CN102037145A - 通过加入碳氢化合物再循环高炉煤气而熔炼生铁的工艺 - Google Patents

通过加入碳氢化合物再循环高炉煤气而熔炼生铁的工艺 Download PDF

Info

Publication number
CN102037145A
CN102037145A CN2009801052602A CN200980105260A CN102037145A CN 102037145 A CN102037145 A CN 102037145A CN 2009801052602 A CN2009801052602 A CN 2009801052602A CN 200980105260 A CN200980105260 A CN 200980105260A CN 102037145 A CN102037145 A CN 102037145A
Authority
CN
China
Prior art keywords
gas
blast furnace
technology
rezg
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801052602A
Other languages
English (en)
Other versions
CN102037145B (zh
Inventor
R·米尔纳
K·维德尔
J·武尔姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Siemens VAI Metals Technologies GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VAI Metals Technologies GmbH Austria filed Critical Siemens VAI Metals Technologies GmbH Austria
Publication of CN102037145A publication Critical patent/CN102037145A/zh
Application granted granted Critical
Publication of CN102037145B publication Critical patent/CN102037145B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/22Increasing the gas reduction potential of recycled exhaust gases by reforming
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/26Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/64Controlling the physical properties of the gas, e.g. pressure or temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

用于在由氧气驱动的高炉(1)或者带有还原区的熔融还原设备中熔炼生铁的工艺,其中从还原区中导出的纯化的原煤气(GG、EG)通过加入碳氢化合物而被再循环到还原区中。根据本发明的设置,使纯化的原煤气(GG、EG)与碳氢化合物混合,并与温度高于1000℃且通过借助于含氧量超过90体积%的氧气而部分氧化碳氢化合物而产生的还原气体(REDG)混合,以形成温度高于800℃的循环气体(REZG),且循环气体(REZG)在自动转化过程之后再循环进入还原区。

Description

通过加入碳氢化合物再循环高炉煤气而熔炼生铁的工艺
本发明涉及一种根据权利要求1的前序部分所述的熔炼生铁的工艺。
根据现有技术,已知各种不同的生铁熔炼工艺。如在GB 883998A中所描述的,在高炉中通过风口或在炉腹平面中吹入不同含碳量的气体比如天然气或者焦炉煤气,以由此节约焦炭以及提高设备的经济性。由于二氧化碳和氮气含量高而氢气含量低,喷入来自传统的以热风驱动的高炉的高炉煤气是很不经济的。
在DE 1939354A中描述了在下加热式的外部反应***中用碳氢燃料转化来自高炉的高炉煤气并将其再循环回高炉中。其缺点是加热器的下加热所额外必需的能量消耗以及高温热交换器的极高费用。此外在加热期间还由于还原气体中的一氧化碳和氢气产生的所谓“金属尘化腐蚀”而产生缺点。
在DE 2261766中描述了由氧气替代热风驱动的高炉的高炉煤气的循环。高炉煤气精洗后二氧化碳会被去除,并且通过炉腹或炉床上的风口导入高炉中。此外在DE 3702875C1中也描述了用氧气驱动高炉和高炉煤气的再循环,以及二氧化碳去除设备的应用。在WO 2004/052510A3中描述了用热风驱动的高炉和高炉煤气的再循环以及二氧化碳和氮气的去除。然而这些实施方式的重要缺点在于去除高炉煤气中的二氧化碳和氮气以及对还原气体的必需加热过程中的巨大投资和运行耗费,这又会产生金属尘化腐蚀的问题。此外,去除二氧化碳后的残余气体由于低热值必须经利用或后处理。这时高炉煤气中的二氧化碳被进一步排出,导致不利的二氧化碳排放,因为其未再转化为还原气体。因此残余气体中的还原剂会出现额外的损失。
按照被视为最接近的现有技术的DE 102004036767A1描述的操作方法也产生相同的缺点。在此文献描述了一种在由氧气驱动的高炉和加有碳氢化合物的再循环高炉煤气中制备生铁的工艺,但其中仍必需预先去除二氧化碳。
因此本发明的目的是,借助一种改进的生铁熔炼工艺来避免这些缺点,特别是提供一种工艺,在该工艺中不需要复杂昂贵的二氧化碳和/或氮气去除工艺。由此避免了因去除二氧化碳而产生的残余气体,并且降低了包括投资和运行成本的设备的总成本。
此目的通过权利要求1的措施实现。权利要求1涉及一种在由氧气驱动的高炉或带有还原区的熔融还原设备中熔炼生铁的工艺,其中从还原区导出的纯化的原煤气在加入碳氢化合物的条件下再循环到还原区中。按照本发明,从还原区导出的纯化的原煤气与碳氢化合物混合。然后此气体混合物与温度高于1000℃且通过借助于含氧量超过90体积%的氧气而部分氧化碳氢化合物而产生的还原气体混合。在此步骤中循环气体达到后续的自动转化工艺所需的温度。随后,纯化的原煤气中包含的碳氢化合物用同样含有的气体组分二氧化碳和水进行转化,并且之后再循环到还原区中。同时通过转化过程循环气体被冷却至约800℃的温度。
还原区在高炉中位于高炉内部,在熔融还原设备中位于熔融气化器内以及单独的还原竖炉内。
权利要求2至7描述了本发明的有利实施方式。例如,自动转化过程可以借助一个充有相应催化剂的转化器进行加速。循环气体向高炉反应室内的一种特别有利的再循环可以例如通过风口、在风口上方的平面内或在高炉炉身内进行。这时,在循环气体通过风口再循环时,可以配备一个细煤喷入设备。此外,供给纯化的原煤气的碳氢化合物可为通式CnHm的碳氢化合物或这些碳氢化合物的混合物。对于原煤气可以设置一个热回收设备或用于洗涤原煤气的干燥除尘设备。
将借助所附的示意图以下述的不同实施形式进一步说明本发明。
图1:根据本发明的在高炉中熔炼生铁的工艺应用示意图,和
图2:根据本发明的在熔融还原设备中熔炼生铁的工艺应用示意图。
图1描述了按照本发明的工艺的第一实施方式。图1示出高炉1,在炉中通过氧化铁的还原得到铁。为此,将原料,尤其是含有氧化铁的炉料,添加料以及焦炭通过一个倾斜绞车2或者倾斜带式输送器2输送至高炉1的炉顶料盖3中,并输送至高炉1内部。高炉1可以视作冶金反应器,在其中炉料柱与例如通过风口4吹进的氧气进行逆流反应。通过焦炭中碳的气化产生反应所需的热量和穿流炉料柱以及还原氧化铁的一氧化碳。在由炉顶料盖3至高炉1的炉底的路径中发生不同的物理化学过程,因此通常在高炉1内的不同区域也是有差异的,例如熔融区、碳化区、还原区等等。下面将对这些区域进行概述,并且对于此实施例一般称为还原区。在高炉1的炉底可随后产生生铁馏份5和炉渣馏份6,其定期流出。
在还原区内形成的原煤气RG(在这里也称作高炉煤气)在高炉1的炉身上端被抽出,在除尘器7中干燥除尘,并在高炉煤气洗涤器8中纯化。因此,纯化的原煤气在这种情况下也被称作纯化的高炉煤气GG。除一氧化碳之外,高炉煤气还包含二氧化碳以及氢气和水蒸气以及可能出现的少量的氮气。纯化的高炉煤气GG通常部分再循环到高炉1中,并用作还原剂。其余部分的高炉煤气GG可在发电厂中用于发电9,用于加热加热炉和退火炉,或者用作炼焦炉的下燃烧气体。
在图1中还可看到实施本发明工艺所必需的燃烧室10和转化器11。在燃烧室10中,碳氢化合物比如天然气用氧气进行欠化学计量的氧化,其中氧气含氧量超过90体积%。大部分的甲烷(和其他更高阶的碳氢化合物)在这里部分氧化,只有小部分甲烷燃烧,且极小部分根本不参加发应。化学反应式概括如下:
CH4+1/2O2→CO+2H2
CH4+2O2→CO2+2H2O
CH4→CH4
因此,在燃烧室10之后产生还原气体REDG,其主要由H2和CO组成,温度大约为1500℃。
纯化的高炉气体GG首先在压缩机12中被压缩,与通式为CnHm的碳氢化合物或其混合物例如天然气混合,并随后与来自燃烧室10的还原气体REDG均匀混合。这样所形成的气体在下面被称为循环气体REZG。为此,需要一个用于设定均匀温度分布的足够的混合区或混合室。通过此混合,还原气REDG的初始温度被降低,且循环气体REZG的温度达到大约1000℃。为了避免在不利的Boudouard平衡情况下的碳沉积,循环气体REZG的温度在所有情况下均应该超过800℃。
此循环气体REZG接着通过转化器11进行输送,该转化器11为充有催化剂的容器或管道,其中进行含碳氢化合物的气体的转化,并且通过相对于二氧化碳和水的含量提高一氧化碳和氢气的含量而显著改善气体质量。在转化器11中发生的反应可以概括如下:
CnHm+nCO2→2nCO+m/2H2
CnHm+nH2O→nCO+(m/2+n)H2
循环气体REZG通过转化过程进一步冷却至大约800℃的温度。随后将此循环气体经风口4导入,在风口4上方的平面内导入,或导入高炉1的炉身内。
图2描述了本发明工艺的另一实施例,确切地说是涉及熔融还原设备。此类型的设备用来制备生铁水,例如经
Figure BPA00001242863100041
工艺进行。这里不同于高炉工艺的是不需要高炉焦炭。尽管本发明的工艺也可适用于其他生产工艺,例如
Figure BPA00001242863100042
工艺,但下面借助图2描绘的
Figure BPA00001242863100043
工艺来说明本发明的工艺。
所显示的生产工艺是一个两阶段的熔融还原工艺(“熔炼-还原”),在第一步中将生铁矿还原为海绵铁,在第二步中进行最终还原、融化和碳化成生铁。熔融过程所必需的能量通过煤的气化提供。这里产生大量的作为原煤气的一氧化碳和氢气,该原煤气用作还原气体。
如图2显示,首先将块矿、熔渣、粒料或它们的混合物导入还原炉身13中,并在逆流中与还原性工艺气体GPG进行还原。在还原竖炉13流程之后,第一阶段的最终产物会通过螺旋输送机14导入下面设置的熔融气化器15中。在还原竖炉13中产生的原煤气RG从还原竖炉13中导出,并在洗涤器19中纯化。还原气体的部分气流在纯化和冷却后作为冷却气体KG应用于从熔融气化器15导出的工艺气体PG。作为调节气体产生的还原气体在冷却和纯化之后与原煤气RG混合。
除海绵铁的剩余还原和熔融之外,在熔融气化器15中还进行必要的冶金金属反应和炉渣反应。随后可如在高炉中一样由熔融气化器15获得生铁馏份5和炉渣馏份6,其定期流出。
向熔融气化器15中送入煤,煤从煤储备井17中通过煤-螺杆输送机16输送。煤在脱水和脱气后在熔融气化器15中首先形成由低温焦炭构成的固定床,其随后用氧气进行气化。生成的热工艺气体PG的温度为大约1000℃,其主要由一氧化碳和氢气构成,从而具有还原性,并且带有粉尘。此工艺气体PG通过与冷却气体KG混合而被冷却,在漩涡除尘器18例如热漩涡除尘器中进行除尘,最后作为纯化的工艺气体GPG输送至还原竖炉13。过剩的气体在另一个洗涤器19中纯化。还原气体的部分气流作为冷却气KG应用。漩涡除尘器18中析出的尘馏份SF再次输送至熔融气化器15,作为材料应用或用氧气气化。
图2还描述了另一种实施本发明工艺所必需的燃烧室10和转化器11。在燃烧室10中碳氢化合物比如天然气用含氧量超过90体积%的氧气进行欠化学计量的氧化。化学反应如上所述。在燃烧室10后产生还原气体REDG,其主要由氢气和一氧化碳构成,温度为大约1500℃。
纯化的原煤气(在此情况下称为输出气体EG)首先在压缩机12中压缩,与化学通式为CnHm的碳氢化合物或其混合物例如天然气混合,并且随后与从燃烧室10输出的还原气体REDG均匀混合。由此产生的气体随后被称为循环气体REZG。同样如上所述,为此需要一个足够的混合区或混合室用于设定均衡的温度分布。通过这一混合,还原气体REDG的初始温度降低,并且循环气体REZG的温度达到大约1000℃。为了避免在不利的Boudouard平衡情况下发生碳沉积,循环气体REZG的温度在所有情况下均应超过800℃。
该循环气体REZG随后通过转化器11输送,其中该转化器为充有催化剂的容器或管道,其中进行含碳氢化合物气体的转化,并且通过提高相比于二氧化碳和水的一氧化碳和氢气的含量,显著地改善了气体质量。在转化器11中发生的化学反应如上述实施例中所述。
循环气体REZG的温度通过转化过程进一步冷却至约800℃。循环气体REZG随后输送至粗的纯化工艺气体GPG和还原竖炉13中,或经氧气喷嘴输送至熔融气化器15中。
与现有技术相比,用更高阶碳氢化合物进行的再循环和转化有更多的优点。因为无需不需要复杂昂贵的二氧化碳脱除和/或氮气脱除,可相对于其他工艺方法节约投资成本,并且避免了由于脱除二氧化碳而附带产生的必须以其它方式加以利用或后处理的剩余气体。通常只产生少量的二氧化碳排放,因为高炉煤气中的二氧化碳被高阶碳氢化合物(如甲烷、乙烷、丙烷、丁烷等)转化,并再次用于还原。此外还可以提高产生转化和向高炉中喷射所需热量的效率,因为转化器11的下加热不需要燃料气体。
此外,在加热、转化和输送期间可降低由于含一氧化碳的还原气体导致的金属尘化腐蚀,因为燃烧室10和相应的通向高炉的管道被衬砌,且距离可保持很短。
其他的优点还在于通过有目的地降低因焦炭与极少量仍存在的水、二氧化碳和甲烷的吸热反应而导致的火焰温度而冷却管道:
a.C+H2O→CO+H2      ΔH298=+132kJ/mol
b.C+CO2→2CO        ΔH298=+173kJ/mol
c.CH4→2H2+C        ΔH298=+74kJ/mol
然而,由于因低浓度而没有产生剧烈的冷却,因此可以将与纯天然气喷入或油喷入相比显著更大的量导入高炉1中。此外,通过循环气体REZG中的还原剂(一氧化碳,氢气)的再循环和用含碳气体进行转化可以节约作为还原剂使用的煤和煤块。因此按照本发明的工艺方法能显著降低整个设备的运行成本。

Claims (7)

1.用于在由氧气驱动的高炉(1)或者带有还原区的熔融还原设备中熔炼生铁的工艺,其中从还原区中导出的纯化的原煤气(GG、EG)通过加入碳氢化合物而被再循环到还原区中,其特征在于,使纯化的原煤气(GG、EG)与碳氢化合物混合,并与温度高于1000℃且通过借助于含氧量超过90体积%的氧气而部分氧化碳氢化合物而产生的还原气体(REDG)混合,形成温度高于800℃的循环气体(REZG),且该循环气体(REZG)在自动转化过程之后再循环进入还原区。
2.权利要求1的工艺,其特征在于,自动转化过程在充有相应催化剂的转化器(11)中进行。
3.权利要求1或2的工艺,其特征在于,将循环气体(REZG)通过风口(4),在风口(4)上方的平面内,或向高炉(1)的炉身内导入,以再循环到高炉(1)的还原区中。
4.权利要求3的工艺,其特征在于,循环气体(REZG)的在循环通过风口(4)借助细煤喷粉进行。
5.权利要求1至4之一的工艺,其特征在于,供给纯化的原煤气(GG、EG)的碳氢化合物为通式CnHm的碳氢化合物或其混合物。
6.权利要求1至5之一的工艺,其特征在于,由原煤气(RG)回收热。
7.权利要求1至6之一的工艺,其特征在于,为纯化原煤气(RG),对原煤气(RG)进行干燥除尘。
CN2009801052602A 2008-02-15 2009-01-29 通过加入碳氢化合物再循环高炉煤气而熔炼生铁的工艺 Expired - Fee Related CN102037145B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0024808A AT505401B1 (de) 2008-02-15 2008-02-15 Verfahren zum erschmelzen von roheisen unter rückführung von gichtgas unter zusatz von kohlenwasserstoffen
ATA248/2008 2008-02-15
PCT/EP2009/000556 WO2009100819A1 (de) 2008-02-15 2009-01-29 Verfahren zum erschmelzen von roheisen unter rückführung von gichtgas unter zusatz von kohlenwasserstoffen

Publications (2)

Publication Number Publication Date
CN102037145A true CN102037145A (zh) 2011-04-27
CN102037145B CN102037145B (zh) 2013-11-20

Family

ID=40240450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801052602A Expired - Fee Related CN102037145B (zh) 2008-02-15 2009-01-29 通过加入碳氢化合物再循环高炉煤气而熔炼生铁的工艺

Country Status (15)

Country Link
US (1) US8287620B2 (zh)
EP (1) EP2242861B1 (zh)
JP (1) JP2011514443A (zh)
KR (2) KR101720075B1 (zh)
CN (1) CN102037145B (zh)
AR (1) AR070380A1 (zh)
AT (1) AT505401B1 (zh)
AU (1) AU2009214417B2 (zh)
BR (1) BRPI0907889A2 (zh)
CA (1) CA2715525C (zh)
CL (1) CL2009000327A1 (zh)
RU (1) RU2496884C2 (zh)
TW (1) TW200951229A (zh)
UA (1) UA99945C2 (zh)
WO (1) WO2009100819A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968807A (zh) * 2012-12-21 2015-10-07 首要金属科技奥地利有限责任公司 为了抵消量波动的用于还原工艺中的出口气体的过热以及装置
CN105814215A (zh) * 2013-12-10 2016-07-27 株式会社Posco 铁水制造方法及铁水制造设备
CN106957937A (zh) * 2017-04-20 2017-07-18 江苏省冶金设计院有限公司 一种用corex装置和直接还原竖炉生产海绵铁的方法和***
CN114729406A (zh) * 2019-11-29 2022-07-08 杰富意钢铁株式会社 高炉的操作方法和高炉附属设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91617B1 (en) * 2009-10-19 2011-04-20 Wurth Paul Sa Energy recovery from gases in a blast furnace plant
CN101812555A (zh) * 2010-04-15 2010-08-25 山东省冶金设计院股份有限公司 一种强化高炉间接还原的方法及其专用气的制造方法
CN101818218B (zh) * 2010-04-15 2015-05-20 山东省冶金设计院股份有限公司 强化高炉间接还原的方法
AT510955B1 (de) * 2011-05-30 2012-08-15 Siemens Vai Metals Tech Gmbh Reduktion von metalloxiden unter verwendung eines sowohl kohlenwasserstoff als auch wasserstoff enthaltenden gasstromes
GB2513185A (en) * 2013-04-19 2014-10-22 Siemens Vai Metals Tech Gmbh Blast furnace plant
EP3216880B1 (en) * 2014-11-06 2019-06-19 Posco Composite molten iron manufacturing apparatus
US11427877B2 (en) 2017-09-21 2022-08-30 Nucor Corporation Direct reduced iron (DRI) heat treatment, products formed therefrom, and use thereof
LU101210B1 (en) * 2019-05-14 2020-11-16 Wurth Paul Sa Method for operating a metallurgical furnace
LU101227B1 (en) * 2019-05-21 2020-11-23 Wurth Paul Sa Method for Operating a Blast Furnace
LU102057B1 (en) * 2020-09-09 2022-03-09 Wurth Paul Sa Method for operating a blast furnace installation
LU500245B1 (en) * 2021-06-03 2022-12-07 Wurth Paul Sa Method for operating a blast furnace installation

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB883998A (en) 1958-04-01 1961-12-06 Mckee & Co Arthur G Method of operating blast furnaces
DE1939354A1 (de) 1969-08-01 1971-02-11 British Iron Steel Research Verfahren zum Betrieb eines Hochofens
JPS5141563B1 (zh) * 1970-12-21 1976-11-10
JPS4818174B1 (zh) * 1970-12-22 1973-06-04
JPS526872B2 (zh) * 1972-03-30 1977-02-25
US3909446A (en) * 1972-03-31 1975-09-30 Nippon Kokan Kk Method of manufacturing high quality reducing gas by two stage reforming processes
DE2261766C3 (de) 1972-12-16 1978-06-01 Ferdinand Dr.Mont. 6374 Steinbach Fink Verfahren zum Erschmelzen von Roheisen in Hochöfen
JPS4994592A (zh) * 1973-01-16 1974-09-07
US3935002A (en) * 1974-04-03 1976-01-27 Nippon Kokan Kabushiki Kaisha Method of blast furnace operation utilizing selective recycling of peripheral gas stream
LU71434A1 (zh) * 1974-12-06 1976-11-11
JPS5399093A (en) * 1977-02-10 1978-08-30 Nippon Kokan Kk <Nkk> Combustion atmosphere controlling method in production of reduced gas
JPS53102816A (en) * 1977-02-22 1978-09-07 Nippon Kokan Kk <Nkk> Heat accumulating method in preparation of reducing gas
US4244732A (en) 1979-03-27 1981-01-13 Kaiser Engineers, Inc. Manufacture of steel from ores containing high phosphorous and other undesirable constituents
DE3702875C1 (en) 1987-01-31 1988-04-07 Ferdinand Dipl-Ing Dr Mon Fink Process for smelting crude iron and for producing process gas in blast furnaces
DE4041689C2 (de) 1990-04-20 1995-11-09 Orinoco Siderurgica Verfahren und Anlage zum Herstellen von flüssigem Stahl aus Eisenoxiden
US6506230B2 (en) * 1997-09-05 2003-01-14 Midrex Technologies, Inc. Method for increasing productivity of direct reduction process
US6152984A (en) 1998-09-10 2000-11-28 Praxair Technology, Inc. Integrated direct reduction iron system
JP4137266B2 (ja) 1999-01-28 2008-08-20 新日本製鐵株式会社 還元鉄製造方法
FR2848123B1 (fr) * 2002-12-04 2005-02-18 Air Liquide Procede de recuperation du gaz de haut-fourneau et son utilisation pour la fabrication de la fonte
DE102004036767B4 (de) * 2003-07-30 2005-11-24 Scheidig, Klaus, Dr.-Ing. Verfahren zur Roheisenerzeugung in einem mit Sauerstoff und rückgeführtem, vom CO2 befreiten Gichtgas unter Zusatz von Kohlenwasserstoffen betriebenen Hochofen
DE102005018712B4 (de) * 2005-04-21 2007-08-09 Scheidig, Klaus, Dr.-Ing. Verfahren zur Erzeugung von Roheisen im Hochofen unter Zuführung von Reduktionsgas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968807A (zh) * 2012-12-21 2015-10-07 首要金属科技奥地利有限责任公司 为了抵消量波动的用于还原工艺中的出口气体的过热以及装置
CN105814215A (zh) * 2013-12-10 2016-07-27 株式会社Posco 铁水制造方法及铁水制造设备
CN106957937A (zh) * 2017-04-20 2017-07-18 江苏省冶金设计院有限公司 一种用corex装置和直接还原竖炉生产海绵铁的方法和***
CN114729406A (zh) * 2019-11-29 2022-07-08 杰富意钢铁株式会社 高炉的操作方法和高炉附属设备

Also Published As

Publication number Publication date
KR101720075B1 (ko) 2017-03-27
US8287620B2 (en) 2012-10-16
AT505401B1 (de) 2009-01-15
RU2010138112A (ru) 2012-03-20
US20100313711A1 (en) 2010-12-16
WO2009100819A1 (de) 2009-08-20
CN102037145B (zh) 2013-11-20
AR070380A1 (es) 2010-03-31
EP2242861A1 (de) 2010-10-27
RU2496884C2 (ru) 2013-10-27
CL2009000327A1 (es) 2010-07-19
BRPI0907889A2 (pt) 2015-07-21
CA2715525C (en) 2017-01-24
TW200951229A (en) 2009-12-16
KR20100132005A (ko) 2010-12-16
JP2011514443A (ja) 2011-05-06
AU2009214417B2 (en) 2013-03-28
EP2242861B1 (de) 2015-08-12
AU2009214417A1 (en) 2009-08-20
KR20160029150A (ko) 2016-03-14
CA2715525A1 (en) 2009-08-20
UA99945C2 (ru) 2012-10-25
AT505401A4 (de) 2009-01-15

Similar Documents

Publication Publication Date Title
CN102037145B (zh) 通过加入碳氢化合物再循环高炉煤气而熔炼生铁的工艺
US6986800B2 (en) Method and apparatus for improved use of primary energy sources in integrated steel plants
JP2022535446A (ja) 放出を減らした鋼または溶鉄含有材料を生産する方法及びシステム
JP5857054B2 (ja) 水素および一酸化炭素を含有した還元ガスを供給源として用いて直接還元鉄を製造する方法並びに装置
CN101023023A (zh) 由焦炉气制备清洁的还原性气体的方法和设备
CN115516116A (zh) 用于生产渗碳海绵铁的方法
KR20220162174A (ko) 제철 설비 및 환원철의 제조 방법
CN114686633A (zh) 利用直接还原铁炉顶煤气预热变换氢气的方法
JPS585229B2 (ja) 冶金利用のための還元ガスを製造する方法及び装置
CN1772929A (zh) 利用焦炉煤气生产直接还原铁的方法及其设备
WO2024135696A1 (ja) 還元鉄の製造方法
CN221166599U (zh) 一种设施网络
WO2024135697A1 (ja) 還元鉄の製造方法
WO2023036474A1 (en) Method for producing direct reduced iron for an iron and steelmaking plant
WO2024135698A1 (ja) 還元鉄の製造方法
US20230340628A1 (en) Method for operating a blast furnace installation
CN117737324A (zh) 一种副产煤气制取高温富氢煤气高炉炼铁工艺及***
KR20240006634A (ko) 플랜트의 네트워크의 작동 방법
CN116904685A (zh) 一种还原竖炉炼铁***和工艺
KR20240013201A (ko) 직접환원철의 제조 방법
KR20240007225A (ko) 직접환원철 제조 방법 및 dri 제조 설비
KR20240007223A (ko) 직접 환원 철을 제조하기 위한 방법
KR20240075852A (ko) 용광로 설비의 가동 방법
CN116219101A (zh) 含碳矿物球团还原***及方法
KR20240016962A (ko) 고로 설비의 작동방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151215

Address after: Linz

Patentee after: The Austrian limited liability company of primary metal science and technology

Address before: Linz

Patentee before: Siemens Vai Metals Technologie

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131120

Termination date: 20190129