CN102042820B - 一种空间微小碎片的探测方法 - Google Patents

一种空间微小碎片的探测方法 Download PDF

Info

Publication number
CN102042820B
CN102042820B CN2010105227282A CN201010522728A CN102042820B CN 102042820 B CN102042820 B CN 102042820B CN 2010105227282 A CN2010105227282 A CN 2010105227282A CN 201010522728 A CN201010522728 A CN 201010522728A CN 102042820 B CN102042820 B CN 102042820B
Authority
CN
China
Prior art keywords
fragment
space
analysis
debris
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010105227282A
Other languages
English (en)
Other versions
CN102042820A (zh
Inventor
郭云
杨生胜
张剑锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
510 Research Institute of 5th Academy of CASC
Original Assignee
510 Research Institute of 5th Academy of CASC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 510 Research Institute of 5th Academy of CASC filed Critical 510 Research Institute of 5th Academy of CASC
Priority to CN2010105227282A priority Critical patent/CN102042820B/zh
Publication of CN102042820A publication Critical patent/CN102042820A/zh
Application granted granted Critical
Publication of CN102042820B publication Critical patent/CN102042820B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及一种空间微小碎片的探测方法,属于空间环境探测技术领域。探测薄膜由上到下包括俘获碎片层、过渡层和基底材料;俘获碎片层材料为1~4μm厚的Au;基底材料材料为1~3mm厚的石英玻璃,过渡层材料为50~100nm厚的Ir;将探测薄膜搭载在航天器的迎风面和背风面上,经过空间暴露后,携带回地面;地面分析采用二次离子质谱或离子枪剖析下X射线光电子能谱的分析方法,获得探测薄膜分析后数据与空间碎片的相关数据的对应关系;从而获得所俘获碎片的化学组成。本发明利用低重量无功耗的探测薄膜,实现空间微小碎片的探测,俘获碎片层所能俘获并分析到的空间碎片为mg量级。

Description

一种空间微小碎片的探测方法
技术领域
本发明涉及一种空间微小碎片的探测方法,属于空间环境探测技术领域。
背景技术
随着我国航天器在轨运行时间的明显加长,监测空间碎片在轨道上的分布规律和速度,以及评估碎片对航天器材料的影响就显的尤其重要。同时由于近期卫星在轨道上被摧毁等事件,导致空间碎片的分布规律变化速度加大。也对研制空间碎片在轨探测薄膜提出了要求。
这些碎片中较小部分难以通过地面观测获得,美国长期暴露装置(LDEF)中的宇宙碎片探测就是通过在轨探测薄膜进行监测。我国的空间站计划的进行,为在轨探测薄膜的空间暴露运行和返回提供了应用背景。
本发明是提出在轨探测薄膜。该薄膜计划搭载在空间实验室或空间站等可提供返回样品能力的航天器上,所以,该薄膜的设计和制备都依据我国空间实验室或空间站所面临的环境和轨道之上。
发明内容
本发明的目的是为了解决空间微小碎片的在轨探测,提出一种空间微小碎片的探测方法。
本发明的目的是通过以下技术方案实现的。
本发明的一种空间微小碎片的探测方法,利用探测薄膜暴露在空间进行微小碎片俘获,然后将探测薄膜运回地面,采用物理分析方法分析微小碎片的注入深度和碎片化学组成,根据撞击深度公式的计算,注入深度可以反映出入射碎片的尺寸;其具体步骤为:
1)设计并制备探测薄膜:
探测薄膜由上到下包括俘获碎片层、过渡层和基底材料;制备两个或两个以上探测薄膜;
俘获碎片层所用的材料为Au,其厚度为1~4μm;俘获碎片层为探测薄膜的主要组成部分,主要作用是直接收到空间碎片的撞击并形成注入现象,然后由地面的分析仪器对薄膜进行分析,分析该层中空间碎片造成的物理损害和空间碎片在薄膜中的注入元素组成;
Au原子序数较大,在宇宙中微流星体中含量较少,由于航天器中采用Au也较少,因此在人造空间碎片中很少见到Au;同时,Au具有良好的惰性,其它空间环境效应对Au的影响较少;
根据高速撞击原理,俘获碎片层所能俘获并分析到的空间碎片为mg量级;
基底材料采用的材料为1~3mm厚的石英玻璃,它是碎片俘获层所附着的结构,该材料要求是对空间环境效应均不敏感,同时重量要轻,并易于安装和便于分析仪器夹持;另外,如果较大颗粒可能会击穿碎片俘获层,所以基底材料需要较高纯度,尽量减少对地面分析的干扰;
过渡层采用的材料为Ir,其厚度为50~100nm;过渡层的选择除了考虑与碎片俘获层相同的因素外,还要考虑与Au和基底材料的扩散性和浸润性;
2)空间搭载
将两个或两个以上探测薄膜搭载在低地球轨道上的航天器上,分别安装在航天器的迎风面和背风面上,经过空间暴露后,然后携带回地面;在空间暴露的时间为1~24个月;
3)地面分析
地面分析采用二次离子质谱或离子枪剖析下X射线光电子能谱的分析方法,获得探测薄膜分析后数据与空间碎片的相关数据的对应关系;从而获得所俘获碎片的化学组成;同时,通过离子枪剖析时间和离子枪剖析速度获得碎片注入深度;
碎片撞击深度公式为式(1)所示:
p ≈ 0.06 m p 0.352 ρ t 1 / 6 v ⊥ 2 / 3 - - - ( 1 )
式(1)中,p为碎片注入深度(m)、mp为碎片质量(g)、ρ为碎片密度g/cm3、v为碎片撞击速度m/s;
根据碎片撞击深度公式的计算,碎片的注入深度可以反映出入射碎片的尺寸Φ(nm)近似等于1.5t(s),t为分析仪器离子溅射剖析发现碎片所需时间。
有益效果
本发明利用低重量无功耗的探测薄膜,实现空间微小碎片的探测,俘获碎片层所能俘获并分析到的空间碎片为mg量级。
附图说明
图1为探测薄膜的结构示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
一种空间微小碎片的探测方法,利用探测薄膜暴露在空间进行微小碎片俘获,然后将探测薄膜运回地面,采用物理分析方法分析微小碎片的注入深度和碎片化学组成,根据撞击深度公式的计算,注入深度可以反映出入射碎片的尺寸;其具体步骤为:
1)设计并制备探测薄膜:
探测薄膜由上到下包括俘获碎片层、过渡层和基底材料,如图1所示;制备两个探测薄膜;
俘获碎片层所用的材料为Au,其厚度为4μm;俘获碎片层为探测薄膜的主要组成部分,主要作用是直接收到空间碎片的撞击并形成注入现象,然后由地面的分析仪器对薄膜进行分析,分析该层中空间碎片造成的物理损害和空间碎片在薄膜中的注入元素组成;根据高速撞击原理,俘获碎片层所能俘获并分析到的空间碎片为mg量级;
基底材料采用的材料为1mm厚的石英玻璃,它是碎片俘获层所附着的结构;
过渡层采用的材料为Ir,其厚度为50nm;
2)空间搭载
将两个探测薄膜搭载在低地球轨道上的航天器上,分别安装在航天器的迎风面和背风面上,经过空间暴露后,然后携带回地面;在空间暴露的时间为3个月;
3)地面分析
地面分析采用二次离子质谱或离子枪剖析下X射线光电子能谱的分析方式,获得探测薄膜分析后数据与空间碎片的相关数据的对应关系;从而获得所俘获碎片的化学组成和碎片尺寸;通过离子枪剖析时间和离子枪剖析速度获得碎片注入深度;
碎片撞击深度公式为式(1)所示:
p ≈ 0.06 m p 0.352 ρ t 1 / 6 v ⊥ 2 / 3 - - - ( 1 )
式(1)中,p为碎片注入深度(m)、mp为碎片质量(g)、ρ为碎片密度g/cm3、v为碎片撞击速度m/s;
v为空间碎片撞击速度一般为近似固定值,根据离子枪剖析时间和离子枪剖析速度获得碎片注入深度p,且通过质谱分析获得碎片化学组成和密度ρ,从而根据式(1)获得碎片质量mp;由此反映出入射碎片的尺寸Φ(nm)近似等于1.5t(s),t为分析仪器离子溅射剖析发现碎片所需时间。

Claims (1)

1.一种空间微小碎片的探测方法,其特征在于:利用探测薄膜暴露在空间进行微小碎片俘获,然后将探测薄膜运回地面,采用物理分析方法分析微小碎片的注入深度和碎片化学组成,根据撞击深度公式的计算,注入深度可以反映出入射碎片的尺寸;其具体步骤为:
1)设计并制备探测薄膜:
探测薄膜由上到下包括俘获碎片层、过渡层和基底材料;制备两个或两个以上探测薄膜;
俘获碎片层所用的材料为Au,其厚度为1~4μm;
基底材料采用的材料为1~3mm厚的石英玻璃;
过渡层采用的材料为Ir,其厚度为50~100nm;
2)空间搭载
将两个或两个以上探测薄膜搭载在低地球轨道上的航天器上,分别安装在航天器的迎风面和背风面上,经过空间暴露后,然后携带回地面;在空间暴露的时间为1~24个月;
3)地面分析
地面分析采用二次离子质谱或离子枪剖析下X射线光电子能谱的分析方法,获得探测薄膜分析后数据与空间碎片的相关数据的对应关系;从而获得所俘获碎片的化学组成;同时,通过离子枪剖析时间和离子枪剖析速度获得碎片注入深度;
碎片撞击深度公式为式(1)所示:
p ≈ 0.06 m p 0.352 ρ t 1 / 6 v ⊥ 2 / 3 - - - ( 1 )
式(1)中,p为碎片注入深度、mp为碎片质量、ρt为碎片密度、v为碎片撞击速度,其中,p的单位为m,mp的单位为g,ρt的单位为g/cm3,v的单位为m/s;
根据碎片撞击深度公式的计算,碎片的注入深度可以反映出入射碎片的尺寸Φ近似等于1.5t,其中尺寸Φ的单位为nm,t的单位为s;t为分析仪器离子溅射剖析发现碎片所需时间。
CN2010105227282A 2010-10-26 2010-10-26 一种空间微小碎片的探测方法 Active CN102042820B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105227282A CN102042820B (zh) 2010-10-26 2010-10-26 一种空间微小碎片的探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105227282A CN102042820B (zh) 2010-10-26 2010-10-26 一种空间微小碎片的探测方法

Publications (2)

Publication Number Publication Date
CN102042820A CN102042820A (zh) 2011-05-04
CN102042820B true CN102042820B (zh) 2012-07-11

Family

ID=43909179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105227282A Active CN102042820B (zh) 2010-10-26 2010-10-26 一种空间微小碎片的探测方法

Country Status (1)

Country Link
CN (1) CN102042820B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495960B (zh) * 2011-12-02 2013-04-17 北京理工大学 一种碎片对航天器结构破坏效应的粒子评估方法
CN108459351B (zh) * 2018-03-29 2019-10-08 北京卫星环境工程研究所 电阻型的空间碎片探测装置及探测方法
CN112304365B (zh) * 2020-09-25 2022-07-05 北京空间飞行器总体设计部 一种在轨微小空间碎片多参数测量探头及测量方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846511A (zh) * 2010-04-29 2010-09-29 中国科学院紫金山天文台 一种空间碎片的检测***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000190900A (ja) * 1998-12-28 2000-07-11 Nec Corp 宇宙デブリ検出方法および宇宙デブリ検出装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846511A (zh) * 2010-04-29 2010-09-29 中国科学院紫金山天文台 一种空间碎片的检测***

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JP特开2000-190900A 2000.07.11
曹光伟.空间微小碎片探测器研制.《中国优秀硕士学位论文全文数据库(电子期刊)》.2008,(第10期),全文. *
曹光伟等.空间微小碎片探测器设计.《科学技术与工程》.2007,第7卷(第9期),1977-1980. *
董吉辉,胡企铨.空间碎片的激光雷达探测.《激光技术》.2007,第31卷(第2期),185-187. *

Also Published As

Publication number Publication date
CN102042820A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
Vago et al. ESA ExoMars program: The next step in exploring Mars
Kalsbeek et al. Anatomy of the Early Proterozoic Nagssugtoqidian orogen, West Greenland, explored by reconnaissance SHRIMP U-Pb zircon dating
Roy et al. 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the southern ocean
Koskinen IceCube-DeepCore-PINGU: fundamental neutrino and dark matter physics at the South Pole
Le Roux et al. Recent atmospheric Pb deposition at a rural site in southern Germany assessed using a peat core and snowpack, and comparison with other archives
CN102042820B (zh) 一种空间微小碎片的探测方法
Baker et al. Variations in stalagmite luminescence laminae structure at Poole's Cavern, England, AD 1910±1996: calibration of a palaeoprecipitation proxy
Baldini et al. Detecting and quantifying palaeoseasonality in stalagmites using geochemical and modelling approaches
Hathorne et al. Laser ablation ICP-MS screening of corals for diagenetically affected areas applied to Tahiti corals from the last deglaciation
Rubin et al. Fossiliferous Lana'i deposits formed by multiple events rather than a single giant tsunami
Marshall et al. The use of ‘bomb spike’calibration and high-precision AMS 14C analyses to date salt-marsh sediments deposited during the past three centuries
Rasbury et al. Dating of the time of sedimentation using U Pb ages for paleosol calcite
Li et al. Application of Avaatech X-ray fluorescence core-scanning in Sr/Ca analysis of speleothems
Mix et al. Atmospheric flow deflection in the late Cenozoic Sierra Nevada
Trompetter et al. Air particulate research capability at the New Zealand ion beam analysis facility using PIXE and IBA techniques
Frisia et al. Synchrotron radiation applications to past volcanism archived in speleothems: An overview
Rech et al. Oxygen isotopes in terrestrial gastropod shells track Quaternary climate change in the American Southwest
Changery Dust climatology of the western United States
CN112881328A (zh) 一种基于短波红外光谱技术的蚀变岩强度预测方法
Wang et al. Mineral and trace element analysis in dustfall collected in the Hexi Corridor and its significance as an indicator of environmental changes
Towery et al. A review of hail-measuring instruments
Thevenon et al. Ancient versus modern mineral dust transported to high-altitude alpine glaciers evidences Saharan sources and atmospheric circulation changes
Yang et al. Chemical analyses of pore water from boreholes USW SD-6 and USW WT-24, Yucca Mountain, Nevada
CN209117881U (zh) 一种地震检波器的地面耦合装置及包括其的地震检波器
CN110411778A (zh) 一种煤泥采样方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant