CN102039184B - Supported non-metallocene catalyst as well as preparation method and application thereof - Google Patents

Supported non-metallocene catalyst as well as preparation method and application thereof Download PDF

Info

Publication number
CN102039184B
CN102039184B CN2009101801006A CN200910180100A CN102039184B CN 102039184 B CN102039184 B CN 102039184B CN 2009101801006 A CN2009101801006 A CN 2009101801006A CN 200910180100 A CN200910180100 A CN 200910180100A CN 102039184 B CN102039184 B CN 102039184B
Authority
CN
China
Prior art keywords
group
alkyl
magnesium
compound
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009101801006A
Other languages
Chinese (zh)
Other versions
CN102039184A (en
Inventor
李传峰
任鸿平
姚小利
马忠林
郭峰
汪开秀
刘经伟
王亚明
杨立娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Yangzi Petrochemical Co Ltd
Original Assignee
China Petroleum and Chemical Corp
Sinopec Yangzi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Yangzi Petrochemical Co Ltd filed Critical China Petroleum and Chemical Corp
Priority to CN2009101801006A priority Critical patent/CN102039184B/en
Priority to US13/503,825 priority patent/US8952112B2/en
Priority to JP2012534518A priority patent/JP5670460B2/en
Priority to EP10825929.2A priority patent/EP2495261B1/en
Priority to PCT/CN2010/001604 priority patent/WO2011050565A1/en
Publication of CN102039184A publication Critical patent/CN102039184A/en
Application granted granted Critical
Publication of CN102039184B publication Critical patent/CN102039184B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

The invention relates to a supported non-metallocene catalyst and a preparation method thereof. The catalyst has the characteristics of simple and practical preparation method, flexible and adjustable polymerization activity and the like, and the non-metallocene compound in the catalyst and the chemical treatment agent have synergy beneficial to giving play to activity. The invention also relates to an application of the supported non-metallocene catalyst in olefin homopolymerization/copolymerization. Compared with the prior art, the catalyst is characterized in that the dosage of the promoter is less in the application.

Description

Load type non-metallocene catalyst, its preparation method and application thereof
Technical field
The present invention relates to a kind of non-metallocene catalyst.Particularly, the present invention relates to a kind of load type non-metallocene catalyst, its preparation method and the application in alkene homopolymerization/copolymerization thereof.
Background technology
The non-metallocene catalyst that middle and later periods nineteen nineties occurs, claim again luxuriant rear catalyst, the central atom of Primary Catalysts has comprised nearly all transition metal, reach at some aspect of performance, even surpass metallocene catalyst, become after Ziegler, Ziegler-Natta and metallocene catalyst the 4th generation olefin polymerization catalysis.By the excellent property of the polyolefin products of such catalyzer manufacturing, and low cost of manufacture.The non-metallocene catalyst ligating atom is oxygen, nitrogen, sulphur and phosphorus, do not contain cyclopentadienyl group or its deriveding group, such as indenyl and fluorenyl etc., it is characterized in that central ion has stronger Electron Affinities, and have cis alkyl or halogen metal division center, carry out easily alkene insertion and σ-key and shift, the easy alkylation of central metal is conducive to the generation at cation activity center; The title complex that forms has the geometric configuration of restriction, stereoselectivity, electronegativity and chirality controllability, and in addition, formed metal-carbon key polarizes easily, more is conducive to polymerization and the copolymerization of alkene.Therefore, even under higher polymeric reaction temperature, also can obtain the olefin polymer of higher molecular weight.
But homogeneous catalyst has been proved it in olefinic polyreaction has active duration short, easily sticking still, high methylaluminoxane consumption, and obtain the too low or too high weak point of polymericular weight, only can be used for solution polymerization process or high-pressure polymerization process, seriously limit its industrial applicability.
Patent ZL 01126323.7, ZL 02151294.9ZL 02110844.7 and WO03/010207 disclose a kind of alkene homopolymerization/catalyst for copolymerization or catalyst system, has widely alkene homopolymerization/copolymerization performance, but need higher promotor consumption during in olefinic polymerization at the disclosed catalyzer of this patent or catalyst system, could obtain suitable olefin polymerizating activity, and it is short to exist active duration in the polymerization process, the phenomenons such as the sticking still of polymkeric substance.
Common way be with non-metallocene catalyst by certain load technology, make loaded catalyst, thereby improve the polymerization of alkene and the particle form of resulting polymers.It shows as the initial activity that has suitably reduced to a certain extent catalyzer, the polymerization activity life-span of extending catalyst, reduce even avoided caking or the cruelly poly-phenomenon in the polymerization process, improve the form of polymkeric substance, improve the apparent density of polymkeric substance, can make it satisfy more polymerization technique process, such as vapour phase polymerization or slurry polymerization etc.
For patent ZL 01126323.7, ZL 02151294.9ZL 02110844.7 and the disclosed non-metallocene catalyst of WO03/010207, patent CN 1539855A, CN1539856A, CN 1789291A, CN 1789292A, CN 1789290A, WO/2006/063501,200510119401.x etc. provide various ways to carry out load obtaining load type non-metallocene catalyst, but these patents all relate on the carrier after the Nonmetallocene organic compound that will contain transition metal is carried on processing.
Existing olefin polymerization catalysis patent is mostly based on metallocene catalyst, such as US4808561, US 5240894, CN 1049439, CN 1136239, CN 1344749, CN1126480, CN 1053673, CN 1307594, CN 1130932, CN 1103069, CN1363537, CN 1060179, US 574417, EP 685494, US 4871705 and EP0206794 etc., but these patents also all relate on the carrier after the metallocene compound that will contain transition metal is carried on processing.
Catalyzer take Magnesium Chloride Anhydrous as carrier demonstrates higher catalytic activity in olefin polymerization process, but this type of catalyzer is highly brittle, and is broken easily in polymerization reactor, thereby causes polymer morphology bad.Silicon dioxide carried catalyzer has good flowability, can be used for gas fluidised bed polymerisation, but silicon dioxide carried metallocene and non-metallocene catalyst then show lower catalytic activity.Therefore if magnesium chloride and silicon-dioxide are well organically combined, just may prepare and have high catalytic activity, the catalyzer of the controlled and good abrasion strength resistance of globule size.
Patent EP260130 proposes loaded metallocene or non-luxuriant transition metal compound loaded on the silica supports that methylaluminoxane is processed, and the non-luxuriant transition metal here only refers to ZrCl 4, TiCl 4Perhaps VOCl 3, this patent think optimum be carrier surface through the mixture of organic-magnesium or magnesium compound and aluminum alkyls, but this process more complicated needs to pass through many preparation processes.
Patent CN200610026765.8 discloses a class single active center Z-N olefin polymerization catalysis.This catalyzer, obtains after processing through pretreated carrier (such as silica gel), metallic compound (such as titanium tetrachloride) and this electron donor by adding in magnesium compound (such as magnesium chloride)/tetrahydrofuran solution as electron donor with the salicylic alidehyde imine derivative of the salicylic alidehyde imine that contains coordinating group or replacement.
CN200610026766.2 is similar with it, discloses a class and has contained heteroatomic organic compound and the application in Ziegler-Natta catalyst thereof.
Even so, the ubiquitous problem of the load type non-metallocene catalyst that exists in the prior art is, the load process is complicated, generally need to carry out the multistep of carrier and process afterwards again load non-metallocene metal complexes, olefin polymerizating activity is low and be difficult to regulate, and in order to improve its polymerization activity, when carrying out olefinic polymerization, must assist higher promotor consumption.
Therefore, present present situation is, still needs a kind of load type non-metallocene catalyst, and its preparation method is simple, is fit to suitability for industrialized production, and can overcomes those problems that exist in the prior art load type non-metallocene catalyst.
Summary of the invention
The inventor finds through diligent research on the basis of existing technology, by making described load type non-metallocene catalyst with a kind of specific preparation method, just can solve foregoing problems, and finish thus the present invention.
According to the preparation method of this load type non-metallocene catalyst, need not add proton donor and electron donor (such as in this area for this reason and the conventional diether compounds that uses) etc., also need not harsh reaction requirement and reaction conditions.Therefore, the preparation method of this loaded catalyst is simple, and is very suitable for suitability for industrialized production.
Particularly, the present invention relates to the content of following aspect:
1. the preparation method of a load type non-metallocene catalyst may further comprise the steps:
Magnesium compound and Nonmetallocene title complex are dissolved in the solvent, obtain the step of magnesium compound solution;
Optional porous support through thermal activation treatment is mixed with described magnesium compound solution, obtain the step of mixed serum;
With described mixed serum drying, obtain the step of complex carrier; With
Process described complex carrier with the chemical processing agent that is selected from IVB family metallic compound, obtain the step of described load type non-metallocene catalyst.
2. according to the described preparation method of aforementioned either side, also be included in and adopt described chemical processing agent to process before the described complex carrier, with the step that helps the described complex carrier of chemical processing agent pre-treatment that is selected from aikyiaiurnirsoxan beta, aluminum alkyls or its arbitrary combination.
3. according to the described preparation method of aforementioned either side, it is characterized in that, described porous support is selected from olefin homo or multipolymer, polyvinyl alcohol or its multipolymer, cyclodextrin, polyester or copolyesters, polymeric amide or copolyamide, ryuron or multipolymer, Voncoat R 3310 or multipolymer, methacrylic acid ester homopolymer or multipolymer, styrene homopolymers or multipolymer, the partial cross-linked form of these homopolymer or multipolymer, periodic table of elements IIA, IIIA, the refractory oxide of IVA or IVB family metal or infusibility composite oxides, clay, molecular sieve, mica, polynite, in wilkinite and the diatomite one or more, be preferably selected from partial cross-linked styrene polymer, silicon-dioxide, aluminum oxide, magnesium oxide, the oxidation sial, the oxidation magnalium, titanium dioxide, in molecular sieve and the polynite one or more more preferably are selected from silicon-dioxide.
4. according to the described preparation method of aforementioned either side, it is characterized in that, described magnesium compound is selected from one or more in magnesium halide, alkoxyl group magnesium halide, alkoxyl magnesium, alkyl magnesium, alkyl halide magnesium and the alkyl alkoxy magnesium, be preferably selected from the magnesium halide one or more, more preferably magnesium chloride.
5. according to the described preparation method of aforementioned either side, it is characterized in that described solvent is selected from C 6-12Aromatic hydrocarbon, halo C 6-12In aromatic hydrocarbon, ester and the ether one or more are preferably selected from C 6-12In aromatic hydrocarbon and the tetrahydrofuran (THF) one or more, most preferably tetrahydrofuran (THF).
6. according to the described preparation method of aforementioned either side, it is characterized in that described Nonmetallocene title complex is selected from one or more in the compound with following chemical structural formula:
Figure G2009101801006D00041
Be preferably selected from compound (A) with following chemical structural formula and in the compound (B) one or more:
Figure G2009101801006D00042
More preferably be selected to compound (A-4) and compound (B-1) to compound (B-4) one or more of compound (A-1) with following chemical structural formula:
Figure G2009101801006D00051
Figure G2009101801006D00061
In above all chemical structural formulas,
Q is 0 or 1;
D is 0 or 1;
M is 1,2 or 3;
M is selected from periodic table of elements III-th family to XI family atoms metal, preferred IVB family atoms metal, more preferably Ti (IV) and Zr (IV);
N is 1,2,3 or 4, depends on the valence state of described central metal atom M;
X is selected from halogen, hydrogen atom, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl, oxy radical, nitrogen-containing group, sulfur-containing group, boron-containing group, contain aluminium base group, phosphorus-containing groups, silicon-containing group, germanic group or contain tin group, a plurality of X can be identical, also can be different, and can also be each other in key or Cheng Huan;
A be selected from Sauerstoffatom, sulphur atom, selenium atom, -NR 23R 24,-N (O) R 25R 26,
Figure G2009101801006D00063
-PR 28R 29,-P (O) R 30OR 31, sulfuryl, sulfoxide group or-Se (O) R 39, N, O, S, Se and the P coordination atom of respectively doing for oneself wherein;
B is selected from nitrogen-atoms, nitrogen-containing group, phosphorus-containing groups or C 1-C 30Alkyl;
D is selected from nitrogen-atoms, Sauerstoffatom, sulphur atom, selenium atom, phosphorus atom, nitrogen-containing group, phosphorus-containing groups, C 1-C 30Alkyl, sulfuryl, sulfoxide group,
Figure G2009101801006D00064
-N (O) R 25R 26,
Figure G2009101801006D00065
Or-P (O) R 32(OR 33), N, O, S, Se and the P coordination atom of respectively doing for oneself wherein;
E is selected from nitrogen-containing group, oxy radical, sulfur-containing group, contains seleno group, phosphorus-containing groups or cyano group, wherein N, O, S, Se and the P coordination atom of respectively doing for oneself;
F is selected from nitrogen-atoms, nitrogen-containing group, oxy radical, sulfur-containing group, contain seleno group or phosphorus-containing groups, wherein N, O, S, Se and the P coordination atom of respectively doing for oneself;
G is selected from C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group;
Y is selected from Sauerstoffatom, nitrogen-containing group, oxy radical, sulfur-containing group, contain seleno group or phosphorus-containing groups, wherein N, O, S, Se and the P coordination atom of respectively doing for oneself;
Z is selected from nitrogen-containing group, oxy radical, sulfur-containing group, contains seleno group, phosphorus-containing groups or cyano group, wherein N, O, S, Se and the P coordination atom of respectively doing for oneself;
→ represent singly-bound or two key;
-represent covalent linkage or ionic linkage;
---represent coordinate bond, covalent linkage or ionic linkage;
R 1To R 4, R 6To R 36, R 38And R 39Be selected from independently of one another hydrogen, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group, above-mentioned group can be the same or different to each other, and wherein adjacent group can combine togather into key or Cheng Huan, is preferably formed aromatic ring, and
R 5Be selected from lone-pair electron on the nitrogen, hydrogen, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl, oxy radical, sulfur-containing group, nitrogen-containing group, contain seleno group or phosphorus-containing groups; Work as R 5For oxy radical, sulfur-containing group, nitrogen-containing group, when containing seleno group or phosphorus-containing groups, R 5In N, O, S, P and Se can be used as coordination and carry out coordination with atom and described center IVB family atoms metal.
7. according to the described preparation method of aforementioned either side, it is characterized in that,
Described halogen is selected from F, Cl, Br or I;
Described nitrogen-containing group is selected from
Figure G2009101801006D00071
-NR 23R 24,-T-NR 23R 24Or-N (O) R 25R 26
Described phosphorus-containing groups is selected from -PR 28R 29,-P (O) R 30R 31Or-P (O) R 32(OR 33);
Described oxy radical be selected from hydroxyl ,-OR 34With-T-OR 34
Described sulfur-containing group is selected from-SR 35,-T-SR 35,-S (O) R 36Or-T-SO 2R 37
The described seleno group that contains is selected from-SeR 38,-T-SeR 38,-Se (O) R 39Or-T-Se (O) R 39
Described group T is selected from C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group;
Described R 37Be selected from hydrogen, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group;
Described C 1-C 30Alkyl is selected from C 1-C 30Alkyl, C 7-C 50Alkaryl, C 7-C 50Aralkyl, C 3-C 30Cyclic alkyl, C 2-C 30Thiazolinyl, C 2-C 30Alkynyl, C 6-C 30Aryl, C 8-C 30Condensed ring radical or C 4-C 30Heterocyclic radical, wherein said heterocyclic radical contain 1-3 heteroatoms that is selected from nitrogen-atoms, Sauerstoffatom or sulphur atom;
The C of described replacement 1-C 30Alkyl is selected from one or more aforementioned halogens or aforementioned C 1-C 30Alkyl is as substituent aforementioned C 1-C 30Alkyl;
Described safing function group is selected from aforementioned halogen, aforementioned oxy radical, aforementioned nitrogen-containing group, silicon-containing group, germanic group, aforementioned sulfur-containing group, contains tin group, C 1-C 10Ester group or nitro,
Wherein, described boron-containing group is selected from BF 4 -, (C 6F 5) 4B -Or (R 40BAr 3) -
Describedly contain aluminium base group and be selected from aluminum alkyls, AlPh 4 -, AlF 4 -, AlCl 4 -, AlBr 4 -, AlI 4 -Or R 41AlAr 3 -
Described silicon-containing group is selected from-SiR 42R 43R 44Or-T-SiR 45
Described germanic group is selected from-GeR 46R 47R 48Or-T-GeR 49
Describedly contain tin group and be selected from-SnR 50R 51R 52,-T-SnR 53Or-T-Sn (O) R 54,
Described Ar represents C 6-C 30Aryl, and
R 40To R 54Be selected from independently of one another hydrogen, aforementioned C 1-C 30The C of alkyl, aforementioned replacement 1-C 30Alkyl or aforementioned safing function group, wherein these groups can be the same or different to each other, and wherein adjacent group can combine togather into key or Cheng Huan, and described group T ditto defines.
8. according to the described preparation method of aforementioned either side, it is characterized in that described Nonmetallocene title complex is selected from one or more in the compound with following chemical structural formula:
Figure G2009101801006D00091
Be preferably selected from the compound with following chemical structural formula one or more:
Figure G2009101801006D00092
9. according to the described preparation method of aforementioned either side, it is characterized in that, take the mol ratio of the described magnesium compound of Mg element and described Nonmetallocene title complex as 1: 0.01-1, preferred 1: 0.04-0.4, more preferably 1: 0.08-0.2, the ratio of described magnesium compound and described solvent is 1mol: 75~400ml, preferred 1mol: 150~300ml, more preferably 1mol: 200~250ml, take the mass ratio of the described magnesium compound of magnesium compound solid and described porous support as 1: 0.1-20, preferred 1: 0.5-10, more preferably 1: 1-5, and in the described magnesium compound of Mg element with take the mol ratio of the described chemical processing agent of IVB family metallic element as 1: 0.01-1, preferred 1: 0.01-0.50, more preferably 1: 0.10-0.30.
10. according to the described preparation method of aforementioned either side, it is characterized in that, described IVB family metallic compound is selected from one or more in IVB family metal halide, IVB family metal alkyl compound, IVB family metal alkoxide compound, IVB family metal alkyl halides and the IVB family metal alkoxide halogenide, be preferably selected from the IVB family metal halide one or more, more preferably be selected from TiCl 4, TiBr 4, ZrCl 4, ZrBr 4, HfCl 4And HfBr 4In one or more, most preferably be selected from TiCl 4And ZrCl 4In one or more.
11. according to the described preparation method of aforementioned either side, it is characterized in that, described aikyiaiurnirsoxan beta is selected from methylaluminoxane, ethylaluminoxane, in isobutyl aluminium alkoxide and the normal-butyl alumina alkane one or more, more preferably be selected from methylaluminoxane and the isobutyl aluminium alkoxide one or more, and described aluminum alkyls is selected from trimethyl aluminium, triethyl aluminum, tri-propyl aluminum, triisobutyl aluminium, three n-butylaluminum, triisopentyl aluminium, three n-pentyl aluminium, three hexyl aluminium, three isohexyl aluminium, in diethylmethyl aluminium and the dimethyl ethyl aluminium one or more, be preferably selected from trimethyl aluminium, triethyl aluminum, in tri-propyl aluminum and the triisobutyl aluminium one or more most preferably are selected from triethyl aluminum and the triisobutyl aluminium one or more.
12. according to the described preparation method of aforementioned either side, it is characterized in that, in the described magnesium compound of Mg element and the mol ratio that helps chemical processing agent take Al element described as 1: 0-1.0, preferred 1: 0-0.5, more preferably 1: 0.1-0.5.
13. a load type non-metallocene catalyst, it is by making according to the described preparation method of aforementioned either side.
14. alkene homopolymerization/copolymerization process, it is characterized in that, take according to aspect 13 described load type non-metallocene catalysts as Primary Catalysts, to be selected from aikyiaiurnirsoxan beta, aluminum alkyls, haloalkyl aluminium, boron fluothane, boron alkyl and the boron alkyl ammonium salt one or more as promotor, make alkene homopolymerization or copolymerization.
Technique effect
Preparation method's technique simple possible of load type non-metallocene catalyst of the present invention, the composition of key substance and content are controlled in the catalyzer.Especially the charge capacity of Nonmetallocene title complex is adjustable, can give full play to it and obtain the performance of polyolefin product at catalysis in olefine polymerization, thereby and can regulate molecular weight distribution and the viscosity-average molecular weight of polymeric articles (such as ultrahigh molecular weight polyethylene(UHMWPE)) by the difference of regulating add-on.
In addition, by adopting different chemical processing agent and the chemical processing agent consumptions of helping, can obtain polymerization activity from low to high and adjustable load type non-metallocene catalyst, adapt to thus different olefinic polymerization requirements, thereby and can cooperate the preparation process of the add-on of Nonmetallocene title complex that catalyzer and polymer performance are regulated.
The resulting composite carrier load type catalyst activity of method for preparing catalyst provided by the invention component (Nonmetallocene title complex and chemical processing agent) has formed synergy, the activity the when activity when namely both exist simultaneously is higher than any component Individual existence.
Also find simultaneously, when the load type non-metallocene catalyst that employing the present invention obtains and promotor consist of catalyst system, only need fewer promotor (such as methylaluminoxane or triethyl aluminum) consumption, just can obtain high olefin polymerizating activity, show significant comonomer effect during copolymerization, namely under relatively equal condition, Copolymerization activity is higher than the homopolymerization activity, and has good polymer morphology and high polymer bulk density by polymkeric substance such as catalyzed alkene homopolymerization or the resulting polyethylene of copolymerization.
Embodiment
The below is elaborated to the specific embodiment of the present invention, but it is pointed out that protection scope of the present invention is not subjected to the restriction of these embodiments, but is determined by claims of appendix.
According to the present invention, relate to a kind of preparation method of load type non-metallocene catalyst, may further comprise the steps: magnesium compound and Nonmetallocene title complex are dissolved in the solvent, obtain the step of magnesium compound solution; Optional porous support through thermal activation treatment is mixed with described magnesium compound solution, obtain the step of mixed serum; With described mixed serum drying, obtain the step of complex carrier; With process described complex carrier with the chemical processing agent that is selected from IVB family metallic compound, obtain the step of described load type non-metallocene catalyst.
Below the step that obtains described magnesium compound solution is carried out specific description.
Particularly, make described magnesium compound (solid) and described Nonmetallocene title complex be dissolved in suitable solvent (below be sometimes referred to as the solvent of described magnesium compound " be used for dissolve "), thereby obtain described magnesium compound solution.
As described solvent, such as enumerating C 6-12Aromatic hydrocarbon, halo C 6-12Aromatic hydrocarbon, ester and ether equal solvent.Specifically such as enumerating toluene, dimethylbenzene, trimethylbenzene, ethylbenzene, diethylbenzene, chlorotoluene, chloro ethylbenzene, bromo toluene, bromo ethylbenzene, ethyl acetate and tetrahydrofuran (THF) etc.Wherein, preferred C 6-12Aromatic hydrocarbon and tetrahydrofuran (THF), most preferably tetrahydrofuran (THF).
These solvents can be used alone, and also can use with the arbitrarily multiple mixing of ratio.
In order to prepare described magnesium compound solution, described magnesium compound and the metering of described Nonmetallocene title complex added to dissolve in the described solvent to getting final product.
When the described magnesium compound solution of preparation, ratio in the described magnesium compound (solid) of magnesium elements and the described solvent that is used for dissolving described magnesium compound is generally 1mol: 75~400ml, preferred 1mol: 150~300ml, more preferably 1mol: 200~250ml.
There is no particular limitation to the preparation time (being the dissolution time of described magnesium compound and described Nonmetallocene title complex) of described magnesium compound solution, but be generally 0.5~24h, preferred 4~24h.In this preparation process, can utilize and stir the dissolving that promotes described magnesium compound and described Nonmetallocene title complex.This stirring can be adopted any form, such as stirring rake (rotating speed is generally 10~1000 rev/mins) etc.As required, sometimes can promote by suitable heating dissolving.
Below described magnesium compound is carried out specific description.
According to the present invention, term " magnesium compound " uses the common concept in this area, refers to as the conventional organic or inorganic solid water-free magnesium-containing compound that uses of the carrier of supported olefin polymerization catalyst.
According to the present invention, as described magnesium compound, such as enumerating magnesium halide, alkoxyl group magnesium halide, alkoxyl magnesium, alkyl magnesium, alkyl halide magnesium and alkyl alkoxy magnesium.
Particularly, as described magnesium halide, such as enumerating magnesium chloride (MgCl 2), magnesium bromide (MgBr 2), magnesium iodide (MgI 2) and magnesium fluoride (MgF 2) etc., preferred magnesium chloride wherein.
As described alkoxyl group magnesium halide, such as enumerating methoxyl group chlorination magnesium (Mg (OCH 3) Cl), oxyethyl group magnesium chloride (Mg (OC 2H 5) Cl), propoxy-magnesium chloride (Mg (OC 3H 7) Cl), n-butoxy magnesium chloride (Mg (OC 4H 9) Cl), isobutoxy magnesium chloride (Mg (i-OC 4H 9) Cl), methoxyl group magnesium bromide (Mg (OCH 3) Br), oxyethyl group magnesium bromide (Mg (OC 2H 5) Br), propoxy-magnesium bromide (Mg (OC 3H 7) Br), n-butoxy magnesium bromide (Mg (OC 4H 9) Br), isobutoxy magnesium bromide (Mg (i-OC 4H 9) Br), methoxyl group magnesium iodide (Mg (OCH 3) I), oxyethyl group magnesium iodide (Mg (OC 2H 5) I), propoxy-magnesium iodide (Mg (OC 3H 7) I), n-butoxy magnesium iodide (Mg (OC 4H 9) I) and isobutoxy magnesium iodide (Mg (i-OC 4H 9) I) etc., wherein preferred methoxyl group chlorination magnesium, oxyethyl group magnesium chloride and isobutoxy magnesium chloride.
As described alkoxyl magnesium, such as enumerating magnesium methylate (Mg (OCH 3) 2), magnesium ethylate (Mg (OC 2H 5) 2), propoxy-magnesium (Mg (OC 3H 7) 2), butoxy magnesium (Mg (OC 4H 9) 2), isobutoxy magnesium (Mg (i-OC 4H 9) 2) and 2-ethyl hexyl oxy magnesium (Mg (OCH 2CH (C 2H 5) C 4H) 2) etc., wherein preferred magnesium ethylate and isobutoxy magnesium.
As described alkyl magnesium, such as enumerating methyl magnesium (Mg (CH 3) 2), magnesium ethide (Mg (C 2H 5) 2), propyl group magnesium (Mg (C 3H 7) 2), normal-butyl magnesium (Mg (C 4H 9) 2) and isobutyl-magnesium (Mg (i-C 4H 9) 2) etc., wherein preferred magnesium ethide and normal-butyl magnesium.
As described alkyl halide magnesium, such as enumerating methylmagnesium-chloride (Mg (CH 3) Cl), ethylmagnesium chloride (Mg (C 2H 5) Cl), propyl group magnesium chloride (Mg (C 3H 7) Cl), normal-butyl chlorination magnesium (Mg (C 4H 9) Cl), isobutyl-chlorination magnesium (Mg (i-C 4H 9) Cl), methyl-magnesium-bromide (Mg (CH 3) Br), ethylmagnesium bromide (Mg (C 2H 5) Br), propyl group magnesium bromide (Mg (C 3H 7) Br), normal-butyl bromination magnesium (Mg (C 4H 9) Br), selenium alkynide (Mg (i-C 4H 9) Br), methyl magnesium iodide (Mg (CH 3) I), ethyl magnesium iodide (Mg (C 2H 5) I), propyl group magnesium iodide (Mg (C 3H 7) I), normal-butyl iodate magnesium (Mg (C 4H 9) I) and isobutyl-iodate magnesium (Mg (i-C 4H 9) I) etc., wherein preferable methyl magnesium chloride, ethylmagnesium chloride and isobutyl-chlorination magnesium.
As described alkyl alkoxy magnesium, such as enumerating methyl methoxy base magnesium (Mg (OCH 3) (CH 3)), methyl ethoxy magnesium (Mg (OC 2H 5) (CH 3)), methyl propoxy-magnesium (Mg (OC 3H 7) (CH 3)), methyl n-butoxy magnesium (Mg (OC 4H 9) (CH 3)), methyl isobutoxy magnesium (Mg (i-OC 4H 9) (CH 3)), ethyl magnesium methylate (Mg (OCH 3) (C 2H 5)), ethyl magnesium ethylate (Mg (OC 2H 5) (C 2H 5)), ethyl propoxy-magnesium (Mg (OC 3H 7) (C 2H 5)), ethyl n-butoxy magnesium (Mg (OC 4H 9) (C 2H 5)), ethyl isobutoxy magnesium (Mg (i-OC 4H 9) (C 2H 5)), propyl group magnesium methylate (Mg (OCH 3) (C 3H 7)), propyl group magnesium ethylate (Mg (OC 2H 5) (C 3H 7)), propyl group propoxy-magnesium (Mg (OC 3H 7) (C 3H 7)), propyl group n-butoxy magnesium (Mg (OC 4H 9) (C 3H 7)), propyl group isobutoxy magnesium (Mg (i-OC 4H 9) (C 3H 7)), normal-butyl magnesium methylate (Mg (OCH 3) (C 4H 9)), normal-butyl magnesium ethylate (Mg (OC 2H 5) (C 4H 9)), normal-butyl propoxy-magnesium (Mg (OC 3H 7) (C 4H 9)), normal-butyl n-butoxy magnesium (Mg (OC 4H 9) (C 4H 9)), normal-butyl isobutoxy magnesium (Mg (i-OC 4H 9) (C 4H 9)), isobutyl-magnesium methylate (Mg (OCH 3) (i-C 4H 9)), isobutyl-magnesium ethylate (Mg (OC 2H 5) (i-C 4H 9)), isobutyl-propoxy-magnesium (Mg (OC 3H 7) (i-C 4H 9)), isobutyl-n-butoxy magnesium (Mg (OC 4H 9) (i-C 4H 9)) and isobutyl-isobutoxy magnesium (Mg (i-OC 4H 9) (i-C 4H 9)) etc., preferred butyl magnesium ethylate wherein.
These magnesium compounds can be used alone, and also can multiple mixing use, not special restriction.
When using with the form of multiple mixing, the mol ratio between any two kinds of magnesium compounds in the described magnesium compound mixture is such as being 0.25~4: 1, preferred 0.5~3: 1, more preferably 1~2: 1.
According to the present invention, term " Nonmetallocene title complex " refers to a kind of organometallics (therefore described Nonmetallocene title complex is also sometimes referred to as the non-metallocene olefin polymerization title complex) that can demonstrate the olefinic polymerization catalysis activity when making up with aikyiaiurnirsoxan beta, this compound comprises the polydentate ligand (preferably tridentate ligand or more polydentate ligand) that central metal atom and at least one and described central metal atom are combined with coordinate bond, and term " Nonmetallocene part " is aforesaid polydentate ligand.
According to the present invention, described Nonmetallocene title complex is selected from the compound with following chemical structural formula:
Figure G2009101801006D00141
According to this chemical structural formula, the part that forms coordinate bond with central metal atom M comprises n radicals X and m polydentate ligand (structural formula in the bracket).According to the chemical structural formula of described polydentate ligand, group A, D and E (coordination group) form coordinate bond with atom (such as heteroatomss such as N, O, S, Se and P) with described central metal atom M by the contained coordination of these groups.
According to the present invention, all parts (comprising described radicals X and described polydentate ligand) with the positively charged absolute value of absolute value and the described central metal atom M of negative charge sum identical.
At one more specifically in the embodiment, described Nonmetallocene title complex is selected from compound (A) and the compound (B) with following chemical structural formula.
Figure G2009101801006D00142
At one more specifically in the embodiment, described Nonmetallocene title complex be selected from compound (A-1) with following chemical structural formula to compound (A-4) and compound (B-1) to compound (B-4).
Figure G2009101801006D00151
In above all chemical structural formulas,
Q is 0 or 1;
D is 0 or 1;
M is 1,2 or 3;
M is selected from periodic table of elements III-th family to XI family atoms metal, preferred IVB family atoms metal is such as enumerating Ti (IV), Zr (IV), Hf (IV), Cr (III), Fe (III), Ni (II), Pd (II) or Co (II);
N is 1,2,3 or 4, depends on the valence state of described central metal atom M;
X is selected from halogen, hydrogen atom, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl, oxy radical, nitrogen-containing group, sulfur-containing group, boron-containing group, contain aluminium base group, phosphorus-containing groups, silicon-containing group, germanic group or contain tin group, a plurality of X can be identical, also can be different, and can also be each other in key or Cheng Huan;
A be selected from Sauerstoffatom, sulphur atom, selenium atom,
Figure G2009101801006D00161
-NR 23R 24,-N (O) R 25R 26,
Figure G2009101801006D00162
-PR 28R 29,-P (O) R 30OR 31, sulfuryl, sulfoxide group or-Se (O) R 39, N, O, S, Se and the P coordination atom of respectively doing for oneself wherein;
B is selected from nitrogen-atoms, nitrogen-containing group, phosphorus-containing groups or C 1-C 30Alkyl;
D is selected from nitrogen-atoms, Sauerstoffatom, sulphur atom, selenium atom, phosphorus atom, nitrogen-containing group, phosphorus-containing groups, C 1-C 30Alkyl, sulfuryl, sulfoxide group, -N (O) R 25R 26,
Figure G2009101801006D00164
Or-P (O) R 32(OR 33), N, O, S, Se and the P coordination atom of respectively doing for oneself wherein;
E is selected from nitrogen-containing group, oxy radical, sulfur-containing group, contains seleno group, phosphorus-containing groups or cyano group (CN), N, O, S, Se and the P coordination atom of respectively doing for oneself wherein;
F is selected from nitrogen-atoms, nitrogen-containing group, oxy radical, sulfur-containing group, contain seleno group or phosphorus-containing groups, wherein N, O, S, Se and the P coordination atom of respectively doing for oneself;
G is selected from C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group;
Y is selected from Sauerstoffatom, nitrogen-containing group, oxy radical, sulfur-containing group, contain seleno group or phosphorus-containing groups, wherein N, O, S, Se and the P coordination atom of respectively doing for oneself;
Z is selected from nitrogen-containing group, oxy radical, sulfur-containing group, contains seleno group, phosphorus-containing groups or cyano group (CN), such as enumerating-NR 23R 24,-N (O) R 25R 26,-PR 28R 29,-P (O) R 30R 31,-OR 34,-SR 35,-S (O) R 36,-SeR 38Or-Se (O) R 39, N, O, S, Se and the P coordination atom of respectively doing for oneself wherein;
→ represent singly-bound or two key;
-represent covalent linkage or ionic linkage;
---represent coordinate bond, covalent linkage or ionic linkage;
R 1To R 4, R 6To R 36, R 38And R 39Be selected from independently of one another hydrogen, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl (preferred halo alkyl wherein, such as-CH 2Cl and-CH 2CH 2Cl) or the safing function group, above-mentioned group can be the same or different to each other, and wherein adjacent group is such as R 1With R 2, R 6With R 7, R 7With R 8, R 8With R 9, R 13With R 14, R 14With R 15, R 15With R 16, R 18With R 19, R 19With R 20, R 20With R 21, R 23With R 24, perhaps R 25With R 26Deng combining togather into key or Cheng Huan, be preferably formed aromatic ring, such as unsubstituted phenyl ring or by 1-4 C 1-C 30The C of alkyl, replacement 1-C 30Alkyl (preferred halo alkyl wherein, such as-CH 2Cl and-CH 2CH 2Cl) or the phenyl ring that replaces of safing function group, and
R 5Be selected from lone-pair electron on the nitrogen, hydrogen, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl, oxy radical, sulfur-containing group, nitrogen-containing group, contain seleno group or phosphorus-containing groups; Work as R 5For oxy radical, sulfur-containing group, nitrogen-containing group, when containing seleno group or phosphorus-containing groups, R 5In N, O, S, P and Se can be used as coordination and carry out coordination with atom and described center IVB family atoms metal.
According to the present invention, in aforementioned all chemical structural formulas, as the case may be, any adjacent two or more groups are such as R 21With group Z, perhaps R 13With group Y, can combine togather into ring, be preferably formed and comprise the heteroatomic C that comes from described group Z or Y 6-C 30Heteroaromatic, such as pyridine ring etc., wherein said heteroaromatic is optional to be selected from C by one or more 1-C 30The C of alkyl, replacement 1-C 30The substituting group of alkyl and safing function group replaces.
In the context of the present invention,
Described halogen is selected from F, Cl, Br or I;
Described nitrogen-containing group is selected from
Figure G2009101801006D00171
-NR 23R 24,-T-NR 23R 24Or-N (O) R 25R 26
Described phosphorus-containing groups is selected from -PR 28R 29,-P (O) R 30R 31Or-P (O) R 32(OR 33);
Described oxy radical be selected from hydroxyl ,-OR 34With-T-OR 34
Described sulfur-containing group is selected from-SR 35,-T-SR 35,-S (O) R 36Or-T-SO 2R 37
The described seleno group that contains is selected from-SeR 38,-T-SeR 38,-Se (O) R 39Or-T-Se (O) R 39
Described group T is selected from C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group; With
Described R 37Be selected from hydrogen, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group.
In the context of the present invention, described C 1-C 30Alkyl is selected from C 1-C 30Alkyl (preferred C 1-C 6Alkyl is such as isobutyl-), C 7-C 50Alkaryl (such as tolyl, xylyl, diisobutyl phenyl etc.), C 7-C 50Aralkyl (such as benzyl), C 3-C 30Cyclic alkyl, C 2-C 30Thiazolinyl, C 2-C 30Alkynyl, C 6-C 30Aryl (such as phenyl, naphthyl, anthryl etc.), C 8-C 30Condensed ring radical or C 4-C 30Heterocyclic radical, wherein said heterocyclic radical contain 1-3 heteroatoms that is selected from nitrogen-atoms, Sauerstoffatom or sulphur atom, such as pyridyl, pyrryl, furyl or thienyl etc.
According to the present invention, in the context of the present invention, according to the particular case of the relevant group of its combination, described C 1-C 30Alkyl refers to C sometimes 1-C 30(divalent group perhaps is called C to hydrocarbon two bases 1-C 30Alkylene) or C 1-C 30Hydrocarbon three bases (trivalent group), this is obvious to those skilled in the art.
In the context of the present invention, the C of described replacement 1-C 30Alkyl refers to the aforementioned C with one or more inert substituents 1-C 30Alkyl.So-called inert substituent refers to these substituting groups aforementioned coordination (is referred to aforementioned group A, D, E, F, Y and Z, perhaps also chooses wantonly and comprise radicals R with group 5) there is not substantial interference with the coordination process of described central metal atom M; In other words, limit by the chemical structure of polydentate ligand of the present invention, these substituting groups do not have ability or have no chance (such as the impact that is subject to steric hindrance etc.) coordination reaction occurs and form coordinate bond with described central metal atom M.Generally speaking, described inert substituent refers to aforementioned halogen or C 1-C 30Alkyl (preferred C 1-C 6Alkyl is such as isobutyl-).
In the context of the present invention, described safing function group does not comprise aforesaid C 1-C 30The C of alkyl and aforesaid replacement 1-C 30Alkyl.As described safing function group, such as enumerating aforementioned halogen, aforementioned oxy radical, aforementioned nitrogen-containing group, silicon-containing group, germanic group, aforementioned sulfur-containing group, containing tin group, C 1-C 10Ester group or nitro (NO 2) etc.
In the context of the present invention, limit by the chemical structure of polydentate ligand of the present invention, described safing function group has following characteristics:
(1) do not disturb the coordination process of described group A, D, E, F, Y or Z and described central metal atom M, and
(2) coordination ability with described central metal atom M is lower than described A, D, E, F, Y and Z group, and does not replace the existing coordination of these groups and described central metal atom M.
In the context of the present invention, described boron-containing group is selected from BF 4 -, (C 6F 5) 4B -Or (R 40BAr 3) -Describedly contain aluminium base group and be selected from aluminum alkyls, AlPh 4 -, AlF 4 -, AlCl 4 -, AlBr 4 -, AlI 4 -Or R 41AlAr 3 -Described silicon-containing group is selected from-SiR 42R 43R 44Or-T-SiR 45Described germanic group is selected from-GeR 46R 47R 48Or-T-GeR 49Describedly contain tin group and be selected from-SnR 50R 51R 52,-T-SnR 53Or-T-Sn (O) R 54, described Ar represents C 6-C 30Aryl, and R 40To R 54Be selected from independently of one another hydrogen, aforesaid C 1-C 30The C of alkyl, aforesaid replacement 1-C 30Alkyl or aforesaid safing function group, above-mentioned group can be the same or different to each other, and wherein adjacent group can combine togather into key or Cheng Huan, and the definition of described group T is the same.
As described Nonmetallocene title complex, such as enumerating following compound:
Figure G2009101801006D00191
Figure G2009101801006D00201
Figure G2009101801006D00211
Wherein, described Nonmetallocene title complex is preferably selected from following compound:
Figure G2009101801006D00221
Described Nonmetallocene title complex further is preferably selected from following compound:
Described Nonmetallocene title complex more preferably is selected from following compound:
These Nonmetallocene title complexs can be used alone, and perhaps are used in combination multiple with ratio arbitrarily.
According to the present invention, the described polydentate ligand in the described Nonmetallocene title complex is not as the normally used diether compounds of electronic donor compound capable in this area.
Described Nonmetallocene title complex or described polydentate ligand can be made according to any method well known by persons skilled in the art.About the particular content of its manufacture method, such as can be referring to WO03/010207 and Chinese patent ZL01126323.7 and ZL02110844.7 etc., the full text that this specification sheets is introduced these documents at this point as a reference.
According to the present invention, as the consumption of described Nonmetallocene title complex, so that reach 1 in the mol ratio of the described magnesium compound (solid) of Mg element and described Nonmetallocene title complex: 0.01-1, preferred 1: 0.04-0.4, more preferably 1: 0.08-0.2.
Below the step that obtains mixed serum is described.
According to the present invention, mix with described magnesium compound solution by making described porous support, obtain thus mixed serum.
According to the present invention, the mixing process of described porous support and described magnesium compound solution can adopt usual method to carry out, and there is no particular limitation.Such as enumerating, at normal temperature to the preparation temperature of described magnesium compound solution, in described magnesium compound solution, be metered into described porous support, perhaps in described porous support, be metered into described magnesium compound solution, mix 0.1~8h, preferred 0.5~4h, optimum 1~2h (in case of necessity by stirring) gets final product.
According to the present invention, consumption as described porous support, so that the mass ratio of described magnesium compound (in the magnesium compound solid that contains in the described magnesium compound solution) and described porous support reaches 1: 0.1-20, preferred 1: 0.5-10, more preferably 1: 1-5.
According to the present invention, described mixed serum is a kind of half dry system, does not have free liquid.Although unessential, in order to ensure the homogeneity of system, this mixed serum preferably carries out certain hour (2~48h, preferred 4~24h, most preferably 6~18h) airtight leaving standstill afterwards in preparation.
Below described porous support is carried out specific description.
According to the present invention, as described porous support, such as can enumerate this area when making loaded catalyst as carrier and conventional those organic or inorganic porosu solids that use.
Particularly, as described Porous-Organic solid, such as enumerating olefin homo or multipolymer, polyvinyl alcohol or its multipolymer, cyclodextrin, (being total to) polyester, (being total to) polymeric amide, ryuron or multipolymer, Voncoat R 3310 or multipolymer, methacrylic acid ester homopolymer or multipolymer, and styrene homopolymers or multipolymer etc., and the partial cross-linked form of these homopolymer or multipolymer, wherein preferably partial cross-linked (such as degree of crosslinking be at least 2% but less than 100%) styrene polymer.
Preferred embodiment according to the present invention, preferably on the surface of described Porous-Organic solid with such as any one or the multiple active function groups that are selected from hydroxyl, primary amino, secondary amino group, sulfonic group, carboxyl, amide group, the mono-substituted amide group of N-, sulfoamido, the mono-substituted sulfoamido of N-, sulfydryl, acylimino and the hydrazide group, wherein preferred carboxyl and hydroxyl.
Preferred embodiment according to the present invention is preferably carried out thermal activation treatment to described Porous-Organic solid before use.This thermal activation treatment can be carried out according to common mode, such as under reduced pressure or under the inert atmosphere described Porous-Organic solid being carried out heat treated.Here said inert atmosphere refer to only contain in the gas extremely trace or do not contain can with the component of described Porous-Organic solid reaction.As described inert atmosphere, such as enumerating nitrogen or rare gas atmosphere, preferred nitrogen atmosphere.Because the poor heat resistance of Porous-Organic solid, thus this thermal activation process with the structure of not destroying described Porous-Organic solid itself with basic composition is prerequisite.Usually, the temperature of this thermal activation is 50~400 ℃, preferred 100~250 ℃, and the thermal activation time is 1~24h, preferred 2~12h.After the thermal activation treatment, described Porous-Organic solid need to save backup in malleation under the inert atmosphere
As described inorganic porous solid, such as the refractory oxide that can enumerate periodic table of elements IIA, IIIA, IVA or IVB family metal (such as silicon-dioxide (being called again silicon oxide or silica gel), aluminum oxide, magnesium oxide, titanium oxide, zirconium white or Thorotrast etc.), perhaps any infusibility composite oxides of these metals (such as oxidation sial, oxidation magnalium, titanium oxide silicon, titanium oxide magnesium and titanium oxide aluminium etc.), and clay, molecular sieve (such as ZSM-5 and MCM-41), mica, polynite, wilkinite and diatomite etc.As described inorganic porous solid, can also enumerate the oxide compound that is generated by pyrohydrolysis by gaseous metal halogenide or gaseous silicon compound, such as the silica gel that is obtained by the silicon tetrachloride pyrohydrolysis, the aluminum oxide that is perhaps obtained by the aluminum chloride pyrohydrolysis etc.
As described inorganic porous solid, preferred silicon-dioxide, aluminum oxide, magnesium oxide, oxidation sial, oxidation magnalium, titanium oxide silicon, titanium dioxide, molecular sieve and polynite etc., particularly preferably silicon-dioxide.
According to the present invention, suitable silicon-dioxide can be by the ordinary method manufacturing, it perhaps can be the commerical prod that to buy arbitrarily, such as the Grace 955 that can enumerate Grace company, Grace 948, Grace SP9-351, Grace SP9-485, Grace SP9-10046, DavsionSyloid 245 and Aerosil812, the ES70 of Ineos company, ES70X, ES70Y, ES70W, ES757, EP10X and EP11, and the CS-2133 of Pq Corp. and MS-3040.
Preferred embodiment according to the present invention, preferably on the surface of described inorganic porous solid with hydroxyl isoreactivity functional group.
According to the present invention, in a preferred embodiment, preferably before use described inorganic porous solid is carried out thermal activation treatment.This thermal activation treatment can be carried out according to common mode, such as under reduced pressure or under the inert atmosphere described inorganic porous solid being carried out heat treated.Here said inert atmosphere refer to only contain in the gas extremely trace or do not contain can with the component of described inorganic porous solid reaction.As described inert atmosphere, such as enumerating nitrogen or rare gas atmosphere, preferred nitrogen atmosphere.Usually, the temperature of this thermal activation is 200-800 ℃, and preferred 400~700 ℃, most preferably 400~650 ℃, heat-up time is such as being 0.5~24h, preferred 2~12h, most preferably 4~8h.After the thermal activation treatment, described inorganic porous solid need to save backup in malleation under the inert atmosphere.
According to the present invention, there is no particular limitation to the surface-area of described porous support, but be generally 10~1000m 2/ g (BET method mensuration), preferred 100~600m 2/ g; The pore volume of this porous support (determination of nitrogen adsorption) is generally 0.1~4cm 3/ g, preferred 0.2~2cm 3/ g, and preferred 1~500 μ m of its median size (laser particle analyzer mensuration), more preferably 1~100 μ m.
According to the present invention, described porous support can be form arbitrarily, such as micropowder, granular, spherical, aggregate or other form.
By to described mixed serum convection drying, perhaps through filtration, washing and dry, preferred convection drying can obtain a kind of solid product of good fluidity, i.e. complex carrier.
When described mixed serum was carried out convection drying, described convection drying can adopt ordinary method to carry out, such as heat drying under drying under dry under the inert gas atmosphere, the vacuum atmosphere or the vacuum atmosphere etc., and heat drying under the preferred vacuum atmosphere wherein.Carry out under the temperature that the boiling point of the solvent that described drying generally contains in than described mixed serum is low 5~15 ℃, and be generally 2~24h time of drying, but sometimes be not limited to this.
Described mixed serum is being filtered, washing and when dry, for described filtration, washing and dry method special the restriction not, can use as required conventional those that use in this area.As required, described washing is generally carried out 1~6 time, preferred 2~3 times.Wherein, washer solvent preferably use with described mixed serum in contained identical solvent, but also can be different.Described drying can adopt ordinary method to carry out, and the situation during preferably with aforementioned convection drying is identical.
Then, process described complex carrier with the chemical processing agent that is selected from IVB family metallic compound, can obtain load type non-metallocene catalyst of the present invention.
Below described chemical processing agent is carried out specific description.
According to the present invention, with IVB family metallic compound as described chemical processing agent.
As described IVB family metallic compound, such as enumerating IVB family metal halide, IVB family metal alkyl compound, IVB family metal alkoxide compound, IVB family metal alkyl halides and IVB family metal alkoxide halogenide.
As described IVB family metal halide, described IVB family metal alkyl compound, described IVB family metal alkoxide compound, described IVB family's metal alkyl halides and described IVB family metal alkoxide halogenide, such as the compound that can enumerate following general formula (IV) structure:
M(OR 1) mX nR 2 4-m-n (IV)
Wherein:
M is 0,1,2,3 or 4;
N is 0,1,2,3 or 4;
M is IVB family metal in the periodic table of elements, such as titanium, zirconium and hafnium etc.;
X is halogen, such as F, Cl, Br and I etc.; And
R 1And R 2Be selected from independently of one another C 1-10Alkyl is such as methyl, ethyl, propyl group, normal-butyl, isobutyl-etc., R 1And R 2Can be identical, also can be different.
Particularly, as described IVB family metal halide, such as enumerating titanium tetrafluoride (TiF 4), titanium tetrachloride (TiCl 4), titanium tetrabromide (TiBr 4), titanium tetra iodide (TiI 4);
Zirconium tetrafluoride (ZrF 4), zirconium tetrachloride (ZrCl 4), tetrabormated zirconium (ZrBr 4), zirconium tetraiodide (ZrI 4);
Tetrafluoride hafnium (HfF 4), hafnium tetrachloride (HfCl 4), hafnium (HfBr 4), tetraiodide hafnium (Hfl 4).
As described IVB family metal alkyl compound, such as enumerating tetramethyl-titanium (Ti (CH 3) 4), tetraethyl-titanium (Ti (CH 3CH 2) 4), four isobutyl-titanium (Ti (i-C 4H 9) 4), tetra-n-butyl titanium (Ti (C 4H 9) 4), triethyl methyltitanium (Ti (CH 3) (CH 3CH 2) 3), diethyl-dimethyl titanium (Ti (CH 3) 2(CH 3CH 2) 2), trimethylammonium ethyl titanium (Ti (CH 3) 3(CH 3CH 2)), triisobutyl methyltitanium (Ti (CH 3) (i-C 4H 9) 3), diisobutyl dimethyl titanium (Ti (CH 3) 2(i-C 4H 9) 2), trimethylammonium isobutyl-titanium (Ti (CH 3) 3(i-C 4H 9)), triisobutyl ethyl titanium (Ti (CH 3CH 2) (i-C 4H 9) 3), diisobutyl diethyl titanium (Ti (CH 3CH 2) 2(i-C 4H 9) 2), triethyl isobutyl-titanium (Ti (CH 3CH 2) 3(i-C 4H 9)), three normal-butyl methyltitanium (Ti (CH 3) (C 4H 9) 3), di-n-butyl dimethyl titanium (Ti (CH 3) 2(C 4H 9) 2), trimethylammonium normal-butyl titanium (Ti (CH 3) 3(C 4H 9)), three normal-butyl methyltitanium (Ti (CH 3CH 2) (C 4H 9) 3), di-n-butyl diethyl titanium (Ti (CH 3CH 2) 2(C 4H 9) 2), triethyl normal-butyl titanium (Ti (CH 3CH 2) 3(C 4H 9)) etc.;
Tetramethyl-zirconium (Zr (CH 3) 4), tetraethyl-zirconium (Zr (CH 3CH 2) 4), four isobutyl-zirconium (Zr (i-C 4H 9) 4), tetra-n-butyl zirconium (Zr (C 4H 9) 4), triethyl methylcyclopentadienyl zirconium (Zr (CH 3) (CH 3CH 2) 3), diethyl-dimethyl zirconium (Zr (CH 3) 2(CH 3CH 2) 2), trimethylammonium ethyl zirconium (Zr (CH 3) 3(CH 3CH 2)), triisobutyl methylcyclopentadienyl zirconium (Zr (CH 3) (i-C 4H 9) 3), diisobutyl zirconium dimethyl (Zr (CH 3) 2(i-C 4H 9) 2), trimethylammonium isobutyl-zirconium (Zr (CH 3) 3(i-C 4H 9)), triisobutyl ethyl zirconium (Zr (CH 3CH 2) (i-C 4H 9) 3), diisobutyl diethyl zirconium (Zr (CH 3CH 2) 2(i-C 4H 9) 2), triethyl isobutyl-zirconium (Zr (CH 3CH 2) 3(i-C 4H 9)), three normal-butyl methylcyclopentadienyl zirconium (Zr (CH 3) (C 4H 9) 3), di-n-butyl zirconium dimethyl (Zr (CH 3) 2(C 4H 9) 2), trimethylammonium normal-butyl zirconium (Zr (CH 3) 3(C 4H 9)), three normal-butyl methylcyclopentadienyl zirconium (Zr (CH 3CH 2) (C 4H 9) 3), di-n-butyl diethyl zirconium (Zr (CH 3CH 2) 2(C 4H 9) 2), triethyl normal-butyl zirconium (Zr (CH 3CH 2) 3(C 4H 9)) etc.;
Tetramethyl-hafnium (Hf (CH 3) 4), tetraethyl-hafnium (Hf (CH 3CH 2) 4), four isobutyl-hafnium (Hf (i-C 4H 9) 4), tetra-n-butyl hafnium (Hf (C 4H 9) 4), triethyl methylcyclopentadienyl hafnium (Hf (CH 3) (CH 3CH 2) 3), diethyl-dimethyl hafnium (Hf (CH 3) 2(CH 3CH 2) 2), trimethylammonium ethyl hafnium (Hf (CH 3) 3(CH 3CH 2)), triisobutyl methylcyclopentadienyl hafnium (Hf (CH 3) (i-C 4H 9) 3), diisobutyl dimethyl hafnium (Hf (CH 3) 2(i-C 4H 9) 2), trimethylammonium isobutyl-hafnium (Hf (CH 3) 3(i-C 4H 9)), triisobutyl ethyl hafnium (Hf (CH 3CH 2) (i-C 4H 9) 3), diisobutyl diethyl hafnium (Hf (CH 3CH 2) 2(i-C 4H 9) 2), triethyl isobutyl-hafnium (Hf (CH 3CH 2) 3(i-C 4H 9)), three normal-butyl methylcyclopentadienyl hafnium (Hf (CH 3) (C 4H 9) 3), di-n-butyl dimethyl hafnium (Hf (CH 3) 2(C 4H 9) 2), trimethylammonium normal-butyl hafnium (Hf (CH 3) 3(C 4H 9)), three normal-butyl methylcyclopentadienyl hafnium (Hf (CH 3CH 2) (C 4H 9) 3), di-n-butyl diethyl hafnium (Hf (CH 3CH 2) 2(C 4H 9) 2), triethyl normal-butyl hafnium (Hf (CH 3CH 2) 3(C 4H 9)) etc.
As described IVB family metal alkoxide compound, such as enumerating tetramethoxy titanium (Ti (OCH 3) 4), purity titanium tetraethoxide (Ti (OCH 3CH 2) 4), four isobutoxy titanium (Ti (i-OC 4H 9) 4), four titanium n-butoxide (Ti (OC 4H 9) 4), triethoxy methoxyl group titanium (Ti (OCH 3) (OCH 3CH 2) 3), diethoxy dimethoxy titanium (Ti (OCH 3) 2(OCH 3CH 2) 2), trimethoxy ethanolato-titanium (Ti (OCH 3) 3(OCH 3CH 2)), three isobutoxy methoxyl group titanium (Ti (OCH 3) (i-OC 4H 9) 3), two isobutoxy dimethoxy titanium (Ti (OCH 3) 2(i-OC 4H 9) 2), trimethoxy isobutoxy titanium (Ti (OCH 3) 3(i-OC 4H 9)), three isobutoxy ethanolato-titanium (Ti (OCH 3CH 2) (i-OC 4H 9) 3), two isobutoxy diethoxy titanium (Ti (OCH 3CH 2) 2(i-OC 4H 9) 2), triethoxy isobutoxy titanium (Ti (OCH 3CH 2) 3(i-OC 4H 9)), three n-butoxy methoxyl group titanium (Ti (OCH 3) (OC 4H 9) 3), two n-butoxy dimethoxy titanium (Ti (OCH 3) 2(OC 4H 9) 2), trimethoxy titanium n-butoxide (Ti (OCH 3) 3(OC 4H 9)), three n-butoxy methoxyl group titanium (Ti (OCH 3CH 2) (OC 4H 9) 3), two n-butoxy diethoxy titanium (Ti (OCH 3CH 2) 2(OC 4H 9) 2), triethoxy titanium n-butoxide (Ti (OCH 3CH 2) 3(OC 4H 9)) etc.;
Tetramethoxy zirconium (Zr (OCH 3) 4), tetraethoxy zirconium (Zr (OCH 3CH 2) 4), four isobutoxy zirconium (Zr (i-OC 4H 9) 4), four n-butoxy zirconium (Zr (OC 4H 9) 4), triethoxy methoxyl group zirconium (Zr (OCH 3) (OCH 3CH 2) 3), diethoxy dimethoxy zirconium (Zr (OCH 3) 2(OCH 3CH 2) 2), trimethoxy oxyethyl group zirconium (Zr (OCH 3) 3(OCH 3CH 2)), three isobutoxy methoxyl group zirconium (Zr (OCH 3) (i-OC 4H 9) 3), two isobutoxy dimethoxy zirconium (Zr (OCH 3) 2(i-OC 4H 9) 2), trimethoxy isobutoxy zirconium (Zr (OCH 3) 3(i-C 4H 9)), three isobutoxy oxyethyl group zirconium (Zr (OCH 3CH 2) (i-OC 4H 9) 3), two isobutoxy diethoxy zirconium (Zr (OCH 3CH 2) 2(i-OC 4H 9) 2), triethoxy isobutoxy zirconium (Zr (OCH 3CH 2) 3(i-OC 4H 9)), three n-butoxy methoxyl group zirconium (Zr (OCH 3) (OC 4H 9) 3), two n-butoxy dimethoxy zirconium (Zr (OCH 3) 2(OC 4H 9) 2), trimethoxy n-butoxy zirconium (Zr (OCH 3) 3(OC 4H 9)), three n-butoxy methoxyl group zirconium (Zr (OCH 3CH 2) (OC 4H 9) 3), two n-butoxy diethoxy zirconium (Zr (OCH 3CH 2) 2(OC 4H 9) 2), triethoxy n-butoxy zirconium (Zr (OCH 3CH 2) 3(OC 4H 9)) etc.;
Tetramethoxy hafnium (Hf (OCH 3) 4), tetraethoxy hafnium (Hf (OCH 3CH 2) 4), four isobutoxy hafnium (Hf (i-OC 4H 9) 4), four n-butoxy hafnium (Hf (OC 4H 9) 4), triethoxy methoxyl group hafnium (Hf (OCH 3) (OCH 3CH 2) 3), diethoxy dimethoxy hafnium (Hf (OCH 3) 2(OCH 3CH 2) 2), trimethoxy oxyethyl group hafnium (Hf (OCH 3) 3(OCH 3CH 2)), three isobutoxy methoxyl group hafnium (Hf (OCH 3) (i-OC 4H 9) 3), two isobutoxy dimethoxy hafnium (Hf (OCH 3) 2(i-OC 4H 9) 2), trimethoxy isobutoxy hafnium (Hf (OCH 3) 3(i-OC 4H 9)), three isobutoxy oxyethyl group hafnium (Hf (OCH 3CH 2) (i-OC 4H 9) 3), two isobutoxy diethoxy hafnium (Hf (OCH 3CH 2) 2(i-OC 4H 9) 2), triethoxy isobutoxy hafnium (Hf (OCH 3CH 2) 3(i-C 4H 9)), three n-butoxy methoxyl group hafnium (Hf (OCH 3) (OC 4H 9) 3), two n-butoxy dimethoxy hafnium (Hf (OCH 3) 2(OC 4H 9) 2), trimethoxy n-butoxy hafnium (Hf (OCH 3) 3(OC 4H 9)), three n-butoxy methoxyl group hafnium (Hf (OCH 3CH 2) (OC 4H 9) 3), two n-butoxy diethoxy hafnium (Hf (OCH 3CH 2) 2(OC 4H 9) 2), triethoxy n-butoxy hafnium (Hf (OCH 3CH 2) 3(OC 4H 9)) etc.
As described IVB family metal alkyl halides, such as enumerating trimethylammonium titanium chloride (TiCl (CH 3) 3), triethyl titanium chloride (TiCl (CH 3CH 2) 3), triisobutyl titanium chloride (TiCl (i-C 4H 9) 3), three normal-butyl chlorination titanium (TiCl (C 4H 9) 3), dimethyl titanium dichloride (TiCl 2(CH 3) 2), diethyl titanium dichloride (TiCl 2(CH 3CH 2) 2), diisobutyl titanium dichloride (TiCl 2(i-C 4H 9) 2), three normal-butyl chlorination titanium (TiCl (C 4H 9) 3), methyl titanous chloride (Ti (CH 3) Cl 3), ethyl titanous chloride (Ti (CH 3CH 2) Cl 3), isobutyl-titanous chloride (Ti (i-C 4H 9) Cl 3), normal-butyl titanous chloride (Ti (C 4H 9) Cl 3);
Trimethylammonium titanium bromide (TiBr (CH 3) 3), triethyl titanium bromide (TiBr (CH 3CH 2) 3), triisobutyl titanium bromide (TiBr (i-C 4H 9) 3), three normal-butyl bromination titanium (TiBr (C 4H 9) 3), dimethyl dibrominated titanium (TiBr 2(CH 3) 2), diethyl dibrominated titanium (TiBr 2(CH 3CH 2) 2), diisobutyl dibrominated titanium (TiBr 2(i-C 4H 9) 2), three normal-butyl bromination titanium (TiBr (C 4H 9) 3), methyl titanium tribromide (Ti (CH 3) Br 3), ethyl titanium tribromide (Ti (CH 3CH 2) Br 3), isobutyl-titanium tribromide (Ti (i-C 4H 9) Br 3), normal-butyl titanium tribromide (Ti (C 4H 9) Br 3);
Trimethylammonium zirconium chloride (ZrCl (CH 3) 3), triethyl zirconium chloride (ZrCl (CH 3CH 2) 3), triisobutyl zirconium chloride (ZrCl (i-C 4H 9) 3), three normal-butyl chlorination zirconium (ZrCl (C 4H 9) 3), dimethyl zirconium dichloride (ZrCl 2(CH 3) 2), diethyl zirconium dichloride (ZrCl 2(CH 3CH 2) 2), diisobutyl zirconium dichloride (ZrCl 2(i-C 4H 9) 2), three normal-butyl chlorination zirconium (ZrCl (C 4H 9) 3), methyl tri-chlorination zirconium (Zr (CH 3) Cl 3), ethyl tri-chlorination zirconium (Zr (CH 3CH 2) Cl 3), isobutyl-tri-chlorination zirconium (Zr (i-C 4H 9) Cl 3), normal-butyl tri-chlorination zirconium (Zr (C 4H 9) Cl 3);
Trimethylammonium zirconium bromide (ZrBr (CH 3) 3), triethyl zirconium bromide (ZrBr (CH 3CH 2) 3), triisobutyl zirconium bromide (ZrBr (i-C 4H 9) 3), three normal-butyl bromination zirconium (ZrBr (C 4H 9) 3), dimethyl dibrominated zirconium (ZrBr 2(CH 3) 2), diethyl dibrominated zirconium (ZrBr 2(CH 3CH 2) 2), diisobutyl dibrominated zirconium (ZrBr 2(i-C 4H 9) 2), three normal-butyl bromination zirconium (ZrBr (C 4H 9) 3), methyl tribromide zirconium (Zr (CH 3) Br 3), ethyl tribromide zirconium (Zr (CH 3CH 2) Br 3), isobutyl-tribromide zirconium (Zr (i-C 4H 9) Br 3), normal-butyl tribromide zirconium (Zr (C 4H 9) Br 3);
Trimethylammonium hafnium chloride (HfCl (CH 3) 3), triethyl hafnium chloride (HfCl (CH 3CH 2) 3), triisobutyl hafnium chloride (HfCl (i-C 4H 9) 3), three normal-butyl chlorination hafnium (HfCl (C 4H 9) 3), dimethyl hafnium dichloride (HfCl 2(CH 3) 2), diethyl hafnium dichloride (HfCl 2(CH 3CH 2) 2), diisobutyl hafnium dichloride (HfCl 2(i-C 4H 9) 2), three normal-butyl chlorination hafnium (HfCl (C 4H 9) 3), methyl tri-chlorination hafnium (Hf (CH 3) Cl 3), ethyl tri-chlorination hafnium (Hf (CH 3CH 2) Cl 3), isobutyl-tri-chlorination hafnium (Hf (i-C 4H 9) Cl 3), normal-butyl tri-chlorination hafnium (Hf (C 4H 9) Cl 3);
Trimethylammonium bromination hafnium (HfBr (CH 3) 3), triethyl bromination hafnium (HfBr (CH 3CH 2) 3), triisobutyl bromination hafnium (HfBr (i-C 4H 9) 3), three normal-butyl bromination hafnium (HfBr (C 4H 9) 3), dimethyl dibrominated hafnium (HfBr 2(CH 3) 2), diethyl dibrominated hafnium (HfBr 2(CH 3CH 2) 2), diisobutyl dibrominated hafnium (HfBr 2(i-C 4H 9) 2), three normal-butyl bromination hafnium (HfBr (C 4H 9) 3), methyl tribromide hafnium (Hf (CH 3) Br 3), ethyl tribromide hafnium (Hf (CH 3CH 2) Br 3), isobutyl-tribromide hafnium (Hf (i-C 4H 9) Br 3), normal-butyl tribromide hafnium (Hf (C 4H 9) Br 3).
As described IVB family metal alkoxide halogenide, such as enumerating trimethoxy titanium chloride (TiCl (OCH 3) 3), triethoxy titanium chloride (TiCl (OCH 3CH 2) 3), three isobutoxy titanium chloride (TiCl (i-OC 4H 9) 3), three n-Butoxyl titanium-chlorides (TiCl (OC 4H 9) 3), dimethoxy titanium dichloride (TiCl 2(OCH 3) 2), diethoxy titanium dichloride (TiCl 2(OCH 3CH 2) 2), two isobutoxy titanium dichloride (TiCl 2(i-OC 4H 9) 2), three n-Butoxyl titanium-chlorides (TiCl (OC 4H 9) 3), methoxyl group titanous chloride (Ti (OCH 3) Cl 3), oxyethyl group titanous chloride (Ti (OCH 3CH 2) Cl 3), isobutoxy titanous chloride (Ti (i-C 4H 9) Cl 3), n-butoxy titanous chloride (Ti (OC 4H 9) Cl 3);
Trimethoxy titanium bromide (TiBr (OCH 3) 3), triethoxy titanium bromide (TiBr (OCH 3CH 2) 3), three isobutoxy titanium bromide (TiBr (i-OC 4H 9) 3), three n-butoxy titanium bromide (TiBr (OC 4H 9) 3), dimethoxy dibrominated titanium (TiBr 2(OCH 3) 2), diethoxy dibrominated titanium (TiBr 2(OCH 3CH 2) 2), two isobutoxy dibrominated titanium (TiBr 2(i-OC 4H 9) 2), three n-butoxy titanium bromide (TiBr (OC 4H 9) 3), methoxyl group titanium tribromide (Ti (OCH 3) Br 3), oxyethyl group titanium tribromide (Ti (OCH 3CH 2) Br 3), isobutoxy titanium tribromide (Ti (i-C 4H 9) Br 3), n-butoxy titanium tribromide (Ti (OC 4H 9) Br 3);
Trimethoxy zirconium chloride (ZrCl (OCH 3) 3), triethoxy zirconium chloride (ZrCl (OCH 3CH 2) 3), three isobutoxy zirconium chloride (ZrCl (i-OC 4H 9) 3), three n-butoxy zirconium chloride (ZrCl (OC 4H 9) 3), dimethoxy zirconium dichloride (ZrCl 2(OCH 3) 2), diethoxy zirconium dichloride (ZrCl 2(OCH 3CH 2) 2), two isobutoxy zirconium dichloride (ZrCl 2(i-OC 4H 9) 2), three n-butoxy zirconium chloride (ZrCl (OC 4H 9) 3), methoxyl group tri-chlorination zirconium (Zr (OCH 3) Cl 3), oxyethyl group tri-chlorination zirconium (Zr (OCH 3CH 2) Cl 3), isobutoxy tri-chlorination zirconium (Zr (i-C 4H 9) Cl 3), n-butoxy tri-chlorination zirconium (Zr (OC 4H 9) Cl 3);
Trimethoxy zirconium bromide (ZrBr (OCH 3) 3), triethoxy zirconium bromide (ZrBr (OCH 3CH 2) 3), three isobutoxy zirconium bromide (ZrBr (i-OC 4H 9) 3), three n-butoxy zirconium bromide (ZrBr (OC 4H 9) 3), dimethoxy dibrominated zirconium (ZrBr 2(OCH 3) 2), diethoxy dibrominated zirconium (ZrBr 2(OCH 3CH 2) 2), two isobutoxy dibrominated zirconium (ZrBr 2(i-OC 4H 9) 2), three n-butoxy zirconium bromide (ZrBr (OC 4H 9) 3), methoxyl group tribromide zirconium (Zr (OCH 3) Br 3), oxyethyl group tribromide zirconium (Zr (OCH 3CH 2) Br 3), isobutoxy tribromide zirconium (Zr (i-C 4H 9) Br 3), n-butoxy tribromide zirconium (Zr (OC 4H 9) Br 3);
Trimethoxy hafnium chloride (HfCl (OCH 3) 3), triethoxy hafnium chloride (HfCl (OCH 3CH 2) 3), three isobutoxy hafnium chloride (HfCl (i-OC 4H 9) 3), three n-butoxy hafnium chloride (HfCl (OC 4H 9) 3), dimethoxy hafnium dichloride (HfCl 2(OCH 3) 2), diethoxy hafnium dichloride (HfCl 2(OCH 3CH 2) 2), two isobutoxy hafnium dichloride (HfCl 2(i-OC 4H 9) 2), three n-butoxy hafnium chloride (HfCl (OC 4H 9) 3), methoxyl group tri-chlorination hafnium (Hf (OCH 3) Cl 3), oxyethyl group tri-chlorination hafnium (Hf (OCH 3CH 2) Cl 3), isobutoxy tri-chlorination hafnium (Hf (i-C 4H 9) Cl 3), n-butoxy tri-chlorination hafnium (Hf (OC 4H 9) Cl 3);
Trimethoxy bromination hafnium (HfBr (OCH 3) 3), triethoxy bromination hafnium (HfBr (OCH 3CH 2) 3), three isobutoxy bromination hafnium (HfBr (i-OC 4H 9) 3), three n-butoxy bromination hafnium (HfBr (OC 4H 9) 3), dimethoxy dibrominated hafnium (HfBr 2(OCH 3) 2), diethoxy dibrominated hafnium (HfBr 2(OCH 3CH 2) 2), two isobutoxy dibrominated hafnium (HfBr 2(i-OC 4H 9) 2), three n-butoxy bromination hafnium (HfBr (OC 4H 9) 3), methoxyl group tribromide hafnium (Hf (OCH 3) Br 3), oxyethyl group tribromide hafnium (Hf (OCH 3CH 2) Br 3), isobutoxy tribromide hafnium (Hf (i-C 4H 9) Br 3), n-butoxy tribromide hafnium (Hf (OC 4H 9) Br 3).
As described IVB family metallic compound, preferred described IVB family metal halide, more preferably TiCl 4, TiBr 4, ZrCl 4, ZrBr 4, HfCl 4And HfBr 4, TiCl most preferably 4And ZrCl 4
These IVB family metallic compounds can be used alone, and perhaps are used in combination multiple with ratio arbitrarily.
When described chemical processing agent is liquid state at normal temperatures, can use described chemical processing agent by the mode that in the reaction object (being aforesaid complex carrier) that remains to utilize this chemical processing agent to process, directly drips the described chemical processing agent of predetermined amount.
When described chemical processing agent when being solid-state at normal temperatures, for measure with easy to operate for the purpose of, preferably use described chemical processing agent with the form of solution.Certainly, when described chemical processing agent is liquid state at normal temperatures, sometimes also can use described chemical processing agent with the form of solution as required, not special the restriction.
When the solution of the described chemical processing agent of preparation, to this moment employed solvent there is no particular limitation, as long as it can dissolve this chemical processing agent.
Particularly, can enumerate C 5-12Alkane or halo C 5-12Alkane etc., such as enumerating pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, hexanaphthene, chloro-pentane, chloro-hexane, chloro heptane, chloro octane, chloro nonane, chloro decane, chloro undecane, chlorinated dodecane and chlorocyclohexane etc., wherein preferred pentane, hexane, decane and hexanaphthene, most preferably hexane.
These solvents can be used alone, and perhaps are used in combination multiple with ratio arbitrarily.
Clearly, can not select this moment and have the solvent (such as ether solvent such as tetrahydrofuran (THF) etc.) of dissolving power to dissolve described chemical processing agent to described magnesium compound.
In addition, there is no particular limitation to the concentration of described chemical processing agent in its solution, can suitably select as required, as long as it can realize implementing described chemical treatment with the described chemical processing agent of predetermined amount.As previously mentioned, if chemical processing agent is liquid, can directly carry out described processing with chemical processing agent, but use after also it can being modulated into the chemical treatment agent solution.That the volumetric molar concentration of described chemical processing agent in its solution generally is set as 0.01~1.0mol/L, but is not limited to this easily.
As carrying out described chemically treated method, such as enumerating, in the situation that adopts solid chemical processing agent (such as zirconium tetrachloride), then the solution that at first prepares described chemical processing agent add the described chemical processing agent of (the preferred dropping) predetermined amount in the pending described complex carrier; In the situation that adopts liquid chemical treatment agent (such as titanium tetrachloride), can be directly (but also can after being prepared into solution) the described chemical processing agent of predetermined amount is added in (the preferred dropping) described complex carrier, and chemical treatment reaction (in case of necessity by stirring) was carried out 0.5~24 hour, preferred 1~8 hour, more preferably 2~6 hours, then filter, wash and drying, can obtain load type non-metallocene catalyst of the present invention.
According to the present invention, described filtration, washing and drying can adopt ordinary method to carry out, and wherein washer solvent can adopt used identical solvent when dissolving described chemical processing agent.This washing is generally carried out 1~8 time, and preferred 2~6 times, most preferably 2~4 times.
According to the present invention, consumption as described chemical processing agent, so that reach 1 in the described magnesium compound (solid) of Mg element and mol ratio in the described chemical processing agent of IVB family metal (such as Ti) element: 0.01-1, preferred 1: 0.01-0.50, more preferably 1: 0.10-0.30.
Special embodiment according to the present invention, the preparation method of load type non-metallocene catalyst of the present invention also is included in and adopts described chemical processing agent to process before the described complex carrier, with the step that helps the described complex carrier of chemical processing agent pre-treatment (pre-treatment step) that is selected from aikyiaiurnirsoxan beta, aluminum alkyls or its arbitrary combination.Then, according to carrying out described chemical treatment with aforementioned identical mode with described chemical processing agent, just described complex carrier is replaced with the pretreated complex carrier of described process and get final product again.
Below the described chemical processing agent that helps is carried out specific description.
According to the present invention, as the described chemical processing agent that helps, such as enumerating aikyiaiurnirsoxan beta and aluminum alkyls.
As described aikyiaiurnirsoxan beta, such as enumerating the line style aikyiaiurnirsoxan beta shown in the following general formula (I): (R) (R) Al-(Al (R)-O) n-O-Al (R) (R), and the ring-type aikyiaiurnirsoxan beta shown in the following general formula (II) :-(Al (R)-O-) N+2-.
In aforementioned formula, radicals R is same to each other or different to each other (preferably identical), is selected from independently of one another C 1-C 8Alkyl, preferable methyl, ethyl and isobutyl-, most preferable; N is the arbitrary integer in the 1-50 scope, the arbitrary integer in preferred 10~30 scopes.
As described aikyiaiurnirsoxan beta, preferable methyl aikyiaiurnirsoxan beta, ethylaluminoxane, isobutyl aluminium alkoxide and normal-butyl alumina alkane, further preferable methyl aikyiaiurnirsoxan beta and isobutyl aluminium alkoxide.
These aikyiaiurnirsoxan beta can be used alone, and perhaps are used in combination multiple with ratio arbitrarily.
As described aluminum alkyls, such as enumerating the compound shown in the following general formula (III):
Al(R) 3 (III)
Wherein, radicals R is same to each other or different to each other (preferably identical), and is selected from independently of one another C 1-C 8Alkyl, preferable methyl, ethyl and isobutyl-, most preferable.
Particularly, as described aluminum alkyls, such as enumerating trimethyl aluminium (Al (CH 3) 3), triethyl aluminum (Al (CH 3CH 2) 3), tri-propyl aluminum (Al (C 3H 7) 3), triisobutyl aluminium (Al (i-C 4H 9) 3), three n-butylaluminum (Al (C 4H 9) 3), triisopentyl aluminium (Al (i-C 5H 11) 3), three n-pentyl aluminium (Al (C 5H 11) 3), three hexyl aluminium (Al (C 6H 13) 3), three isohexyl aluminium (Al (i-C 6H 13) 3), diethylmethyl aluminium (Al (CH 3) (CH 3CH 2) 2) and dimethyl ethyl aluminium (Al (CH 3CH 2) (CH 3) 2) etc., wherein preferred trimethyl aluminium, triethyl aluminum, tri-propyl aluminum and triisobutyl aluminium, most preferably triethyl aluminum and triisobutyl aluminium.
These aluminum alkylss can be used alone, and perhaps are used in combination multiple with ratio arbitrarily.
According to the present invention, as the described chemical processing agent that helps, can only adopt described aikyiaiurnirsoxan beta, also can only adopt described aluminum alkyls, but also can adopt any mixture of described aikyiaiurnirsoxan beta and described aluminum alkyls.And there is no particular limitation to the ratio of each component in this mixture, can select arbitrarily as required.
According to the present invention, the described chemical processing agent that helps generally is to use with the form of solution.When the described solution that helps chemical processing agent of preparation, to this moment employed solvent there is no particular limitation, as long as it can dissolve this and help chemical processing agent.
Particularly, as described solvent, such as enumerating C 5-12Alkane and halo C 5-12Alkane etc., such as enumerating pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, hexanaphthene, chloro-pentane, chloro-hexane, chloro heptane, chloro octane, chloro nonane, chloro decane, chloro undecane, chlorinated dodecane and chlorocyclohexane etc., wherein preferred pentane, hexane, decane and hexanaphthene, most preferably hexane.
Clearly, can not select this moment and have the solvent (such as ether solvent such as tetrahydrofuran (THF) etc.) of dissolving power to dissolve the described chemical processing agent that helps to described magnesium compound.
These solvents can be used alone, and perhaps are used in combination multiple with ratio arbitrarily.
It in addition, helps the concentration of chemical processing agent in its solution there is no particular limitation described, can suitably select as required, as long as can realize carrying out described pre-treatment with the described chemical processing agent that helps of predetermined amount.
As carrying out described pretreated method, such as enumerating, at first prepare the described solution that helps chemical processing agent, then under the temperature of-30~60 ℃ (preferred-20~30 ℃), to intending being metered into (the preferred dropping) described chemical treatment agent solution (the described chemical processing agent that helps that contains predetermined amount) that helps with described helping in the pretreated complex carrier of chemical processing agent, perhaps add described complex carrier to the described chemical treatment agent solution amount of falling into a trap that helps, form thus reaction mixture, make its reaction 1~8h, preferred 2~6h, most preferably 3~4h (in case of necessity by stirring) gets final product.Then, the pre-treatment product process that obtains is filtered, washed (1~6 time, preferred 1~3 time) and optionally drying, and from this reaction mixture, separate, perhaps, also can be without this separation and be directly used in follow-up reactions steps (being aforesaid chemical processing agent treatment step) with the form of mixed solution.At this moment, owing to contained a certain amount of solvent in the described mixed solution, so the solvent load that relates in can the described subsequent reactions step of corresponding minimizing.
According to the present invention, as the described consumption that helps chemical processing agent, so that reach 1 in the described magnesium compound (solid) of Mg element and the described mol ratio of chemical processing agent that helps in the Al element: 0-1.0, preferred 1: 0-0.5, more preferably 1: 0.1-0.5.
Known to those skilled in the artly be that aforementioned all method steps all preferably carries out under the condition of anhydrous anaerobic basically.Here the said basically anhydrous anaerobic content that refers to water and oxygen in the system continues less than 10ppm.And load type non-metallocene catalyst of the present invention needs usually afterwards in confined conditions in preparation that pressure-fired saves backup.
According to the present invention, as the consumption of described Nonmetallocene title complex, so that reach 1 in the mol ratio of the described magnesium compound (solid) of Mg element and described Nonmetallocene title complex: 0.01-1, preferred 1: 0.04-0.4, more preferably 1: 0.08-0.2.
According to the present invention, as the consumption for the described solvent that dissolves described magnesium compound, so that the ratio of described magnesium compound (solid) and described solvent reaches 1mol: 75~400ml, preferred 1mol: 150~300ml, more preferably 1mol: 200~250ml.
According to the present invention, as the consumption of described porous support, so that reach 1 in the described magnesium compound of magnesium compound solid and the mass ratio of described porous support: 0.1-20, preferred 1: 0.5-10, more preferably 1: 1-5.
According to the present invention, consumption as described chemical processing agent, so that reach 1 in the described magnesium compound (solid) of Mg element and mol ratio in the described chemical processing agent of IVB family metal (such as Ti) element: 0.01-1, preferred 1: 0.01-0.50, more preferably 1: 0.10-0.30.
According to the present invention, as the described consumption that helps chemical processing agent, so that reach 1 in the described magnesium compound (solid) of Mg element and the described mol ratio of chemical processing agent that helps in the Al element: 0-1.0, preferred 1: 0-0.5, more preferably 1: 0.1-0.5.
In one embodiment, the invention still further relates to the load type non-metallocene catalyst (sometimes being also referred to as carry type non-metallocene calalyst for polymerization of olefine) of being made by the preparation method of aforesaid load type non-metallocene catalyst.
In a further embodiment, the present invention relates to a kind of alkene homopolymerization/copolymerization process, wherein with load type non-metallocene catalyst of the present invention as catalyst for olefines polymerizing, make alkene homopolymerization or copolymerization.
With regard to this alkene homopolymerization/copolymerization process involved in the present invention, except the following content that particularly points out, other contents of not explaining (such as polymerization with the addition manner of reactor, alkene consumption, catalyzer and alkene etc.), can directly be suitable for conventional known those in this area, not special restriction, the description thereof will be omitted at this.
According to homopolymerization/copolymerization process of the present invention, take load type non-metallocene catalyst of the present invention as Primary Catalysts, to be selected from aikyiaiurnirsoxan beta, aluminum alkyls, haloalkyl aluminium, boron fluothane, boron alkyl and the boron alkyl ammonium salt one or more as promotor, make alkene homopolymerization or copolymerization.
Primary Catalysts and promotor can be to add first Primary Catalysts to the adding mode in the polymerization reaction system, and then the adding promotor, perhaps add first promotor, and then add Primary Catalysts, or both contact first after the mixing and add together, perhaps add simultaneously respectively.Primary Catalysts and promotor added respectively fashionablely both can in same reinforced pipeline, add successively, also can in the reinforced pipeline of multichannel, add successively, and both add simultaneously respectively and fashionablely should select the multichannel pipeline that feeds in raw material.For the continous way polyreaction, the reinforced pipeline of preferred multichannel adds simultaneously continuously, and for the intermittence type polymerization reaction, adds together in same reinforced pipeline after preferably both mix first, perhaps in same reinforced pipeline, add first promotor, and then add Primary Catalysts.
According to the present invention, there is no particular limitation to the reactive mode of described alkene homopolymerization/copolymerization process, can adopt well known in the art those, such as enumerating slurry process, emulsion method, solution method, substance law and vapor phase process etc., wherein preferred slurries method and vapor phase process.
According to the present invention, as described alkene, such as enumerating C 2~C 10Monoolefine, diolefin, cyclic olefin and other ethylenically unsaturated compounds.
Particularly, as described C 2~C 10Monoolefine is such as enumerating ethene, propylene, 1-butylene, 1-hexene, 1-heptene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-hendecene, 1-laurylene and vinylbenzene etc.; As described cyclic olefin, such as enumerating 1-cyclopentenes and norbornylene etc.; As described diolefin, such as enumerating Isosorbide-5-Nitrae-divinyl, 2,5-pentadiene, 1,6-hexadiene, norbornadiene and 1,7-octadiene etc.; And as described other ethylenically unsaturated compounds, such as enumerating vinyl acetate and (methyl) acrylate etc.Wherein, the homopolymerization of optimal ethylene, the perhaps copolymerization of ethene and propylene, 1-butylene or 1-hexene.
According to the present invention, homopolymerization refers to only a kind of polymerization of described alkene, and copolymerization refers to the polymerization between the two or more described alkene.
According to the present invention, described promotor is selected from aikyiaiurnirsoxan beta, aluminum alkyls, haloalkyl aluminium, boron fluothane, boron alkyl and boron alkyl ammonium salt, wherein preferred aikyiaiurnirsoxan beta and aluminum alkyls.
As described aikyiaiurnirsoxan beta, such as enumerating the line style aikyiaiurnirsoxan beta shown in the following general formula (I-1): (R) (R) Al-(Al (R)-O) n-O-Al (R) (R), and the ring-type aikyiaiurnirsoxan beta shown in the following general formula (II-1) :-(Al (R)-O-) N+2-.
Figure G2009101801006D00361
In aforementioned formula, radicals R is same to each other or different to each other (preferably identical), is selected from independently of one another C 1-C 8Alkyl, preferable methyl, ethyl and isobutyl-, most preferable; N is the arbitrary integer in the 1-50 scope, the arbitrary integer in preferred 10~30 scopes.
As described aikyiaiurnirsoxan beta, preferable methyl aikyiaiurnirsoxan beta, ethylaluminoxane, isobutyl aluminium alkoxide and normal-butyl alumina alkane, further preferable methyl aikyiaiurnirsoxan beta and isobutyl aluminium alkoxide, and most preferable aikyiaiurnirsoxan beta.
These aikyiaiurnirsoxan beta can be used alone, and perhaps are used in combination multiple with ratio arbitrarily.
As described aluminum alkyls, such as enumerating the compound shown in the following general formula (III-1):
Al(R) 3 (III-1)
Wherein, radicals R is same to each other or different to each other (preferably identical), and is selected from independently of one another C 1-C 8Alkyl, preferable methyl, ethyl and isobutyl-, most preferable.
Particularly, as described aluminum alkyls, such as enumerating trimethyl aluminium (Al (CH 3) 3), triethyl aluminum (Al (CH 3CH 2) 3), tri-propyl aluminum (Al (C 3H 7) 3), triisobutyl aluminium (Al (i-C 4H 9) 3), three n-butylaluminum (Al (C 4H 9) 3), triisopentyl aluminium (Al (i-C 5H 11) 3), three n-pentyl aluminium (Al (C 5H 11) 3), three hexyl aluminium (Al (C 6H 13) 3), three isohexyl aluminium (Al (i-C 6H 13) 3), diethylmethyl aluminium (Al (CH 3) (CH 3CH 2) 2) and dimethyl ethyl aluminium (Al (CH 3CH 2) (CH 3) 2) etc., wherein preferred trimethyl aluminium, triethyl aluminum, tri-propyl aluminum and triisobutyl aluminium, further preferred triethyl aluminum and triisobutyl aluminium, and triethyl aluminum most preferably.
These aluminum alkylss can be used alone, and perhaps are used in combination multiple with ratio arbitrarily.
As described haloalkyl aluminium, described boron fluothane, described boron alkyl and described boron alkyl ammonium salt, can directly use conventional those that use in this area, not special restriction.
In addition, according to the present invention, described promotor can be used alone, and also can be as required be used in combination multiple aforesaid promotor, not special restriction with ratio arbitrarily.
According to the present invention, the difference according to the reactive mode of described alkene homopolymerization/copolymerization process needs to use the polymerization solvent sometimes.
As described polymerization solvent, can use this area conventional those that use when carrying out alkene homopolymerization/copolymerization, not special restriction.
As described polymerization solvent, such as enumerating C 4-10Alkane (such as butane, pentane, hexane, heptane, octane, nonane or decane etc.), halo C 1-10Alkane (such as methylene dichloride), ether solvent (such as ether or tetrahydrofuran (THF)), esters solvent (such as ethyl acetate) and ketones solvent (such as acetone) etc.Wherein, preferably use hexane as described polymerization solvent.
These polymerizations can be used alone with solvent, perhaps are used in combination multiple with ratio arbitrarily.
According to the present invention, the polymerization pressure of described alkene homopolymerization/copolymerization process is generally 0.1~10MPa, preferred 0.1~4MPa, and more preferably 1~3MPa, but sometimes be not limited to this.According to the present invention, polymeric reaction temperature is generally-40 ℃~200 ℃, and preferred 10 ℃~100 ℃, more preferably 40 ℃~90 ℃, but sometimes be not limited to this.
In addition, according to the present invention, described alkene homopolymerization/copolymerization process can carry out under the condition that has hydrogen to exist, and also can carry out under the condition that does not have hydrogen to exist.In situation about existing, the dividing potential drop of hydrogen can be 0.01%~99% of described polymerization pressure, and is preferred 0.01%~50%, but sometimes is not limited to this.
According to the present invention, when carrying out described alkene homopolymerization/copolymerization process, in the described promotor of aluminium or boron and mol ratio in the described load type non-metallocene catalyst of IVB family metal be generally 1: 1~1000, preferred 1: 1~500, more preferably 1: 10~500, but sometimes be not limited to this.
Embodiment
Below adopt embodiment that the present invention is described in further detail, but the present invention is not limited to these embodiment.
(unit is g/cm to polymer stacks density 3) mensuration carry out with reference to CNS GB1636-79.
The content of IVB family metal (such as Ti) and Mg element adopts the ICP-AES method to measure in the load type non-metallocene catalyst, and the content of Nonmetallocene part adopts analyses.
The polymerization activity of catalyzer calculates in accordance with the following methods: after polyreaction finishes, polymerisate in the reactor is filtered and drying, then the quality of this polymerisate of weighing represents that divided by the ratio of the quality of used load type non-metallocene catalyst (unit is kg polymkeric substance/g catalyzer or kg polymkeric substance/gCat) for the polymerization activity of this catalyzer with this polymerisate quality.
Molecular weight Mw, the Mn of polymkeric substance and molecular weight distribution (Mw/Mn) adopt the GPC V2000 type gel chromatography analyser of U.S. WATERS company to measure, and take adjacent trichlorobenzene as solvent, the temperature during mensuration is 150 ℃.
The viscosity-average molecular weight of polymkeric substance is calculated in accordance with the following methods: according to standard A STMD4020-00, (capillary inner diameter is 0.44mm to adopt high temperature dilution type Ubbelohde viscometer method, the thermostatic bath medium is No. 300 silicone oil, dilution is perhydronaphthalene with solvent, measuring temperature is 135 ℃) measure the limiting viscosity of described polymkeric substance, then calculate the viscosity-average molecular weight Mv of described polymkeric substance according to following formula.
Mv=5.37×10 4×[η] 1.37
Wherein, η is limiting viscosity.
Embodiment 1
Magnesium compound adopts Magnesium Chloride Anhydrous, and the solvent of dissolved magnesium compound and Nonmetallocene title complex adopts tetrahydrofuran (THF), and chemical processing agent adopts titanium tetrachloride.Porous support adopts silicon-dioxide, i.e. silica gel, and model is the ES757 of Ineos company, the Nonmetallocene title complex adopts structure to be
Figure G2009101801006D00391
Compound.
At first silica gel is continued roasting 4h and thermal activation under 600 ℃, nitrogen atmosphere.
Take by weighing 5g Magnesium Chloride Anhydrous and Nonmetallocene title complex, add fully dissolving under the normal temperature behind the tetrahydrofuran solvent, then add the silica gel through thermal activation, stir after 2 hours, directly vacuumize drying under the homogeneous heating to 90 ℃, obtain complex carrier.
Then in this complex carrier, add the 60ml hexane, under agitation condition with 30 minutes dropping titanium tetrachlorides, 60 ℃ of lower stirring reactions 4 hours, filter, hexane washing 2 times, each hexane consumption 60ml, vacuum-drying obtains load type non-metallocene catalyst under the normal temperature.
Wherein proportioning is, magnesium chloride and tetrahydrofuran (THF) proportioning are 1mol: 210ml; Magnesium chloride and Nonmetallocene title complex mol ratio are 1: 0.08; The mass ratio of magnesium chloride and porous support is 1: 2; Magnesium chloride and titanium tetrachloride mol ratio are 1: 0.15.
Load type non-metallocene catalyst is designated as CAT-1.
Embodiment 1-1
Substantially the same manner as Example 1, but following change is arranged:
Porous support is changed into 955 of Grace company, continues roasting 8h and thermal activation under 400 ℃, nitrogen atmosphere.
The Nonmetallocene title complex adopts
Figure G2009101801006D00392
The solvent of dissolved magnesium compound and Nonmetallocene title complex is changed into toluene, and chemical processing agent is changed into zirconium tetrachloride (ZrCl 4).
Wherein proportioning is, magnesium compound and toluene proportioning are 1mol: 150ml; Magnesium compound and Nonmetallocene title complex mol ratio are 1: 0.15; The mass ratio of magnesium compound and porous support is 1: 4; Magnesium compound and chemical processing agent mol ratio are 1: 0.20.
Load type non-metallocene catalyst is designated as CAT-1-1.
Embodiment 1-2
Substantially the same manner as Example 1, but following change is arranged:
Porous support adopts aluminium sesquioxide.Aluminium sesquioxide is continued roasting 6h under 700 ℃, nitrogen atmosphere.
Magnesium compound is changed into anhydrous magnesium bromide (MgBr 2), the Nonmetallocene title complex adopts
Figure G2009101801006D00401
The solvent of dissolved magnesium compound and Nonmetallocene title complex is changed into ethylbenzene, and chemical processing agent is changed into titanium tetrabromide (TiBr 4).
Wherein proportioning is, the solvent burden ratio of magnesium compound and dissolved magnesium compound and Nonmetallocene title complex is 1mol: 250ml; Magnesium compound and Nonmetallocene title complex mol ratio are 1: 0.2; The mass ratio of magnesium compound and porous support is 1: 1; Magnesium compound and chemical processing agent mol ratio are 1: 0.30.
Load type non-metallocene catalyst is designated as CAT-1-2.
Embodiment 1-3
Substantially the same manner as Example 1, but following change is arranged:
Porous support adopts silica-magnesia mixed oxide (mass ratio 1: 1).The silica-magnesia mixed oxide is continued roasting 4h under 600 ℃, argon gas atmosphere.
Magnesium compound is changed into oxyethyl group magnesium chloride (MgCl (OC 2H 5)), the Nonmetallocene title complex adopts
Figure G2009101801006D00402
The solvent of dissolved magnesium compound and Nonmetallocene title complex is changed into dimethylbenzene, and chemical processing agent adopts tetraethyl-titanium (Ti (CH 2CH 3) 4).
Wherein proportioning is, the solvent burden ratio of magnesium compound and dissolved magnesium compound and Nonmetallocene title complex is 1mol: 300ml; Magnesium compound and Nonmetallocene title complex mol ratio are 1: 0.04; The mass ratio of magnesium compound and porous support is 1: 3; Magnesium compound and chemical processing agent mol ratio are 1: 0.05.
Load type non-metallocene catalyst is designated as CAT-1-3.
Embodiment 1-4
Substantially the same manner as Example 1, but following change is arranged:
The porous support adopting montmorillonite.Polynite is continued roasting 8h under 400 ℃, nitrogen atmosphere.
Magnesium compound is changed into butoxy magnesium bromide (MgBr (OC 4H 9)), the Nonmetallocene title complex adopts
Figure G2009101801006D00411
The solvent of dissolved magnesium compound and Nonmetallocene title complex is changed into diethylbenzene, and chemical processing agent adopts tetra-n-butyl titanium (Ti (C 4H 9) 4).
Wherein proportioning is, the solvent burden ratio of magnesium compound and dissolved magnesium compound and Nonmetallocene title complex is 1mol: 400ml; Magnesium compound and Nonmetallocene title complex mol ratio are 1: 0.30; The mass ratio of magnesium compound and porous support is 1: 5; Magnesium compound and chemical processing agent mol ratio are 1: 0.50.
Load type non-metallocene catalyst is designated as CAT-1-4.
Embodiment 1-5
Substantially the same manner as Example 1, but following change is arranged:
Porous support adopts vinylbenzene.Vinylbenzene is continued oven dry 12h under 85 ℃, nitrogen atmosphere.
Magnesium compound is changed into methylmagnesium-chloride (Mg (CH 3) Cl), the Nonmetallocene title complex adopts The solvent of dissolved magnesium compound and Nonmetallocene title complex is changed into chlorotoluene, and chemical processing agent adopts tetraethyl-zirconium (Zr (CH 3CH 2) 4).
Wherein proportioning is, magnesium compound and Nonmetallocene title complex mol ratio are 1: 0.10; The mass ratio of magnesium compound and porous support is 1: 10; Magnesium compound and chemical processing agent mol ratio are 1: 0.10.
Load type non-metallocene catalyst is designated as CAT-1-5.
Embodiment 1-6
Substantially the same manner as Example 1, but following change is arranged:
Porous support adopts diatomite.Diatomite is continued roasting 8h under 500 ℃, nitrogen atmosphere.
Magnesium compound is changed into ethylmagnesium chloride (Mg (C 2H 5) Cl), the Nonmetallocene title complex adopts Chemical processing agent adopts purity titanium tetraethoxide (Ti (OCH 3CH 2) 4).
Wherein proportioning is, the mass ratio of magnesium compound and porous support is 1: 0.5.
Load type non-metallocene catalyst is designated as CAT-1-6.
Embodiment 1-7
Substantially the same manner as Example 1, but following change is arranged:
Magnesium compound is changed into magnesium ethide (Mg (C 2H 5) 2), the Nonmetallocene title complex adopts Chemical processing agent adopts isobutyl-titanous chloride (Ti (i-C 4H 9) Cl 3).
Load type non-metallocene catalyst is designated as CAT-1-7.
Embodiment 1-8
Substantially the same manner as Example 1, but following change is arranged:
Magnesium compound is changed into methyl ethoxy magnesium (Mg (OC 2H 5) (CH 3)), chemical processing agent is changed into three isobutoxy titanium chloride (TiCl (i-OC 4H 9) 3).
Load type non-metallocene catalyst is designated as CAT-1-8.
Embodiment 1-9
Substantially the same manner as Example 1, but following change is arranged:
Magnesium compound is changed into ethyl n-butoxy magnesium (Mg (OC 4H 9) (C 2H 5)), chemical processing agent is changed into dimethoxy zirconium dichloride (ZrCl 2(OCH 3) 2).
Load type non-metallocene catalyst is designated as CAT-1-9.
Embodiment 2
Magnesium compound adopts Magnesium Chloride Anhydrous, and the solvent of dissolved magnesium compound and Nonmetallocene title complex adopts tetrahydrofuran (THF), and chemical processing agent adopts titanium tetrachloride.Porous support adopts silicon-dioxide, i.e. silica gel, and model is the ES757 of Ineos company, the Nonmetallocene title complex adopts structure to be
Figure G2009101801006D00422
Compound.
At first silica gel is continued roasting 4h and thermal activation under 600 ℃, nitrogen atmosphere.
Take by weighing 5g Magnesium Chloride Anhydrous and Nonmetallocene title complex, add fully dissolving under the normal temperature behind the tetrahydrofuran solvent, then add the silica gel through thermal activation, stir after 2 hours, directly vacuumize drying under the homogeneous heating to 90 ℃, obtain complex carrier.
Then in the complex carrier that obtains, add the 60ml hexane, under agitation condition, adopt triethyl aluminum (concentration is the hexane solution of 15wt%) to help chemical processing agent to process complex carrier, with 30 minutes dropping triethyl aluminums, 60 ℃ of lower stirring reactions are after 4 hours, filter, hexane washing 2 times, each hexane consumption 60ml, vacuum-drying under the normal temperature.
Then in the pre-treatment complex carrier that obtains, add again the 60ml hexane, under agitation condition with dripping titanium tetrachloride in 30 minutes, 60 ℃ of lower stirring reactions 4 hours, filter, hexane washing 2 times, each hexane consumption 60ml, vacuum-drying obtains load type non-metallocene catalyst under the normal temperature.
Wherein proportioning is, magnesium chloride and tetrahydrofuran (THF) proportioning are 1mol: 210ml; Magnesium chloride and Nonmetallocene title complex mol ratio are 1: 0.08; The mass ratio of magnesium chloride and porous support is 1: 2; Magnesium chloride and triethyl aluminum mol ratio are 1: 0.15; Magnesium chloride and titanium tetrachloride mol ratio are 1: 0.15.
Load type non-metallocene catalyst is designated as CAT-2.
Embodiment 2-1
Substantially the same manner as Example 2, but following change is arranged:
Porous support is changed into 955 of Grace company, continues roasting 8h and thermal activation under 400 ℃, nitrogen atmosphere.
The Nonmetallocene title complex adopts
Figure G2009101801006D00431
The solvent of dissolved magnesium compound and Nonmetallocene title complex is changed into toluene, helps chemical processing agent to change into methylaluminoxane (MAO, the toluene solution of 10wt%), and chemical processing agent is changed into zirconium tetrachloride (ZrCl 4).
After helping chemical processing agent to process, use toluene wash three times.
Wherein proportioning is, magnesium compound and toluene proportioning are 1mol: 150ml; Magnesium compound and Nonmetallocene title complex mol ratio are 1: 0.15; The mass ratio of magnesium compound and porous support is 1: 4; Magnesium compound is 1: 0.15 with helping the chemical processing agent mol ratio; Magnesium compound and chemical processing agent mol ratio are 1: 0.20.
Load type non-metallocene catalyst is designated as CAT-2-1.
Embodiment 2-2
Substantially the same manner as Example 2, but following change is arranged:
Porous support adopts aluminium sesquioxide.Aluminium sesquioxide is continued roasting 6h under 700 ℃, nitrogen atmosphere.
Magnesium compound is changed into anhydrous magnesium bromide (MgBr 2), the Nonmetallocene title complex adopts
Figure G2009101801006D00441
The solvent of dissolved magnesium compound and Nonmetallocene title complex is changed into ethylbenzene, helps chemical processing agent to change into trimethyl aluminium (Al (CH 3) 3), chemical processing agent is changed into titanium tetrabromide (TiBr 4).
Wherein proportioning is, the solvent burden ratio of magnesium compound and dissolved magnesium compound and Nonmetallocene title complex is 1mol: 250ml; Magnesium compound and Nonmetallocene title complex mol ratio are 1: 0.2; The mass ratio of magnesium compound and porous support is 1: 1; Magnesium compound is 1: 0.30 with helping the chemical processing agent mol ratio; Magnesium compound and chemical processing agent mol ratio are 1: 0.30.
Load type non-metallocene catalyst is designated as CAT-2-2.
Embodiment 2-3
Substantially the same manner as Example 2, but following change is arranged:
Porous support adopts silica-magnesia mixed oxide (mass ratio 1: 1).The silica-magnesia mixed oxide is continued roasting 4h under 600 ℃, argon gas atmosphere.
Magnesium compound is changed into oxyethyl group magnesium chloride (MgCl (OC 2H 5)), the Nonmetallocene title complex adopts
Figure G2009101801006D00442
The solvent of dissolved magnesium compound and Nonmetallocene title complex is changed into dimethylbenzene, helps chemical processing agent to change into triisobutyl aluminium (Al (i-C 4H 9) 3), chemical processing agent adopts tetraethyl-titanium (Ti (CH 3CH 2) 4).
Wherein proportioning is, the solvent burden ratio of magnesium compound and dissolved magnesium compound and Nonmetallocene title complex is 1mol: 300ml; Magnesium compound and Nonmetallocene title complex mol ratio are 1: 0.04; The mass ratio of magnesium compound and porous support is 1: 3; Magnesium compound is 1: 0.05 with helping the chemical processing agent mol ratio; Magnesium compound and chemical processing agent mol ratio are 1: 0.05.
Load type non-metallocene catalyst is designated as CAT-2-3.
Embodiment 2-4
Substantially the same manner as Example 2, but following change is arranged:
The porous support adopting montmorillonite.Polynite is continued roasting 8h under 400 ℃, nitrogen atmosphere.
Magnesium compound is changed into butoxy magnesium bromide (MgBr (OC 4H 9)), the Nonmetallocene title complex adopts
Figure G2009101801006D00451
The solvent of dissolved magnesium compound and Nonmetallocene title complex is changed into diethylbenzene, helps chemical processing agent to change into isobutyl aluminium alkoxide, and chemical processing agent adopts tetra-n-butyl titanium (Ti (C 4H 9) 4).
Wherein proportioning is, the solvent burden ratio of magnesium compound and dissolved magnesium compound and Nonmetallocene title complex is 1mol: 400ml; Magnesium compound and Nonmetallocene title complex mol ratio are 1: 0.30; The mass ratio of magnesium compound and porous support is 1: 5; Magnesium compound is 1: 0.50 with helping the chemical processing agent mol ratio; Magnesium compound and chemical processing agent mol ratio are 1: 0.50.
Load type non-metallocene catalyst is designated as CAT-2-4.
Embodiment 2-5
Substantially the same manner as Example 2, but following change is arranged:
Porous support adopts vinylbenzene.Vinylbenzene is continued oven dry 12h under 85 ℃, nitrogen atmosphere.
Magnesium compound is changed into methylmagnesium-chloride (Mg (CH 3) Cl), the solvent of dissolved magnesium compound and Nonmetallocene title complex is changed into chlorotoluene, helps chemical processing agent to change into diethylmethyl aluminium (Al (CH 3) (CH 3CH 2) 2), chemical processing agent adopts tetraethyl-zirconium (Zr (CH 3CH 2) 4).
Wherein proportioning is, magnesium compound and Nonmetallocene title complex mol ratio are 1: 0.10; The mass ratio of magnesium compound and porous support is 1: 10; Magnesium compound is 1: 0.10 with helping the chemical processing agent mol ratio; Magnesium compound and chemical processing agent mol ratio are 1: 0.10.
Load type non-metallocene catalyst is designated as CAT-2-5.
Comparative Examples 1-A
Substantially the same manner as Example 1, but following change is arranged:
Do not add the Nonmetallocene title complex.
Catalyzer is designated as CAT-1-A.
Comparative Examples 1-B
Substantially the same manner as Example 1, but following change is arranged:
It is 1: 0.16 that magnesium chloride and Nonmetallocene title complex mol ratio are changed into;
Catalyzer is designated as CAT-1-B.
Comparative Examples 1-C
Substantially the same manner as Example 1, but following change is arranged:
It is 1: 0.04 that magnesium chloride and Nonmetallocene title complex mol ratio are changed into;
Catalyzer is designated as CAT-1-C.
Comparative Examples 1-D
Substantially the same manner as Example 1, but following change is arranged:
Complex carrier is processed without titanium tetrachloride.
Catalyzer is designated as CAT-1-D.
Comparative Examples 1-E
Substantially the same manner as Example 1, but following change is arranged:
Complex carrier is by mixed slurry being added after the 60ml hexane makes it precipitation, filtering hexane washing 3 times, each 60ml.At last vacuumizing drying under 60 ℃ obtains.
Catalyzer is designated as CAT-1-E.
Embodiment 3 (Application Example)
With the catalyzer CAT-1, the CAT-2 that make in the embodiment of the invention, CAT-1-1~5, CAT-2-5, CAT-1-A~E, carry out in accordance with the following methods under the following conditions homopolymerization, copolymerization and the preparation ultrahigh molecular weight polyethylene(UHMWPE) of ethene respectively.
Homopolymerization is: 5 liters of polymerization autoclaves, slurry polymerization processes, 2.5 liters of hexane solvents, polymerization stagnation pressure 0.8MPa, 85 ℃ of polymerization temperatures, hydrogen partial pressure 0.2MPa, 2 hours reaction times.At first 2.5 liters of hexanes are joined in the polymerization autoclave, open and stir, then add 50mg load type non-metallocene catalyst and catalyst mixture, add again hydrogen to 0.2MPa, continue at last to pass into ethene and make the polymerization stagnation pressure constant in 0.8MPa.Reaction with gas reactor emptying, is emitted the still interpolymer after finishing, dry rear weighing quality.The particular case of this polyreaction and polymerization evaluation result are as shown in table 1.
Copolymerization is: 5 liters of polymerization autoclaves, slurry polymerization processes, 2.5 liters of hexane solvents, polymerization stagnation pressure 0.8MPa, 85 ℃ of polymerization temperatures, hydrogen partial pressure 0.2MPa, 2 hours reaction times.At first 2.5 liters of hexanes are joined in the polymerization autoclave, open and stir, then add 50mg load type non-metallocene catalyst and catalyst mixture, disposable adding hexene-1 comonomer 50g, add again hydrogen to 0.2MPa, continue at last to pass into ethene and make the polymerization stagnation pressure constant in 0.8MPa.Reaction with gas reactor emptying, is emitted the still interpolymer after finishing, dry rear weighing quality.The particular case of this polyreaction and polymerization evaluation result are as shown in table 1.
The preparation ultrahigh molecular weight polyethylene(UHMWPE) is polymerized to: 5 liters of polymerization autoclaves, slurry polymerization processes, 2.5 liters of hexane solvents, polymerization stagnation pressure 0.5MPa, 70 ℃ of polymerization temperatures, 6 hours reaction times.At first 2.5 liters of hexanes are joined in the polymerization autoclave, open and stir, then add 50mg load type non-metallocene catalyst and catalyst mixture, promotor is 100 with catalyst activity metal molar ratio, continues at last to pass into ethene and makes the polymerization stagnation pressure constant in 0.5MPa.Reaction with gas reactor emptying, is emitted the still interpolymer after finishing, dry rear weighing quality.The particular case of this polyreaction and polymerization evaluation result are as shown in table 2.
Figure G2009101801006D00471
Figure G2009101801006D00481
Test-results data by sequence number in the table 13 and 4 increase the consumption of promotor as can be known, namely improve promotor and catalyst activity metal molar than the time, impact active on polymerization catalyst and polymer stacks density is not remarkable.It can be said that brightly, adopt the load type non-metallocene catalyst instrument of method provided by the invention preparation to need fewer promotor consumption just can obtain high olefin polymerizating activity; And the polymkeric substance such as resulting polyethylene has good polymer morphology and high polymer bulk density thus.
Sequence number 1 and 3 in the contrast table 1, sequence number 10 and 12 test-results data are as can be known, after the copolymerization, catalyst activity has greatly to be increased, thereby explanation adopts the load type non-metallocene catalyst of method preparation provided by the invention to have comparatively significant comonomer effect.
Test-results data by sequence number 1 in the contrast table 1 and Comparative Examples sequence number 18~21 reduce or increase the add-on of Nonmetallocene part as can be known in the catalyzer, its activity decreases or increases, and the molecular weight distribution of polymkeric substance also broadens thereupon or narrows down.Reduce in the catalyzer or the increase chemical processing agent, its activity decreases or increases, and the molecular weight distribution of polymkeric substance also narrows down thereupon or broadens.Thereby illustrate that the Nonmetallocene part has the effect of the molecular weight distribution of narrowing, and chemical processing agent has the effect that improves catalyst activity and broadening molecular weight distribution.Therefore the researcher in this field knows, can obtain the catalyzer of different activities and polymer performance by the proportioning that changes both.
By as seen from Table 2, adopt catalyzer provided by the present invention, can prepare ultrahigh molecular weight polyethylene(UHMWPE), its bulk density all increases to some extent, and contrast sequence number 1 and 2, sequence number 3 and 4 as seen, adopt methylaluminoxane can increase the viscosity-average molecular weight of polymkeric substance as promotor.The test-results data of sequence number 1 and Comparative Examples 5-8 reduce in the catalyzer or increase Nonmetallocene title complex as can be known in the contrast table 2, and the polymkeric substance viscosity-average molecular weight reduces thereupon or increases.Thereby the effect that the Nonmetallocene title complex also has increases the polymkeric substance viscosity-average molecular weight is described.
By sequence number in the table 11,18,21, and sequence number 1,5 in the table 2,8 data are as can be known, activity when the composite carrier load type catalyzer only contains simple Nonmetallocene title complex or chemical processing agent activity and all is lower than both and coexists, thereby illustrated that the resulting composite carrier load type catalyst activity of method for preparing catalyst provided by the invention component has formed synergy, the activity the when activity when namely both exist simultaneously is higher than any component Individual existence.
By sequence number 1 in the contrast table 1 and sequence number 22, in the table 2 sequence number 1 and 9 test-results data as can be known, the catalyst activity that the direct drying method of mixed serum obtains is higher than the catalyzer that mixed serum filtration washing method obtains.
Although more than in conjunction with the embodiments the specific embodiment of the present invention is had been described in detail, it is pointed out that protection scope of the present invention is not subjected to the restriction of these embodiments, but determined by claims of appendix.Those skilled in the art can carry out suitable change to these embodiments in the scope that does not break away from technological thought of the present invention and purport, and these embodiments after changing obviously are also included within protection scope of the present invention.

Claims (30)

1. the preparation method of a load type non-metallocene catalyst may further comprise the steps:
Magnesium compound and Nonmetallocene title complex are dissolved in the solvent, obtain the step of magnesium compound solution;
Optional porous support through thermal activation treatment is mixed with described magnesium compound solution, obtain the step of mixed serum;
With described mixed serum drying, obtain the step of complex carrier; With
Process described complex carrier with the chemical processing agent that is selected from IVB family metallic compound, obtain the step of described load type non-metallocene catalyst,
Wherein said solvent is selected from C 6-12Aromatic hydrocarbon, halo C 6-12In aromatic hydrocarbon, ester and the ether one or more.
2. according to preparation method claimed in claim 1, also be included in and adopt described chemical processing agent to process before the described complex carrier, with the step that helps the described complex carrier of chemical processing agent pre-treatment that is selected from aikyiaiurnirsoxan beta, aluminum alkyls or its arbitrary combination.
3. according to preparation method claimed in claim 1, it is characterized in that described porous support is selected from olefin homo or multipolymer, polyvinyl alcohol or its multipolymer, cyclodextrin, polyester or copolyesters, polymeric amide or copolyamide, ryuron or multipolymer, Voncoat R 3310 or multipolymer, methacrylic acid ester homopolymer or multipolymer, styrene homopolymers or multipolymer, the partial cross-linked form of these homopolymer or multipolymer, periodic table of elements IIA, IIIA, the refractory oxide of IVA or IVB family metal or infusibility composite oxides, clay, molecular sieve, mica, polynite, in wilkinite and the diatomite one or more.
4. according to preparation method claimed in claim 3, it is characterized in that described porous support is selected from one or more in partial cross-linked styrene polymer, silicon-dioxide, aluminum oxide, magnesium oxide, oxidation sial, oxidation magnalium, titanium dioxide, molecular sieve and the polynite.
5. according to preparation method claimed in claim 4, it is characterized in that described porous support is selected from silicon-dioxide.
6. according to preparation method claimed in claim 1, it is characterized in that described magnesium compound is selected from one or more in magnesium halide, alkoxyl group magnesium halide, alkoxyl magnesium, alkyl magnesium, alkyl halide magnesium and the alkyl alkoxy magnesium.
7. according to preparation method claimed in claim 6, it is characterized in that described magnesium compound is selected from one or more in the magnesium halide.
8. according to preparation method claimed in claim 7, it is characterized in that described magnesium compound is magnesium chloride.
9. according to preparation method claimed in claim 1, it is characterized in that described solvent is selected from C 6-12In aromatic hydrocarbon and the tetrahydrofuran (THF) one or more.
10. according to preparation method claimed in claim 9, it is characterized in that described solvent is tetrahydrofuran (THF).
11., it is characterized in that described Nonmetallocene title complex is selected from one or more in the compound with following chemical structural formula according to preparation method claimed in claim 1:
Figure FSB00001005459200021
In above chemical structural formula,
Q is 0 or 1;
D is 0 or 1;
M is 1,2 or 3;
M is selected from periodic table of elements III-th family to XI family atoms metal;
N is 1,2,3 or 4, depends on the valence state of described central metal atom M;
X is selected from halogen, hydrogen atom, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl, oxy radical, nitrogen-containing group, sulfur-containing group, boron-containing group, contain aluminium base group, phosphorus-containing groups, silicon-containing group, germanic group or contain tin group, a plurality of X can be identical, also can be different, and can also be each other in key or Cheng Huan;
A be selected from Sauerstoffatom, sulphur atom, selenium atom,
Figure FSB00001005459200031
-NR 23R 24,-N (O) R 25R 26, -PR 28R 29,-P (O) R 30OR 31, sulfuryl, sulfoxide group or-Se (O) R 39, N, O, S, Se and the P coordination atom of respectively doing for oneself wherein;
B is selected from nitrogen-atoms, nitrogen-containing group, phosphorus-containing groups or C 1-C 30Alkyl;
D is selected from nitrogen-atoms, Sauerstoffatom, sulphur atom, selenium atom, phosphorus atom, nitrogen-containing group, phosphorus-containing groups, C 1-C 30Alkyl, sulfuryl, sulfoxide group,
Figure FSB00001005459200033
-N (O) R 25R 26,
Figure FSB00001005459200034
Or-P (O) R 32(OR 33), N, O, S, Se and the P coordination atom of respectively doing for oneself wherein;
E is selected from nitrogen-containing group, oxy radical, sulfur-containing group, contains seleno group, phosphorus-containing groups or cyano group, wherein N, O, S, Se and the P coordination atom of respectively doing for oneself;
G is selected from C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group;
→ represent singly-bound or two key;
-represent covalent linkage or ionic linkage;
---represent coordinate bond, covalent linkage or ionic linkage;
R 1To R 3, R 22To R 33And R 39Be selected from independently of one another hydrogen, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group, above-mentioned group can be the same or different to each other, and wherein adjacent group can combine togather into key or Cheng Huan,
Described safing function group is selected from halogen, oxy radical, nitrogen-containing group, silicon-containing group, germanic group, sulfur-containing group, contains tin group, C 1-C 10Ester group or nitro.
12., it is characterized in that described Nonmetallocene title complex is selected from compound (A) with following chemical structural formula and in the compound (B) one or more according to the described preparation method of claim 11:
Figure FSB00001005459200041
In above all chemical structural formulas,
F is selected from nitrogen-atoms, nitrogen-containing group, oxy radical, sulfur-containing group, contain seleno group or phosphorus-containing groups, wherein N, O, S, Se and the P coordination atom of respectively doing for oneself.
13. according to the described preparation method of claim 12, it is characterized in that described Nonmetallocene title complex is selected to compound (A-4) and compound (B-1) to compound (B-4) one or more of compound (A-1) with following chemical structural formula:
Figure FSB00001005459200042
In above all chemical structural formulas,
Y is selected from Sauerstoffatom, nitrogen-containing group, oxy radical, sulfur-containing group, contain seleno group or phosphorus-containing groups, wherein N, O, S, Se and the P coordination atom of respectively doing for oneself;
Z is selected from nitrogen-containing group, oxy radical, sulfur-containing group, contains seleno group, phosphorus-containing groups or cyano group, wherein N, O, S, Se and the P coordination atom of respectively doing for oneself;
R 4, R 6To R 21Be selected from independently of one another hydrogen, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group, above-mentioned group can be the same or different to each other, and wherein adjacent group can combine togather into key or Cheng Huan, and
R 5Be selected from lone-pair electron on the nitrogen, hydrogen, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl, oxy radical, sulfur-containing group, nitrogen-containing group, contain seleno group or phosphorus-containing groups; Work as R 5For oxy radical, sulfur-containing group, nitrogen-containing group, when containing seleno group or phosphorus-containing groups, R 5In N, O, S, P and Se can be used as coordination and carry out coordination with atom and described center IVB family atoms metal.
14. according to each described preparation method of claim 11-13, it is characterized in that,
Described halogen is selected from F, Cl, Br or I;
Described nitrogen-containing group is selected from
Figure FSB00001005459200061
-NR 23R 24,-T-NR 23R 24Or-N (O) R 25R 26
Described phosphorus-containing groups is selected from
Figure FSB00001005459200062
-PR 28R 29,-P (O) R 30R 31Or-P (O) R 32(OR 33);
Described oxy radical be selected from hydroxyl ,-OR 34With-T-OR 34
Described sulfur-containing group is selected from-SR 35,-T-SR 35,-S (O) R 36Or-T-SO 2R 37
The described seleno group that contains is selected from-SeR 38,-T-SeR 38,-Se (O) R 39Or-T-Se (O) R 39
Described group T is selected from C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group;
Described R 37Be selected from hydrogen, C 1-C 30The C of alkyl, replacement 1-C 30Alkyl or safing function group;
Described C 1-C 30Alkyl is selected from C 1-C 30Alkyl, C 7-C 50Alkaryl, C 7-C 50Aralkyl, C 3-C 30Cyclic alkyl, C 2-C 30Thiazolinyl, C 2-C 30Alkynyl, C 6-C 30Aryl, C 8-C 30Condensed ring radical or C 4-C 30Heterocyclic radical, wherein said heterocyclic radical contain 1-3 heteroatoms that is selected from nitrogen-atoms, Sauerstoffatom or sulphur atom;
The C of described replacement 1-C 30Alkyl is selected from one or more aforementioned halogens or aforementioned C 1-C 30Alkyl is as substituent aforementioned C 1-C 30Alkyl;
Wherein, described boron-containing group is selected from BF 4 -, (C 6F 5) 4B -Or (R 40BAr 3) -
Describedly contain aluminium base group and be selected from aluminum alkyls, AlPh 4 -, AlF 4 -, AlCl 4 -, AlBr 4 -, AlI 4 -Or R 41AlAr 3 -
Described silicon-containing group is selected from-SiR 42R 43R 44Or-T-SiR 45
Described germanic group is selected from-GeR 46R 47R 48Or-T-GeR 49
Describedly contain tin group and be selected from-SnR 50R 51R 52,-T-SnR 53Or-T-Sn (O) R 54,
Described Ar represents C 6-C 30Aryl, and
R 34To R 36, R 38And R 40To R 54Be selected from independently of one another hydrogen, aforementioned C 1-C 30The C of alkyl, aforementioned replacement 1-C 30Alkyl or aforementioned safing function group, wherein these groups can be the same or different to each other, and wherein adjacent group can combine togather into key or Cheng Huan,
And described group T ditto defines.
15., it is characterized in that described Nonmetallocene title complex is selected from one or more in the compound with following chemical structural formula according to preparation method claimed in claim 1:
Figure FSB00001005459200071
16., it is characterized in that described Nonmetallocene title complex is selected from one or more in the compound with following chemical structural formula according to the described preparation method of claim 15:
Figure FSB00001005459200081
17. according to preparation method claimed in claim 1, it is characterized in that, take the mol ratio of the described magnesium compound of Mg element and described Nonmetallocene title complex as 1: 0.01-1, the ratio of described magnesium compound and described solvent is 1mol: 75~400ml, take the mass ratio of the described magnesium compound of magnesium compound solid and described porous support as 1: 0.1-20, and in the described magnesium compound of Mg element with take the mol ratio of the described chemical processing agent of IVB family metallic element as 1: 0.01-1.
18. according to the described preparation method of claim 17, it is characterized in that, take the mol ratio of the described magnesium compound of Mg element and described Nonmetallocene title complex as 1: 0.04-0.4, the ratio of described magnesium compound and described solvent is 1mol: 150~300ml, take the mass ratio of the described magnesium compound of magnesium compound solid and described porous support as 1: 0.5-10, and in the described magnesium compound of Mg element with take the mol ratio of the described chemical processing agent of IVB family metallic element as 1: 0.01-0.50.
19. according to the described preparation method of claim 18, it is characterized in that, take the mol ratio of the described magnesium compound of Mg element and described Nonmetallocene title complex as 1: 0.08-0.2, the ratio of described magnesium compound and described solvent is 1mol: 200~250ml, take the mass ratio of the described magnesium compound of magnesium compound solid and described porous support as 1: 1-5, and in the described magnesium compound of Mg element with take the mol ratio of the described chemical processing agent of IVB family metallic element as 1: 0.10-0.30.
20. according to preparation method claimed in claim 1, it is characterized in that described IVB family metallic compound is selected from one or more in IVB family metal halide, IVB family metal alkyl compound, IVB family metal alkoxide compound, IVB family metal alkyl halides and the IVB family metal alkoxide halogenide.
21., it is characterized in that described IVB family metallic compound is selected from one or more in the IVB family metal halide according to the described preparation method of claim 20.
22., it is characterized in that described IVB family metallic compound is selected from TiCl according to the described preparation method of claim 21 4, TiBr 4, ZrCl 4, ZrBr 4, HfCl 4And HfBr 4In one or more.
23., it is characterized in that described IVB family metallic compound is selected from TiCl according to the described preparation method of claim 22 4And ZrCl 4In one or more.
24. according to preparation method claimed in claim 2, it is characterized in that, described aikyiaiurnirsoxan beta is selected from one or more in methylaluminoxane, ethylaluminoxane, isobutyl aluminium alkoxide and the normal-butyl alumina alkane, and described aluminum alkyls is selected from trimethyl aluminium, triethyl aluminum, tri-propyl aluminum, triisobutyl aluminium, three n-butylaluminum, triisopentyl aluminium, three n-pentyl aluminium, three hexyl aluminium, three isohexyl aluminium, diethylmethyl aluminium and the dimethyl ethyl aluminium one or more.
25. according to the described preparation method of claim 24, it is characterized in that, described aikyiaiurnirsoxan beta is selected from one or more in methylaluminoxane and the isobutyl aluminium alkoxide, and described aluminum alkyls is selected from trimethyl aluminium, triethyl aluminum, tri-propyl aluminum and the triisobutyl aluminium one or more.
26. according to preparation method claimed in claim 2, it is characterized in that, in the described magnesium compound of Mg element and the mol ratio that helps chemical processing agent take Al element described as 1: 0-1.0.
27. according to the described preparation method of claim 26, it is characterized in that, in the described magnesium compound of Mg element and the mol ratio that helps chemical processing agent take Al element described as 1: 0-0.5.
28. according to the described preparation method of claim 27, it is characterized in that, in the described magnesium compound of Mg element and the mol ratio that helps chemical processing agent take Al element described as 1: 0.1-0.5.
29. a load type non-metallocene catalyst, it is by making according to each described preparation method of claim 1-28.
30. alkene homopolymerization/copolymerization process, it is characterized in that, take according to the described load type non-metallocene catalyst of claim 29 as Primary Catalysts, to be selected from aikyiaiurnirsoxan beta, aluminum alkyls, haloalkyl aluminium, boron fluothane, boron alkyl and the boron alkyl ammonium salt one or more as promotor, make alkene homopolymerization or copolymerization.
CN2009101801006A 2009-10-26 2009-10-26 Supported non-metallocene catalyst as well as preparation method and application thereof Active CN102039184B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009101801006A CN102039184B (en) 2009-10-26 2009-10-26 Supported non-metallocene catalyst as well as preparation method and application thereof
US13/503,825 US8952112B2 (en) 2009-10-26 2010-10-13 Supported nonmetallocene catalyst, preparation and use thereof
JP2012534518A JP5670460B2 (en) 2009-10-26 2010-10-13 Supported nonmetallocene catalyst, process for its production and use thereof
EP10825929.2A EP2495261B1 (en) 2009-10-26 2010-10-13 Supported non-metallocene catalyst, manufacturing method and application thereof
PCT/CN2010/001604 WO2011050565A1 (en) 2009-10-26 2010-10-13 Supported non-metallocene catalyst, manufacturing method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101801006A CN102039184B (en) 2009-10-26 2009-10-26 Supported non-metallocene catalyst as well as preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN102039184A CN102039184A (en) 2011-05-04
CN102039184B true CN102039184B (en) 2013-05-29

Family

ID=43905918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101801006A Active CN102039184B (en) 2009-10-26 2009-10-26 Supported non-metallocene catalyst as well as preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN102039184B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304707B (en) * 2012-03-06 2015-11-25 中国石油化工股份有限公司 Load type non-metallocene catalyst, its preparation method and application thereof
CN103304703B (en) * 2012-03-06 2016-05-25 中国石油化工股份有限公司 Load type non-metallocene catalyst, its preparation method and application thereof
CN103304708B (en) * 2012-03-06 2016-01-27 中国石油化工股份有限公司 Load type non-metallocene catalyst, its preparation method and application thereof
CN105330766B (en) * 2014-06-09 2018-04-13 中国石油化工股份有限公司 A kind of carried metallocene catalyst and preparation method thereof
CN105524193B (en) * 2014-09-29 2017-12-19 中国石油化工股份有限公司 A kind of carried metallocene catalyst and preparation method thereof
CN111072797B (en) * 2018-10-19 2021-07-02 中国石油化工股份有限公司 Olefin polymerization catalyst spherical carrier and preparation method thereof, catalyst component, catalyst and application
CN109438593B (en) * 2018-11-26 2020-09-22 上海化工研究院有限公司 Catalyst for producing ultrahigh molecular weight polyolefin and preparation method and application thereof
TWI823951B (en) * 2019-06-19 2023-12-01 大陸商中國石油化工科技開發有限公司 Catalyst component for olefin polymerization, preparation method thereof and catalyst containing same
JP2024504507A (en) * 2021-02-01 2024-01-31 中国石油化工股▲ふん▼有限公司 Ultra-high molecular weight polyethylene and its manufacturing method
CN114621372B (en) * 2021-02-01 2024-04-09 中国石油化工股份有限公司 Ultra-high molecular weight ethylene homopolymers and process for preparing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887919A (en) * 2005-06-30 2007-01-03 中国石油化工股份有限公司 In-situ synthesized supported vanadium non-metallocene polyolefin catalyst and its prepn and application
CN101412767A (en) * 2007-10-16 2009-04-22 中国石化扬子石油化工有限公司 Load type non-metallocene catalyst and preparation thereof
CN101412765A (en) * 2007-10-16 2009-04-22 中国石化扬子石油化工有限公司 Load type catalyst, load type non-metallocene catalyst and preparations thereof
CN101412766A (en) * 2007-10-16 2009-04-22 中国石化扬子石油化工有限公司 Magnesium compound load type non-metallocene catalyst and preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887919A (en) * 2005-06-30 2007-01-03 中国石油化工股份有限公司 In-situ synthesized supported vanadium non-metallocene polyolefin catalyst and its prepn and application
CN101412767A (en) * 2007-10-16 2009-04-22 中国石化扬子石油化工有限公司 Load type non-metallocene catalyst and preparation thereof
CN101412765A (en) * 2007-10-16 2009-04-22 中国石化扬子石油化工有限公司 Load type catalyst, load type non-metallocene catalyst and preparations thereof
CN101412766A (en) * 2007-10-16 2009-04-22 中国石化扬子石油化工有限公司 Magnesium compound load type non-metallocene catalyst and preparation thereof

Also Published As

Publication number Publication date
CN102039184A (en) 2011-05-04

Similar Documents

Publication Publication Date Title
CN102039184B (en) Supported non-metallocene catalyst as well as preparation method and application thereof
CN102039187B (en) Load type non-metallocene catalyst as well as preparation method and application thereof
CN102039191B (en) Load type non-metallocene catalyst, preparation method and application thereof
CN102059152B (en) Loaded non-metallocene catalyst and preparation method and application thereof
CN102964476A (en) Supported non-metallocene catalyst, preparation method and application
CN102399320B (en) Supported non-metallocene catalyst and preparation method and application thereof
CN102039185B (en) Supported non-metallocene catalyst, its preparation method and uses
CN102059153B (en) Loaded non-metallocene catalyst and preparation method and application thereof
CN102964479A (en) Supported non-metallocene catalyst, preparation method and application
CN102964471A (en) Supported non-metallocene catalyst, preparation method and application
CN102059148B (en) Loaded non-metallocene catalyst and preparation method and application thereof
CN102039188B (en) Supported non-metallocene catalyst, its preparation method and uses
CN102964489A (en) Supported non-metallocene catalyst, preparation method and application
CN102964484A (en) Supported non-metallocene catalyst, preparation method and application
CN102059151B (en) Loaded non-metallocene catalyst and preparation method and application thereof
CN102399315B (en) Supported non-metallocene catalyst and preparation method and use thereof
CN102059150B (en) Loaded non-metallocene catalyst and preparation method and application thereof
CN102399314B (en) Supported non-metallocene catalyst and preparation method and application thereof
CN102399316B (en) Supported non-metallocene catalyst and preparation method and application thereof
CN102964483A (en) Supported non-metallocene catalyst, preparation method and application
CN102964472A (en) Supported non-metallocene catalyst, preparation method and application
CN102964477B (en) Supported non-metallocene catalyst, preparation method and application
CN102964490A (en) Supported non-metallocene catalyst, preparation method and application
CN102399321B (en) Supported non-metallocene catalyst, and its preparation method and application
CN102399322B (en) Load-type non-metallocene catalyst, preparation method thereof, and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant