CN102120665A - Method for purifying pentachlorophenol in water through photocatalysis - Google Patents

Method for purifying pentachlorophenol in water through photocatalysis Download PDF

Info

Publication number
CN102120665A
CN102120665A CN 201110020264 CN201110020264A CN102120665A CN 102120665 A CN102120665 A CN 102120665A CN 201110020264 CN201110020264 CN 201110020264 CN 201110020264 A CN201110020264 A CN 201110020264A CN 102120665 A CN102120665 A CN 102120665A
Authority
CN
China
Prior art keywords
pcp
pentachlorophenol
photocatalyst
solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110020264
Other languages
Chinese (zh)
Other versions
CN102120665B (en
Inventor
牛军峰
李阳
王文龙
段延佩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN201110020264A priority Critical patent/CN102120665B/en
Publication of CN102120665A publication Critical patent/CN102120665A/en
Application granted granted Critical
Publication of CN102120665B publication Critical patent/CN102120665B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to a method for purifying pentachlorophenol (PCP) in water through photocatalysis, which comprises the following processes of: mixing and stirring a bismuth silicate photocatalyst and pentachlorophenol sewage to be treated, performing ultrasonic dispersion, adsorbing and balancing, irradiating by using a xenon lamp and the like; and pentachlorophenol photocatalytic degradation reaction results prove that the pentachlorophenol in the water can be efficiently purified through the method. The invention can overcome the defects of high energy consumption, complex operation, violent reaction conditions, poor purification capacity and the like in the conventional purification method, provides a method having the advantages of short flow, simple equipment and good efficiency of purifying the pentachlorophenol, and has wide industrial application prospect.

Description

The method of Pentachlorophenol in a kind of light catalytic purifying water
Technical field
The present invention relates to a kind of purify waste water method of middle Pentachlorophenol (PCP) of bismuth silicate photocatalyst of utilizing, belong to the surround lighting catalysis technical field.
Background technology
Pentachlorophenol (PCP) once was widely used as wood preservative, rust-preventive agent, sterilizing agent, sterilant, sterilant and weedicide, have stench and high toxicity, be a kind ofly extensively to be present in water body and to have " three cause " (carcinogenic, teratogenesis, mutagenesis) effect and genotoxic organic difficult degradation pollutent, be difficult for being decomposed and easily by the food chain enrichment in vivo, thereby natural, ecological and human health are caused serious threat, listed in the list of priority pollutants by EPA.Simultaneously, PCP can also be converted into stronger many chloros dibenzo Dioxins (PCDDs) of toxicity and polychlorinated dibenzo (PCDFs) in physical environment, and it is crucial therefore seeking economy and eco-friendly PCP purification techniques.
Shortcomings such as biological process is a kind of effective ways of PCP in purifying waste water, and have the low and easy-operating advantage of cost, but this method exists long processing period, and big and high density PCP processing efficiency is low to the effect of microorganism toxicity.Physico-chemical process mainly comprises absorption method, Coagulation Method, extraction process and membrane processing method etc.This method only is PCP from a kind of medium to the process that another kind of medium shifts, and can produce new pollution usually, therefore needs subsequent processes just can reach the purpose of thorough removing PCP.The Sonochemical degradation method exists capacity usage ratio low, and treatment capacity is little, problems such as process cost height.Wet oxidation process needs high-tension apparatus, the apparatus cost costliness, and catalyst attrition is big, and uneconomical to lower concentration PCP wastewater treatment.There are shortcomings such as current efficiency is low, power consumption is high and lack electrode life in the electrochemical degradation method owing to be subjected to the restriction of electrode materials, therefore is difficult to realize industrialization.
The photocatalytic degradation technology is the novel method of Persistent organic pollutants in a kind of purifying water body that grows up the seventies, have that energy consumption is low, easy to operate, reaction conditions is gentle, oxidation capacity is strong, with advantage such as environmental compatible, utilizing this technology to purify organic wastewater with difficult degradation thereby has become the domestic and international research focus.Photocatalyst can produce electron-hole pair under illumination condition, valence band hole (h + Vb) have very strong oxidation capacity, can efficiently remove organism in the water; Be adsorbed on the O of catalyst surface simultaneously 2And H 2O can produce various living radicals with the conduction band electron reaction, as hydroxyl radical free radical (OH), ultra-oxygen anion free radical (O 2 -) etc., redox reaction can take place with PCP in these living radicals, is translated into the low material of toxicity or is carbonic acid gas and water with its mineralising, thereby effectively degrade PCP, has wide prospect in industrial application.
Bi silicate crystals is the non-ferroelectric cube semiconductor of a kind of broad-band gap, high resistivity, has unique photoelectricity, photoconduction, light and sells off and the acousto-optic performance.In recent years, as a kind of important photoelectric material, bi silicate crystals has caused the great attention of Materials science and photocatalysis field.The patent No. is ZL 200710166218.4, and name is called a kind of preparation method of bismuth silicate powder photocatalyst, and publication number is the preparation method that the patent of CN101157026A describes bismuth silicate in detail.Document " C.H.He, M.Y.Gu.Preparation, characterization and photocatalytic properties of Bi 12SiO 20Powders ScriptaMaterialia 2006 (55): 481-484 " adopt chemical solution decomposition method (CSD) preparation bismuth silicate powder; and investigate its performance Congo red to photocatalytic degradation, the result show illumination after one hour bismuth silicate to Congo red decolorizing efficiency up to 92.1%.
Problem to be solved by this invention is efficiently to remove PCP pollutent in the water, overcomes the existing deficiency that purifies the chlorophenol pollutant technology, and a kind of treatment process of chlorophenols sewage efficient, energy-conservation, simple to operate is provided.
Summary of the invention
The objective of the invention is to solve the pollution problem of PCP in the Industrial processes, providing a kind of is the method for PCP during photocatalyst is purified waste water with the bismuth silicate, can overcome existing purifying method energy consumption height, complicated operation, reaction conditions is violent and the shortcoming of detergent power difference, has good economy and environmental benefit.
Utilize bismuth silicate for photocatalyst purify waste water in the method for PCP comprise the steps:
A) the certain density PCP solution of preparation;
B) in PCP solution, add the bismuth silicate photocatalyst;
C) under the dark condition ultrasonic 10 minutes, make the bismuth silicate photocatalyst be dispersed in PCP solution;
D) with c) mixing solutions of step stirs to reach the adsorption equilibrium of PCP at the dark condition lower magnetic force;
E) adopt xenon lamp to shine, the temperature of reaction solution keeps constant temperature by water-bath simultaneously;
F) timing sampling, sample thief supernatant liquor after the centrifugation, the change in concentration of analysis PCP;
G) suction filtration reaction solution, the Separation and Recovery photocatalyst.
The treatment process of PCP sewage of the present invention wherein, is 2~10 mg/litre at the starting point concentration of PCP described in the step a);
The treatment process of PCP sewage of the present invention wherein, is 300~800 nanometers in the xenon lamp wavelength region described in the step e), and power is 500 watts;
Among the present invention, the photocatalysis apparatus that is adopted is made up of direct supply, barretter and xenon lamp, and miscellaneous part comprises quartz reactor, water-bath and magnetic stirring apparatus etc., and used unit all can obtain from relevant device supplier, also can design voluntarily and build.
Analytical procedure to PCP in the water provided by the invention is as follows:
Adopt high performance liquid chromatography (HPLC Waters 1525) to analyze, moving phase is the mixed solution of the methyl alcohol and the amine acetate aqueous solution (containing 0.02 mol amine acetate), volume ratio is 85: 15, flow velocity 1.0 ml/min, it is 312 nanometers that UV-detector is measured wavelength, and specimen is removed impurity in order to avoid stop up pillar through 0.45 micron filter membrane.Degradation rate (%)=(initial p CP concentration-residue PCP concentration)/initial p CP concentration * 100%.
The invention has the advantages that:
1. adopt luminous energy to remove PCP in the water, efficiently utilize clean energy;
2. can efficiently remove the pollution of difficult degradation PCP in the water;
3. this method flow is short, equipment is simple, easy to operate, purification rate is high, photocatalyst is recycled easily, has good economic benefit and environmental benefit.
This method is that the 250 mg/litre PCP sewage that to handle 200 milliliters of starting point concentrations be 2 mg/litre is after 2 hours at the photocatalyst consumption, almost can't detect on high performance liquid chromatography PCP, and photocatalyst can reused more than 5 times under the prerequisite that does not reduce catalytic effect.
Description of drawings
Fig. 1 for utilize bismuth silicate for photocatalyst purify waste water in the different starting point concentration PCP processes concentration (wherein catalyst consumption is 250 mg/litre, pH=6.12) over time.
Embodiment
Embodiment 1
In 50 milligrams of bismuth silicate powders PCP solution that to be scattered in 200 milliliters of starting point concentrations be 2 mg/litre, under dark condition,, catalyzer is disperseed fully in solution with ultrasonic 10 minutes of mixed solution.Pre-irradiation stirs 30 minutes to reach adsorption equilibrium with mixed solution at the dark condition lower magnetic force earlier, uses 500 watts of xenon lamps (wavelength is 300~800 nanometers) to shine then, and conditioned reaction liquid level and xenon lamp lamp holder spacing are 20 centimetres.Magnetic agitation in the process of photocatalytic degradation is so that reaction solution is even, and the temperature of reaction solution remains on (20 ± 2) degree by water-bath.Regularly get 1 ml sample, supernatant liquor is got in centrifugation, and the sampling back uses HPLC to analyze the concentration of PCP.The result shows that after reaction was carried out 2 hours, the degradation rate of PCP was greater than 99.0%.
Embodiment 2
In 50 milligrams of bismuth silicate powders PCP solution that to be scattered in 200 milliliters of starting point concentrations be 4 mg/litre, under dark condition,, catalyzer is disperseed fully in solution with ultrasonic 10 minutes of mixed solution.Pre-irradiation stirs 30 minutes to reach adsorption equilibrium with mixed solution at the dark condition lower magnetic force earlier, uses 500 watts of xenon lamps (wavelength is 300~800 nanometers) to shine then, and conditioned reaction liquid level and xenon lamp lamp holder spacing are 20 centimetres.Magnetic agitation in the process of photocatalytic degradation is so that reaction solution is even, and the temperature of reaction solution remains on (20 ± 2) degree by water-bath.Regularly get 1 ml sample, get supernatant liquor after the centrifugation, the sampling back uses HPLC to analyze the concentration of PCP.The result shows that after reaction was carried out 2 hours, the degradation rate of PCP reached 87.7%.
Embodiment 3
In 50 milligrams of bismuth silicate powders PCP solution that to be scattered in 200 milliliters of starting point concentrations be 6 mg/litre, under dark condition,, catalyzer is disperseed fully in solution with ultrasonic 10 minutes of mixed solution.Pre-irradiation stirs 30 minutes to reach adsorption equilibrium with mixed solution at the dark condition lower magnetic force earlier, uses 500 watts of xenon lamps (wavelength is 300~800 nanometers) to shine then, and conditioned reaction liquid level and xenon lamp lamp holder spacing are 20 centimetres.Magnetic agitation in the process of photocatalytic degradation is so that reaction solution is even, and the temperature of reaction solution remains on (20 ± 2) degree by water-bath.Regularly get 1 ml sample, get supernatant liquor after the centrifugation, the sampling back uses HPLC to analyze the concentration of PCP.The result shows that after reaction was carried out 2 hours, the degradation rate of PCP reached 84.5%.
Embodiment 4
In 100 milligrams of bismuth silicate powders PCP solution that to be scattered in 200 milliliters of starting point concentrations be 6 mg/litre, under dark condition,, catalyzer is disperseed fully in solution with ultrasonic 10 minutes of mixed solution.Pre-irradiation stirs 30 minutes to reach adsorption equilibrium with mixed solution at the dark condition lower magnetic force earlier, uses 500 watts of xenon lamps (wavelength is 300~800 nanometers) to shine then, and conditioned reaction liquid level and xenon lamp lamp holder spacing are 20 centimetres.Magnetic agitation in the process of photocatalytic degradation is so that reaction solution is even, and the temperature of reaction solution remains on (20 ± 2) degree by water-bath.Regularly get 1 ml sample, get supernatant liquor after the centrifugation, the sampling back uses HPLC to analyze the concentration of PCP.The result shows that after reaction was carried out 2 hours, the degradation rate of PCP reached 91.2%.
Embodiment 5
In 100 milligrams of bismuth silicate powders PCP solution that to be scattered in 200 milliliters of starting point concentrations be 10 mg/litre, under dark condition,, catalyzer is disperseed fully in solution with ultrasonic 10 minutes of mixed solution.Pre-irradiation stirs 30 minutes to reach adsorption equilibrium with mixed solution at the dark condition lower magnetic force earlier, uses 500 watts of xenon lamps (wavelength is 300~800 nanometers) to shine then, and conditioned reaction liquid level and xenon lamp lamp holder spacing are 20 centimetres.Magnetic agitation in the process of photocatalytic degradation is so that reaction solution is even, and the temperature of reaction solution remains on (20 ± 2) degree by water-bath.Regularly get 1 ml sample, get supernatant liquor after the centrifugation, the sampling back uses HPLC to analyze the concentration of PCP.The result shows that after reaction was carried out 2 hours, the degradation rate of PCP reached 78.1%.

Claims (3)

1. one kind is utilized bismuth silicate to comprise for the purify waste water step of middle Pentachlorophenol (PCP) of photocatalyst:
1) the certain density PCP solution of preparation;
2) in PCP solution, add the bismuth silicate photocatalyst;
3) under the dark condition ultrasonic 10 minutes, the bismuth silicate photocatalyst is dispersed in the PCP solution;
4) the described mixing solutions of step 3) is stirred to reach the adsorption equilibrium of PCP at the dark condition lower magnetic force;
5) adopt xenon lamp to shine, the temperature of reaction solution keeps constant temperature by water-bath simultaneously;
6) timing sampling, sample thief supernatant liquor after the centrifugation, the change in concentration of analysis PCP;
7) suction filtration reaction solution, the Separation and Recovery photocatalyst.
2. according to the purifying method of PCP in the claim 1, wherein, in step 1), the starting point concentration of described PCP is 2~10 mg/litre.
3. according to the method described in the claim 1, it is characterized in that: the light catalytic purifying process 5 of PCP), described xenon lamp wavelength region is 300~800 nanometers, and power is 500 watts xenon lamp.
CN201110020264A 2011-01-18 2011-01-18 Method for purifying pentachlorophenol in water through photocatalysis Expired - Fee Related CN102120665B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110020264A CN102120665B (en) 2011-01-18 2011-01-18 Method for purifying pentachlorophenol in water through photocatalysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110020264A CN102120665B (en) 2011-01-18 2011-01-18 Method for purifying pentachlorophenol in water through photocatalysis

Publications (2)

Publication Number Publication Date
CN102120665A true CN102120665A (en) 2011-07-13
CN102120665B CN102120665B (en) 2012-08-29

Family

ID=44249351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110020264A Expired - Fee Related CN102120665B (en) 2011-01-18 2011-01-18 Method for purifying pentachlorophenol in water through photocatalysis

Country Status (1)

Country Link
CN (1) CN102120665B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551098A (en) * 2013-11-01 2014-02-05 合肥工业大学 Method for generating hydroxyl free radical through controlling visible light
CN103771638A (en) * 2012-10-26 2014-05-07 北京师范大学 Photo-catalysis method adopting ultrasonic atomizing process to enhance water pollution treatment effect
CN104888401A (en) * 2015-05-20 2015-09-09 中国科学院新疆理化技术研究所 Method for dechlorination from chlorophenol pollutant by using alkali metal zinc borate compound via photocatalysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157026A (en) * 2007-11-08 2008-04-09 北京师范大学 A preparation method of bismuth silicate powder photocatalyst
CN101638253A (en) * 2009-09-08 2010-02-03 北京师范大学 Method for treating waste water polluted by composite chlorophenol with coordination of visible light-laccase
CN101891274A (en) * 2010-07-27 2010-11-24 北京师范大学 Method for coprocessing crystal violet polluted sewage by outdoor natural light-hydrogen peroxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157026A (en) * 2007-11-08 2008-04-09 北京师范大学 A preparation method of bismuth silicate powder photocatalyst
CN101638253A (en) * 2009-09-08 2010-02-03 北京师范大学 Method for treating waste water polluted by composite chlorophenol with coordination of visible light-laccase
CN101891274A (en) * 2010-07-27 2010-11-24 北京师范大学 Method for coprocessing crystal violet polluted sewage by outdoor natural light-hydrogen peroxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《污染防治技术》 20090228 何莉等 CuO /TiO2 - H2 O2 自然光催化降解印染废水的影响因素 第8-11页 1-3 第22卷, 第1期 2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771638A (en) * 2012-10-26 2014-05-07 北京师范大学 Photo-catalysis method adopting ultrasonic atomizing process to enhance water pollution treatment effect
CN103771638B (en) * 2012-10-26 2016-08-10 北京师范大学 A kind of photocatalysis method with ultrasonic atomizatio enhanced sewage treatment effect
CN103551098A (en) * 2013-11-01 2014-02-05 合肥工业大学 Method for generating hydroxyl free radical through controlling visible light
CN104888401A (en) * 2015-05-20 2015-09-09 中国科学院新疆理化技术研究所 Method for dechlorination from chlorophenol pollutant by using alkali metal zinc borate compound via photocatalysis

Also Published As

Publication number Publication date
CN102120665B (en) 2012-08-29

Similar Documents

Publication Publication Date Title
Peng et al. Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution
Al-Nuaim et al. The photocatalytic process in the treatment of polluted water
Patil et al. Waste tea residue as a low cost adsorbent for removal of hydralazine hydrochloride pharmaceutical pollutant from aqueous media: An environmental remediation
Zhao et al. Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation
Jiang et al. Degradation of organic dye by pulsed discharge non-thermal plasma technology assisted with modified activated carbon fibers
Molinari et al. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification
Dutta et al. Kinetic study of adsorption and photo-decolorization of Reactive Red 198 on TiO2 surface
Jiang et al. Role of adsorption and oxidation in porous carbon aerogel/persulfate system for non-radical degradation of organic contaminant
Jiang et al. Photocatalytic membrane reactor for degradation of acid red B wastewater
Pi et al. In-situ regeneration of tetracycline-saturated hierarchical porous carbon by peroxydisulfate oxidation process: Performance, mechanism and application
Peighambardoust et al. Sono-photocatalytic activity of sea sediment@ 400/ZnO catalyst to remove cationic dyes from wastewater
Siara et al. ZnAl2O4 supported on lychee-biochar applied to ibuprofen photodegradation
CN107140724B (en) Method for removing low-concentration antibiotics In water by virtue of adsorption and persulfate activation of MOFs containing In-Co
Sun et al. Study on regeneration effect and mechanism of high-frequency ultrasound on biological activated carbon
Sun et al. Using DOM fraction method to investigate the mechanism of catalytic ozonation for real wastewater
Wang et al. Catalytic ozonation of dimethyl phthalate and chlorination disinfection by-product precursors over Ru/AC
CN101638253B (en) Method for treating waste water polluted by composite chlorophenol with coordination of visible light-laccase
Shokri et al. Photocatalytic degradation of ceftriaxone in aqueous solutions by immobilized TiO2 and ZnO nanoparticles: investigating operational parameters
Liu et al. Removal of humic substances by the synergistic effect of biochar adsorption and activation of persulfate
CN103920459B (en) With the method that silicate clay and rice husk prepare efficient absorption composite for raw material
Laoufi et al. Removal of a persistent pharmaceutical micropollutant by UV/TiO2 process using an immobilized titanium dioxide catalyst: parametric study
CN106673121A (en) Method for purifying tetracycline in sewage by photocatalysis method
CN101891274A (en) Method for coprocessing crystal violet polluted sewage by outdoor natural light-hydrogen peroxide
Jin et al. A thorough observation of an ozonation catalyst under long-term practical operation: Deactivation mechanism and regeneration
CN102120665B (en) Method for purifying pentachlorophenol in water through photocatalysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120829

Termination date: 20130118

CF01 Termination of patent right due to non-payment of annual fee