CN102134092B - Simple preparation method of hollow-spherical and flower-shaped indium oxide with secondary structure and application - Google Patents
Simple preparation method of hollow-spherical and flower-shaped indium oxide with secondary structure and application Download PDFInfo
- Publication number
- CN102134092B CN102134092B CN 201110039341 CN201110039341A CN102134092B CN 102134092 B CN102134092 B CN 102134092B CN 201110039341 CN201110039341 CN 201110039341 CN 201110039341 A CN201110039341 A CN 201110039341A CN 102134092 B CN102134092 B CN 102134092B
- Authority
- CN
- China
- Prior art keywords
- indium oxide
- indium
- flower
- secondary structure
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910003437 indium oxide Inorganic materials 0.000 title claims abstract description 60
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 19
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000003945 anionic surfactant Substances 0.000 claims abstract description 8
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 8
- 239000002243 precursor Substances 0.000 claims description 19
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000002244 precipitate Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 150000002471 indium Chemical class 0.000 claims description 6
- 238000012546 transfer Methods 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 229910000337 indium(III) sulfate Inorganic materials 0.000 claims description 2
- XGCKLPDYTQRDTR-UHFFFAOYSA-H indium(iii) sulfate Chemical compound [In+3].[In+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O XGCKLPDYTQRDTR-UHFFFAOYSA-H 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 claims 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 claims 1
- 239000004005 microsphere Substances 0.000 abstract description 10
- 239000002086 nanomaterial Substances 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000003786 synthesis reaction Methods 0.000 abstract description 6
- 229910052738 indium Inorganic materials 0.000 abstract description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000654 additive Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000003513 alkali Substances 0.000 abstract 1
- 239000003153 chemical reaction reagent Substances 0.000 abstract 1
- 229910017053 inorganic salt Inorganic materials 0.000 abstract 1
- 239000012266 salt solution Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 8
- 230000035484 reaction time Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- YFDKVXNMRLLVSL-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid;sodium Chemical compound [Na].CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O YFDKVXNMRLLVSL-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
本发明提供了一种新形貌的氧化铟的制备方法,属于氧化铟的合成和纳米材料技术领域。该方法以铟的无机盐溶液为铟源,采用N,N-二甲基甲酰胺(DMF)作为碱源,十二烷基磺酸钠(SDS)等阴离子表面活性剂作为添加剂,在不添加任何硬模板情况下,用水热合成制备出新型的具有次级结构的中空微球和花状的氧化铟,并且通过化学手段对次级结构的形貌进行了控制。本发明提供的制备方法工艺过程简单,易于推广,选用的试剂价格低廉且环境友好,适合低成本、大规模、绿色生产需要。
The invention provides a method for preparing indium oxide with a new shape, and belongs to the technical field of indium oxide synthesis and nanomaterials. In this method, the inorganic salt solution of indium is used as the indium source, N,N-dimethylformamide (DMF) is used as the alkali source, and anionic surfactants such as sodium dodecylsulfonate (SDS) are used as additives. In the case of any hard template, a new type of hollow microsphere and flower-like indium oxide with a secondary structure were prepared by hydrothermal synthesis, and the morphology of the secondary structure was controlled by chemical means. The preparation method provided by the invention has a simple process and is easy to popularize. The selected reagents are inexpensive and environmentally friendly, and are suitable for low-cost, large-scale, and green production needs.
Description
技术领域 technical field
本发明涉及一种制备具有次级结构的中空球和花状氧化铟的简易方法及其应用,属于微米/纳米材料控制合成及应用领域。 The invention relates to a simple method for preparing hollow spheres and flower-like indium oxides with secondary structures and its application, which belongs to the field of controlled synthesis and application of micron/nano materials.
背景技术 Background technique
众所周知,无机微米/纳米材料的性质与颗粒的大小以及形状有关。目前大量工作集中于不同形状、大小、维度以及结构的微米/纳米材料的控制合成。尤其是对由纳米结构单元,比如纳米颗粒、纳米棒/线/带或者纳米片构建而成的具有级次或者复杂结构的3D微米/纳米结构材料的研究己经成为材料的研究热点之一,这是因为材料的次级结构通常会产生更加优异的整体协同性质,不仅会具有结构单元的特性,还可能具有纳米结构单元组合产生的耦合效应、协同效应等从而使这些材料展示了不同于其构筑单元及块体材料的独特的物理和化学性质,这为进一步设计设计新奇的纳米/微米尺度传感器、器件提供了坚实的基础。最近,人们己经报道了许多具有不同形貌的级次结构的纳米/微米材料,并阐述了它们在催化、能量转化和存储、环境净化、传感器以及生物方面的潜在应用。(a)H. Jiang, J. Q. Hu, F. Gu, W. Shao and C.Z. Li, Chem. Commun., 2009, 3618, b)K.I. Choi, H.R. Kim, J.H. Lee, Sens. Actuators B,2009, 138, 497.) It is well known that the properties of inorganic micro/nanomaterials are related to particle size and shape. Much work is currently focused on the controlled synthesis of micro/nanomaterials of different shapes, sizes, dimensions, and structures. In particular, the research on 3D micro/nanostructure materials with hierarchical or complex structures constructed of nanostructure units, such as nanoparticles, nanorods/wires/ribbons or nanosheets, has become one of the research hotspots of materials. This is because the secondary structure of the material usually produces more excellent overall synergistic properties, which not only have the characteristics of the structural unit, but also may have the coupling effect and synergistic effect generated by the combination of nano-structural units, so that these materials show different characteristics from other materials. The unique physical and chemical properties of building units and bulk materials provide a solid foundation for the further design of novel nano/micro scale sensors and devices. Recently, many nano/micro materials with different morphologies and hierarchical structures have been reported, and their potential applications in catalysis, energy conversion and storage, environmental purification, sensors, and biology have been elucidated. (a) H. Jiang, JQ Hu, F. Gu, W. Shao and CZ Li, Chem. Commun. , 2009, 3618, b) KI Choi, HR Kim, JH Lee, Sens. Actuators B ,2009, 138, 497.)
氧化铟是一种N型半导体,属于Ⅲ-Ⅵ族,拥有3.55 – 3.75 eV 的直接能带隙,具有高电导性和可见光透过率。纳米结构或者由纳米结构单元构建的具有次级结构的氧化铟,由于具有载流子的量子限域效应而表现出许多新奇的电学、光学性质,可以用于太阳能电池、透明导体、窗口加热器、光电子器件、平板显示器、紫外可见(紫外线)激光器、探测器、有机发光二极管和气体传感器等领域都有很广泛的应用(a) I. Hamberg and C. G. Granqvist, J. Appl. Phys., 1986, 60, 123; b) H. Zhou, W. Cai and L. Zhang, Appl. Phys. Lett., 1999, 26, 495; c) N. Pinna, G. Neri, M. Antonietti and M. Niederberger, Angew. Chem., Int. Ed., 2004, 43, 4345)。其广泛的应用使得氧化铟的控制合成有重要的研究意义,于是,由纳米结构单元构建的具有次级结构的微米/纳米氧化铟陆续被报道。例如使用蔗糖作为硬模板合成具有针状或杆状的次级结构的中空球氧化铟(H. Jiang, J. Q. Hu, F. Gu, W. Shao and C.Z. Li, Chem. Commun., 2009, 3618)以氨基酸作为添加剂合成具有纳米颗粒次级结构的中空球氧化铟,(K.I. Choi, H.R. Kim, J.H. Lee, Sens. Actuators B,2009, 138, 497)使用尿素合成具有杆状次级结构的花状微球氧化铟,(H.Z., X.L. Wang, F. Yang, and X.R. Yang, Crystal Growth & Design, 2008 , 8, 950.)加入硫脲合成具有多孔纳米片次级结构的花状球氧化铟(J.Y. Liu, T. Luo, F.L. Meng, K. Qian, Y.T. Wan, and J.H. Liu, J. Phys. Chem. C 2010, 114, 4887)等。但是上述的合成方法存在条件苛刻,成本较高,操作复杂,只能合成单一形貌的氧化铟等问题,有的不能大批量的合成投入生产。 Indium oxide is an N-type semiconductor belonging to Group III-VI, with a direct energy band gap of 3.55-3.75 eV, high electrical conductivity and visible light transmittance. Nanostructures or indium oxide with secondary structures constructed by nanostructure units exhibit many novel electrical and optical properties due to the quantum confinement effect of carriers, and can be used in solar cells, transparent conductors, and window heaters , optoelectronic devices, flat panel displays, ultraviolet-visible (ultraviolet) lasers, detectors, organic light-emitting diodes, and gas sensors have a wide range of applications (a) I. Hamberg and CG Granqvist, J. Appl. Phys ., 1986, 60, 123; b) H. Zhou, W. Cai and L. Zhang, Appl. Phys. Lett. , 1999, 26, 495; c) N. Pinna, G. Neri, M. Antonietti and M. Niederberger, Angew . Chem., Int. Ed. , 2004, 43, 4345). Its wide application makes the controlled synthesis of indium oxide have important research significance. Therefore, micro/nano indium oxide with secondary structure constructed by nanostructure units has been reported one after another. For example, using sucrose as a hard template to synthesize hollow spherical indium oxide with needle-like or rod-like secondary structures (H. Jiang, JQ Hu, F. Gu, W. Shao and CZ Li, Chem. Commun. , 2009, 3618) Synthesis of hollow spherical indium oxide with nanoparticle secondary structure using amino acid as additive, (KI Choi, HR Kim, JH Lee, Sens. Actuators B , 2009, 138, 497) using urea to synthesize flower-shaped Microspherical indium oxide, (HZ, XL Wang, F. Yang, and XR Yang, Crystal Growth & Design , 2008 , 8, 950.) Adding thiourea to synthesize flower-shaped spherical indium oxide with porous nanosheet secondary structure (JY Liu, T. Luo, FL Meng, K. Qian, YT Wan, and JH Liu, J. Phys. Chem. C 2010 , 114, 4887), etc. However, the above-mentioned synthesis method has problems such as harsh conditions, high cost, complicated operation, and can only synthesize indium oxide with a single shape, and some cannot be synthesized in large quantities and put into production.
发明内容 Contents of the invention
本发明的目的是解决上述氧化铟制备过程中生产成本高、实验条件苛刻、操作复杂等技术缺陷,提供一种具有次级结构中空球状和花状氧化铟的简易制备方法,并将合成的材料用作气体传感器气的敏感材料。 The purpose of the present invention is to solve technical defects such as high production cost, harsh experimental conditions, and complicated operation in the above-mentioned indium oxide preparation process, to provide a simple preparation method for hollow spherical and flower-shaped indium oxide with secondary structure, and to synthesize the material Sensitive material for gas sensor gas.
为实现上述发明目的,本发明采用以下技术方案: In order to realize the above-mentioned purpose of the invention, the present invention adopts the following technical solutions:
(1) 先将一定量的铟盐和阴离子表面活性剂加到装有去离子水的相应烧杯中,然后混合搅拌至溶解,再将一定量的N,N-二甲基甲酰胺(DMF) 加入上述溶液当中,继续搅拌使其溶解,然后转入相应容量内衬为聚四氟乙烯的不锈钢高压反应釜中,密封后控制高压反应釜温度在140~180 ℃水热反应1~10小时; (1) First add a certain amount of indium salt and anionic surfactant into the corresponding beaker filled with deionized water, then mix and stir until dissolved, then add a certain amount of N,N-dimethylformamide (DMF) to the above solution In the middle, continue to stir to dissolve it, and then transfer it to a stainless steel high-pressure reactor with a corresponding capacity lined with polytetrafluoroethylene. After sealing, control the temperature of the high-pressure reactor at 140-180 ° C for 1-10 hours of hydrothermal reaction;
(2) 反应结束后,收集反应产物得到白色沉淀,然后经去离子水、无水乙醇反复清洗,干燥洗涤产物氧化铟的前驱物; (2) After the reaction, collect the reaction product to obtain a white precipitate, then wash it repeatedly with deionized water and absolute ethanol, and dry and wash the precursor of indium oxide;
(3) 将前驱物转入坩埚置于马弗炉中,在一定温度条件下煅烧2~6小时即获得氧化铟; (3) Put the precursor into a crucible and place it in a muffle furnace, and calcine it at a certain temperature for 2 to 6 hours to obtain indium oxide;
(4) 将合成的氧化铟用作催化发光传感器的敏感材料,对硫化氢气体进行了测试。 (4) The synthesized indium oxide was used as the sensitive material of the catalytic luminescence sensor, and the hydrogen sulfide gas was tested.
其中当铟盐的用量、反应温度和水热反应时间这些实验条件一定时可以通过控制阴离子表面活性剂的量从而控制得到氧化铟的形貌;当铟盐的用量、反应温度和阴离子表面活性剂用量这些实验条件一定时可以通过控制水热反应时间从而控制得到氧化铟的形貌。 Wherein when the experimental conditions of the amount of indium salt, reaction temperature and hydrothermal reaction time are certain, the morphology of indium oxide can be controlled by controlling the amount of anionic surfactant; when the amount of indium salt, reaction temperature and anionic surfactant When these experimental conditions are certain, the morphology of indium oxide can be controlled by controlling the hydrothermal reaction time.
所述的铟盐为氯化铟、硫酸铟和硝酸铟等铟的无机盐中的一种;所述阴离子表面活性剂为十二烷基磺酸钠(SDS)或十二烷基苯磺酸钠(SDBS)。 The indium salt is one of the inorganic salts of indium such as indium chloride, indium sulfate and indium nitrate; the anionic surfactant is sodium dodecylsulfonate (SDS) or dodecylbenzenesulfonic acid Sodium (SDBS).
所述步骤(3)中空球状氧化铟在不低于400℃、花状氧化铟在不低于600℃的条件下煅烧获得。 The step (3) is obtained by calcining hollow spherical indium oxide at a temperature not lower than 400°C and flower-shaped indium oxide at a temperature not lower than 600°C.
与现有技术相比,本发明具有以下有益效果: Compared with the prior art, the present invention has the following beneficial effects:
a) 本发明所采用的原料来源广泛,实验技术简单易行,制备方法成本低; a) The raw materials used in the present invention come from a wide range of sources, the experimental technique is simple and easy, and the preparation method has low cost;
b) 本发明所采用的制备方法不需要另外加入硬模板,操作简单方便; b) The preparation method adopted in the present invention does not need to add additional hard templates, and the operation is simple and convenient;
c) 本发明所提供的方法通过调控不同的阴离子表面活性剂用量或者体系的反应时间实现两种新形貌具有次级结构的氧化铟的控制合成; c) The method provided by the present invention realizes the controlled synthesis of two kinds of indium oxide with new morphology and secondary structure by adjusting the dosage of different anionic surfactants or the reaction time of the system;
d) 可以用作催化发光气体传感器的敏感材料。 d) It can be used as a sensitive material for catalytic luminescence gas sensor.
附图说明 Description of drawings
图1是本发明所述氧化铟及其前驱物的扫描电子显微镜(SEM)图,其中图a为具有次级结构的中空微球氧化铟的前驱物的SEM图;图b为具有次级结构的中空微球氧化铟的SEM图;图c为花状氧化铟的前驱物的SEM图;图d为花状氧化铟的SEM图; Figure 1 is a scanning electron microscope (SEM) image of indium oxide and its precursors according to the present invention, where Figure a is a SEM image of a precursor of hollow microsphere indium oxide with a secondary structure; Figure b is a secondary structure The SEM image of the hollow microsphere indium oxide; Figure c is the SEM image of the precursor of the flower-shaped indium oxide; Figure d is the SEM image of the flower-shaped indium oxide;
图2是本发明所述氧化铟的X射线衍射(XRD)图谱。其中,a是具有次级结构的中空微球氧化铟的XRD图;图b是花状氧化铟的XRD图; Fig. 2 is an X-ray diffraction (XRD) spectrum of the indium oxide of the present invention. Among them, a is the XRD pattern of hollow microsphere indium oxide with secondary structure; figure b is the XRD pattern of flower-shaped indium oxide;
图3是本发明所述氧化铟的前驱物的X射线衍射(XRD)图。a具有次级结构的中空微球氧化铟的前驱物的XRD图;图b是花状氧化铟的前驱物的XRD图; Fig. 3 is an X-ray diffraction (XRD) diagram of the precursor of indium oxide according to the present invention. a The XRD pattern of the precursor of hollow microsphere indium oxide with secondary structure; Figure b is the XRD pattern of the precursor of flower-like indium oxide;
图4是本发明所述氧化铟的透射电镜(TEM)、高分辨透射电镜(HRTEM)和选区衍射(SAED)图。其中,图a,b是具有次级结构的中空微球氧化铟的TEM图;图c具有次级结构的中空微球氧化铟的HRTEM图;图d是具有次级结构的中空微球氧化铟的SAED图。图e是是花状氧化铟的TEM图;图f是花状氧化铟的XRD图是花状氧化铟的HRTEM图;图g是花状氧化铟的SAED图; Fig. 4 is a transmission electron microscope (TEM), a high resolution transmission electron microscope (HRTEM) and a selected area diffraction (SAED) diagram of the indium oxide of the present invention. Among them, Figures a and b are the TEM images of hollow microsphere indium oxide with secondary structure; Figure c is the HRTEM image of hollow microsphere indium oxide with secondary structure; Figure d is the hollow microsphere indium oxide with secondary structure SAED diagram. Figure e is the TEM image of flower-shaped indium oxide; Figure f is the XRD image of flower-shaped indium oxide, which is the HRTEM image of flower-shaped indium oxide; Figure g is the SAED image of flower-shaped indium oxide;
图5 是采用本发明的方法所合成的中空球氧化铟作为催化发光敏感材料分别对2 ppm和4 ppm的硫化氢气体的响应。 Fig. 5 is the response of the hollow spherical indium oxide synthesized by the method of the present invention as a catalytic luminescent sensitive material to 2 ppm and 4 ppm hydrogen sulfide gas respectively.
具体实施方式 Detailed ways
下面通过实施例对本发明所述具有次级结构的中空球状氧化铟和花状氧化铟的简易制备方法及其应用作进一步说明。本实施例在以本发明方案为前提下进行实施,给出了详细的实施方式和具体的操作过程。 The simple preparation method and application of hollow spherical indium oxide and flower-shaped indium oxide with secondary structure described in the present invention will be further illustrated by examples below. This embodiment is carried out on the premise of the solution of the present invention, and a detailed implementation manner and specific operation process are given.
实施例1: Example 1:
a) 先将2 mmol 氯化铟、4g SDS加到装有40mL 去离子水的50mL烧杯中,然后混合搅拌约20分。再将4 mL DMF 加入上述溶液当中,继续搅拌约10分钟。将该溶液转入60mL 聚四氟乙烯内衬的高压釜中,密封后将高压釜置于160 ℃下保持10小时。10小时后将高压釜取出,待冷却至室温后打开高压釜,将产物转移至烧杯中; a) First add 2 mmol of indium chloride and 4 g of SDS to a 50 mL beaker filled with 40 mL of deionized water, then mix and stir for about 20 minutes. Add 4 mL of DMF to the above solution, and continue stirring for about 10 minutes. The solution was transferred into a 60 mL polytetrafluoroethylene-lined autoclave, and after sealing, the autoclave was kept at 160 °C for 10 hours. After 10 hours, the autoclave was taken out, and after being cooled to room temperature, the autoclave was opened, and the product was transferred to a beaker;
b) 将上述产物用去离子水和无水乙醇反复清洗。将最后的白色沉淀置于60℃下烘干。白色沉淀即为前驱物。并对所制备的白色前驱物进行XRD,SEM的表征; b) The above product was washed repeatedly with deionized water and absolute ethanol. Dry the final white precipitate at 60°C. The white precipitate is the precursor. And perform XRD and SEM characterization on the prepared white precursor;
c) 将烘干后的前驱物转移至坩埚中,将坩埚放入马弗炉中在400℃下保持5个小时后,取出,冷却至室温。将最后得到的黄色最终产物进行了XRD,SEM,TEM的表征。 c) Transfer the dried precursor to a crucible, put the crucible into a muffle furnace at 400°C for 5 hours, take it out, and cool it to room temperature. The finally obtained yellow final product was characterized by XRD, SEM and TEM.
实施例2: Example 2:
a) 先将2 mmol 氯化铟、6g SDS加到装有40mL 去离子水的50mL烧杯中,然后混合搅拌约20分。再将4 mL DMF 加入上述溶液当中,继续搅拌约10分钟。将该溶液转入60mL 聚四氟乙烯内衬的高压釜中,密封后将高压釜置于160℃下保持10小时。10小时后将高压釜取出,待冷却至室温后打开高压釜,将产物转移至烧杯中; a) First add 2 mmol of indium chloride and 6 g of SDS to a 50 mL beaker filled with 40 mL of deionized water, then mix and stir for about 20 minutes. Add 4 mL of DMF to the above solution, and continue stirring for about 10 minutes. The solution was transferred into a 60 mL polytetrafluoroethylene-lined autoclave, and after sealing, the autoclave was kept at 160° C. for 10 hours. After 10 hours, the autoclave was taken out, and after being cooled to room temperature, the autoclave was opened, and the product was transferred to a beaker;
b) 将上述产物用去离子水和无水乙醇反复清洗。将最后的白色沉淀置于60℃下烘干。白色沉淀即为前驱物。并对所制备的白色前驱物进行XRD,SEM的表征; b) The above product was washed repeatedly with deionized water and absolute ethanol. Dry the final white precipitate at 60°C. The white precipitate is the precursor. And perform XRD and SEM characterization on the prepared white precursor;
c) 将烘干后的前驱物转移至坩埚中,将坩埚放入马弗炉中在600℃下保持5个小时后,取出,冷却至室温。将最后得到的黄色最终产物进行了XRD,SEM,TEM的表征。 c) Transfer the dried precursor to a crucible, put the crucible into a muffle furnace and keep it at 600°C for 5 hours, then take it out and cool it down to room temperature. The finally obtained yellow final product was characterized by XRD, SEM and TEM.
实施例3: Example 3:
a) 先将2 mmol 氯化铟、1g SDS加到装有40mL 去离子水的50mL烧杯中,然后混合搅拌约20分。再将4 mL DMF 加入上述溶液当中,继续搅拌约10分钟。将该溶液转入60mL 聚四氟乙烯内衬的高压釜中,密封后将高压釜置于160℃ 下保持10小时。10小时后将高压釜取出,待冷却至室温后打开高压釜,将产物转移至烧杯中; a) First add 2 mmol of indium chloride and 1 g of SDS into a 50 mL beaker filled with 40 mL of deionized water, then mix and stir for about 20 minutes. Add 4 mL of DMF to the above solution, and continue stirring for about 10 minutes. The solution was transferred into a 60 mL polytetrafluoroethylene-lined autoclave, and after sealing, the autoclave was kept at 160° C. for 10 hours. After 10 hours, the autoclave was taken out, and after being cooled to room temperature, the autoclave was opened, and the product was transferred to a beaker;
b) 将上述产物用去离子水和无水乙醇反复清洗。将最后的白色沉淀置于60℃下烘干。白色沉淀即为前驱物。并对所制备的白色前驱物进行XRD,SEM的表征; b) The above product was washed repeatedly with deionized water and absolute ethanol. Dry the final white precipitate at 60°C. The white precipitate is the precursor. And perform XRD and SEM characterization on the prepared white precursor;
c) 将烘干后的前驱物转移至坩埚中,将坩埚放入马弗炉中在400℃下保持5个小时后,取出,冷却至室温。 c) Transfer the dried precursor to a crucible, put the crucible into a muffle furnace at 400°C for 5 hours, take it out, and cool it to room temperature.
实施例4: Example 4:
本实施例主要为了考察在制备上述氧化铟过程中SDS的浓度和水热反应时间等实验条件对氧化铟形貌的影响。具体制备方法方法同实施1,所不同的是分别改变反应过程中SDS的量、水热反应温度和反应时间。具体按正交表格(表1)实施。由实验结果可知SDS量越多,时间越长则产物倾向于生成花状的氧化铟;而当SDS量越少时间越长则产物倾向于生成具有次级结构的中空微球氧化铟。并且中空球的次级结构也会随着SDS的量和反应时间长短的变化而变化。
This example is mainly to investigate the influence of experimental conditions such as the concentration of SDS and the hydrothermal reaction time on the morphology of indium oxide during the preparation of the above-mentioned indium oxide. The specific preparation method is the same as in
表1 制备上述氧化铟的水热反应实验条件 Table 1 Experimental conditions of the hydrothermal reaction for the preparation of the above indium oxide
实施例5: Example 5:
本实施例为采用本发明所制备的氧化铟用于气体传感器敏感材料进行的催化发光气体传感器测试实验。具体步骤如下: This embodiment is a test experiment of a catalytic luminescent gas sensor using the indium oxide prepared by the present invention as a gas sensor sensitive material. Specific steps are as follows:
a) 将0.05g左右的合成的中空微球氧化铟浸涂在陶瓷加热棒上。烘干后将带有氧化铟的 a) Dip-coat about 0.05g of synthesized hollow microsphere indium oxide on the ceramic heating rod. After drying, the indium oxide
陶瓷加热棒放入一个石英管中密封好,并接上温度控制器、进气口、出气,放入催化发光检测器的发光室中; Put the ceramic heating rod into a quartz tube, seal it well, connect it with a temperature controller, air inlet, and air outlet, and put it into the luminescence chamber of the catalytic luminescence detector;
b)以空气作为载气,速率为600 mL∙min– 1,加热温度为400 ◦C 。先通空气10min左右 b) Air is used as the carrier gas, the rate is 600 mL∙min – 1 , and the heating temperature is 400 ◦C. Let the air flow for about 10 minutes
排除其他杂质气体的干扰,待基线稳定过后开始进样12ppm的硫化氢气体,当信号回到基线后继续进样12ppm的硫化氢气体,进样3次,记录实验数据,结果如图5所示。 Eliminate the interference of other impurity gases, start sampling 12ppm hydrogen sulfide gas after the baseline is stable, continue to inject 12ppm hydrogen sulfide gas when the signal returns to the baseline, inject 3 times, record the experimental data, the results are shown in Figure 5 .
实验结果表明,本发明所述的具有次级结构的中空球状氧化铟可用作气体传感器敏感材料。 Experimental results show that the hollow spherical indium oxide with secondary structure described in the present invention can be used as a sensitive material for gas sensors.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110039341 CN102134092B (en) | 2011-02-17 | 2011-02-17 | Simple preparation method of hollow-spherical and flower-shaped indium oxide with secondary structure and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110039341 CN102134092B (en) | 2011-02-17 | 2011-02-17 | Simple preparation method of hollow-spherical and flower-shaped indium oxide with secondary structure and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102134092A CN102134092A (en) | 2011-07-27 |
CN102134092B true CN102134092B (en) | 2013-03-27 |
Family
ID=44294049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110039341 Expired - Fee Related CN102134092B (en) | 2011-02-17 | 2011-02-17 | Simple preparation method of hollow-spherical and flower-shaped indium oxide with secondary structure and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102134092B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102503834B (en) * | 2011-09-29 | 2013-11-13 | 苏州大学 | Preparation method for porous sulfo-indium salt |
CN102557114B (en) * | 2011-12-29 | 2014-06-25 | 中国科学院上海光学精密机械研究所 | Preparation method of indium oxide-based gas-sensitive material with three-dimensional hollow multi-stage structure and application thereof |
KR101358098B1 (en) * | 2012-07-13 | 2014-02-05 | 재단법인 멀티스케일 에너지시스템 연구단 | 3-dimensional nanoparticle structure and gas sensor using same |
CN103334179B (en) * | 2013-04-27 | 2015-07-22 | 青岛大学 | Hollow structure indium oxide nanometer fiber preparation method |
CN104229871A (en) * | 2014-06-24 | 2014-12-24 | 济南大学 | Preparation method of flower type indium oxide gas-sensitive material with hierarchical structure |
CN106006719B (en) * | 2016-07-20 | 2017-08-04 | 济南大学 | A preparation method of hierarchical structure indium oxide microspheres composed of nanoparticles |
CN107140682B (en) * | 2017-06-12 | 2019-03-01 | 吉林大学 | A kind of the indium oxide powder and its low-temperature hydro-thermal synthesis of morphology controllable |
CN110642287B (en) * | 2019-10-08 | 2022-01-07 | 济南大学 | Cubic phase In2O3Method for synthesizing micro/nano sphere structure |
CN112811461B (en) * | 2021-03-12 | 2022-07-12 | 济南大学 | A kind of synthetic method and obtained product of In2O3 hollow cage self-assembled by chain bead particles |
CN117797821B (en) * | 2023-12-01 | 2024-09-10 | 安徽工程大学 | Copper-indium catalyst with broken shell hollow sphere morphology, and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101508462A (en) * | 2009-03-11 | 2009-08-19 | 长沙理工大学 | Process for producing flower shaped indium hydroxide powder having high specific surface area |
CN101857263A (en) * | 2010-06-23 | 2010-10-13 | 东华大学 | A method for preparing nano-indium oxide with controllable morphology by hydrothermal method |
-
2011
- 2011-02-17 CN CN 201110039341 patent/CN102134092B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101508462A (en) * | 2009-03-11 | 2009-08-19 | 长沙理工大学 | Process for producing flower shaped indium hydroxide powder having high specific surface area |
CN101857263A (en) * | 2010-06-23 | 2010-10-13 | 东华大学 | A method for preparing nano-indium oxide with controllable morphology by hydrothermal method |
Non-Patent Citations (2)
Title |
---|
Hui Zhu et al..Self-Assembled 3D Microflowery In(OH)3 Architecture and Its Conversion to In2O3.《 J. Phys. Chem. C》.2008,第112卷(第39期),15285-15292. * |
Li-Yong Chen et al..Tunable Synthesis of Various Hierarchical Structures of In(OH)3 and In2O3 Assembled by Nanocubes.《Eur. J. Inorg. Chem》.2008,1445-1451. * |
Also Published As
Publication number | Publication date |
---|---|
CN102134092A (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102134092B (en) | Simple preparation method of hollow-spherical and flower-shaped indium oxide with secondary structure and application | |
CN101723436B (en) | Self-assembly zinc oxide hollow sphere and preparation method thereof | |
CN102336431B (en) | A kind of SnO2 flower-like structure nanomaterial and its hydrothermal preparation method | |
CN104445367A (en) | Preparation method of nanoflower-shaped zinc oxide | |
CN104528810A (en) | Preparation method for preparing stannic oxide nanorod cluster by using one-step hydrothermal method | |
CN102951675A (en) | Method for preparing monodisperse cadmium sulfide nanospheres | |
CN102826593A (en) | Preparation method for indium oxide nanometer material | |
CN102259907A (en) | Porous zinc oxide nano material and preparation method thereof | |
CN105238349B (en) | A kind of Fe3O4ZnO nano composite and preparation method thereof | |
CN103183374A (en) | Method for preparing monodisperse indium oxide nanometer porous microsphere | |
Song et al. | Controlled synthesis of porous flower-like TiO2 nanostructure with enhanced photocatalytic activity | |
CN106492848A (en) | A kind of Basic bismuth bromide and nano-zinc stannate hetero-junctions and preparation method thereof | |
CN101811725A (en) | Cage-shaped nano zinc oxide and preparation method thereof | |
CN106379871A (en) | Method for preparing rhenium diselenide nano-sheet | |
CN103771490B (en) | A kind of simple and easy stirring at room temperature prepares the method for micro-/ nano zinc oxide | |
CN103613123B (en) | Method for preparing monodisperse stannic oxide nanocrystalline particles | |
Zhan et al. | A novel synthesis and excellent photodegradation of flower-like ZnO hierarchical microspheres | |
CN106186045A (en) | A kind of preparation method of flower shape zinc oxide nano-particle cluster | |
CN102040201A (en) | Solvothermal controllable method for preparing ZnSe and ZnTe nano materials | |
CN104692466B (en) | A non-template method for preparing α-Fe2O3 hollow tubular nanofilms | |
CN102627316A (en) | A kind of preparation method of SnO2 three-dimensional hollow sphere nanomaterial | |
CN102795658B (en) | A kind of method adopting hydrogen peroxide to regulate zinc oxide crystal microstructure | |
CN101927146B (en) | A kind of preparation method of In2O3 nano single crystal self-assembled microsphere | |
CN101811728B (en) | Microwave method for synthesizing blossom ZnO hierarchical nanostructure | |
CN103303966A (en) | Preparation method of zinc oxide nanosheet with wurtzite structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130327 Termination date: 20160217 |
|
CF01 | Termination of patent right due to non-payment of annual fee |