中,取出后水洗并用氮气吹干,形成聚乙烯亚胺层;
4)将经步骤3)处理后的工作电极浸入戊二醛水溶液中,形成富醛基表面;
5)将经步骤4)处理后的工作电极浸入抗体水溶液中,取出后用牛血清白蛋白水溶液封闭。
6.根据权利要求5所述的非标记型电流型免疫传感器的制备方法,其特征在于,
步骤1)中,所述壳聚糖水溶液的浓度为0.5-2wt%,铁***水溶液的浓度为1-10mM,金属纳米材料水溶液在最大可见吸收峰波长下的吸光度为1-5;壳聚糖水溶液∶铁***水溶液∶金属纳米材料水溶液的体积比为0.05-0.2∶0.01-0.1∶0.02-0.1。
7.根据权利要求5所述的非标记型电流型免疫传感器的制备方法,其特征在于,
步骤2)中,所述全氟化质子交换树脂的乙醇溶液的浓度为1-5wt%,金属纳米材料的乙醇溶液在最大可见吸收峰波长下的吸光度为1-5,全氟化质子交换树脂的乙醇溶液∶金属纳米材料的乙醇溶液的体积比为0.05-0.2∶0.02-0.1。
8.根据权利要求5所述的非标记型电流型免疫传感器的制备方法,其特征在于,
步骤3)中,聚乙烯亚胺水溶液的浓度为10-50mg/mL;工作电极浸入聚乙烯亚胺水溶液的时间为5-30min;
步骤4)中,戊二醛水溶液的浓度为1.0-5.0mg/mL;工作电极浸入戊二醛水溶液的时间为5-30min;
步骤5)中,所述抗体水溶液的浓度为100-300ug/mL;工作电极浸入所述抗体水溶液的时间为2-4小时;
所述牛血清白蛋白水溶液的浓度为5-20mg/mL;工作电极浸入所述牛血清白蛋白水溶液的时间为20-40min。
9.一种权利要求1-4中任一项所述非标记型电流型免疫传感器的使用方法,其特征在于,
工作电极的处理:在30-40℃下,将工作电极在抗原标准水溶液中孵育30-70min后取出,并用二次蒸馏水洗涤;接着
将处理后的工作电极在缓冲溶液中采用电化学方法检测抗原。
10.根据权利要求9所述的非标记型电流型免疫传感器的使用方法,其特征在于,所述缓冲溶液为pH为6.5~7.3的磷酸缓冲溶液或者Tris-HCl缓冲溶液;所述电化学方法为方波伏安法或循环伏安法。
CN 201110043433 2011-02-23 2011-02-23 一种非标记型电流型免疫传感器及其制备方法和应用 Expired - Fee Related CN102183562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110043433 CN102183562B (zh) 2011-02-23 2011-02-23 一种非标记型电流型免疫传感器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110043433 CN102183562B (zh) 2011-02-23 2011-02-23 一种非标记型电流型免疫传感器及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN102183562A true CN102183562A (zh) 2011-09-14
CN102183562B CN102183562B (zh) 2013-06-19

Family

ID=44569779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110043433 Expired - Fee Related CN102183562B (zh) 2011-02-23 2011-02-23 一种非标记型电流型免疫传感器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN102183562B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818893A (zh) * 2012-08-28 2012-12-12 济南大学 金钯核壳材料构建肺癌肿瘤标志物免疫传感器制备及应用
CN104114075A (zh) * 2012-02-13 2014-10-22 皇家飞利浦有限公司 具有集成组织标记设备的光子探针装置
CN105842438A (zh) * 2016-03-28 2016-08-10 南京邮电大学 一种普鲁士蓝立方块/二硫化钼纳米复合材料的制备方法
CN114414642A (zh) * 2022-01-07 2022-04-29 重庆医科大学 用于人***瘤病毒16型e6癌蛋白检测的电化学传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595160A (zh) * 2004-07-05 2005-03-16 江苏省肿瘤医院 硅烷交联壳聚糖膜基的流动注射化学发光免疫检测池及制备方法
CN101923092A (zh) * 2010-06-28 2010-12-22 宁波大学 丝网印刷电极的癌胚抗原工作电极的制备方法
US20110024308A1 (en) * 2008-04-17 2011-02-03 Canon Kabushiki Kaisha Immunoassay

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595160A (zh) * 2004-07-05 2005-03-16 江苏省肿瘤医院 硅烷交联壳聚糖膜基的流动注射化学发光免疫检测池及制备方法
US20110024308A1 (en) * 2008-04-17 2011-02-03 Canon Kabushiki Kaisha Immunoassay
CN101923092A (zh) * 2010-06-28 2010-12-22 宁波大学 丝网印刷电极的癌胚抗原工作电极的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《西南大学学报(自然科学版)》 20080731 杨霞等 "基于纳米金/功能化壳聚糖生物复合膜修饰的癌胚抗原免疫传感器的研究" 第56-61页 1-10 第30卷, 第7期 *
杨霞等: ""基于纳米金/功能化壳聚糖生物复合膜修饰的癌胚抗原免疫传感器的研究"", 《西南大学学报(自然科学版)》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104114075A (zh) * 2012-02-13 2014-10-22 皇家飞利浦有限公司 具有集成组织标记设备的光子探针装置
CN104114075B (zh) * 2012-02-13 2016-08-31 皇家飞利浦有限公司 具有集成组织标记设备的光子探针装置
CN102818893A (zh) * 2012-08-28 2012-12-12 济南大学 金钯核壳材料构建肺癌肿瘤标志物免疫传感器制备及应用
CN105842438A (zh) * 2016-03-28 2016-08-10 南京邮电大学 一种普鲁士蓝立方块/二硫化钼纳米复合材料的制备方法
CN114414642A (zh) * 2022-01-07 2022-04-29 重庆医科大学 用于人***瘤病毒16型e6癌蛋白检测的电化学传感器
CN114414642B (zh) * 2022-01-07 2023-06-02 重庆医科大学 用于人***瘤病毒16型e6癌蛋白检测的电化学传感器

Also Published As

Publication number Publication date
CN102183562B (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
Liu et al. Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip
Beitollahi et al. Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode
Li et al. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold–chitosan
Zhang et al. A reusable electrochemical immunosensor for carcinoembryonic antigen via molecular recognition of glycoprotein antibody by phenylboronic acid self-assembly layer on gold
Wang et al. Ultrasensitive detection of carcinoembryonic antigen by a simple label-free immunosensor
Shen et al. Highly sensitive electrochemical stripping detection of hepatitis B surface antigen based on copper-enhanced gold nanoparticle tags and magnetic nanoparticles
Liu et al. An amperometric immunosensor based on a gold nanoparticle‐diazonium salt modified sensing interface for the detection of HbA1c in human blood
CN103308675B (zh) 快速检测微囊藻毒素的丝网印刷电极免疫传感器的制备及检测方法
Qiang et al. A new potentiometric immunosensor for determination of α-fetoprotein based on improved gelatin–silver complex film
CN110068602B (zh) 一种基于聚合物阻碍敏感膜计时电位的检测方法
CN110823980A (zh) 一种基于类过氧化酶催化银沉积检测gpc3的方法
CN102183562B (zh) 一种非标记型电流型免疫传感器及其制备方法和应用
Xie et al. Ultrasensitive electrochemical immunoassay for avian influenza subtype H5 using nanocomposite
CN110376380B (zh) 一种电化学酶联免疫传感器及其制备与检测抗原的应用
Lai et al. Amplified inhibition of the electrochemical signal of ferrocene by enzyme-functionalized graphene oxide nanoprobe for ultrasensitive immunoassay
Liang et al. A novel, label-free immunosensor for the detection of α-fetoprotein using functionalised gold nanoparticles
Wang et al. A high-sensitivity immunosensor for detection of tumor marker based on functionalized mesoporous silica nanoparticles
Cheng et al. Integrated electrochemical lateral flow immunoassays (eLFIAs): recent advances
CN101655473A (zh) 纳米金免疫电极的制备方法
Starzec et al. Employment of electrostriction phenomenon for label-free electrochemical immunosensing of tetracycline
Liu et al. A novel electrochemical immunosensor for ochratoxin A with hapten immobilization on thionine/gold nanoparticle modified glassy carbon electrode
Tan et al. A designer ormosil gel for preparation of sensitive immunosensor for carcinoembryonic antigen based on simple direct electron transfer
CN103698509B (zh) 基于纳米多孔金片电极的电化学免疫传感器对巯基乙酸的检测
CN101923092A (zh) 丝网印刷电极的癌胚抗原工作电极的制备方法
Liang et al. Flow-injection immuno-bioassay for interleukin-6 in humans based on gold nanoparticles modified screen-printed graphite electrodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130619

Termination date: 20160223

CF01 Termination of patent right due to non-payment of annual fee