CN102017444B - 基于循环延迟分集的、具有延迟跳变的传输 - Google Patents

基于循环延迟分集的、具有延迟跳变的传输 Download PDF

Info

Publication number
CN102017444B
CN102017444B CN200980116296.0A CN200980116296A CN102017444B CN 102017444 B CN102017444 B CN 102017444B CN 200980116296 A CN200980116296 A CN 200980116296A CN 102017444 B CN102017444 B CN 102017444B
Authority
CN
China
Prior art keywords
time
delay
travelling carriage
delay value
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980116296.0A
Other languages
English (en)
Other versions
CN102017444A (zh
Inventor
孙理香
王舒
金相国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosedale Power Co ltd
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN102017444A publication Critical patent/CN102017444A/zh
Application granted granted Critical
Publication of CN102017444B publication Critical patent/CN102017444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供了一种在多天线传输***中提供延迟信息的方法。从时间延迟值集合中选择时间延迟值。向移动台通知与所选择的时间延迟值相关的信息。从第一天线发送和第二天线发送相同的数据。在从所述第一天线发送所述数据后,根据所选择的时间延迟值从所述第二天线发送所述数据。基于确定性方法或随机方法来选择所述时间延迟值。

Description

基于循环延迟分集的、具有延迟跳变的传输
技术领域
本发明涉及基于循环延迟分集(cyclic delay diversity,CDD)的传输,更具体地涉及基于CDD的、具有延迟跳变(delay hopping)的传输。
背景技术
使用多天线的发送和/或接收由于其潜在大容量的增加,已经在业界和产业中受到广泛的关注。根据发送侧的信道状态信息的可用性,存在两种操作模式:开环操作和闭环操作。在开环操作中,基站不从移动台接收信道状态信息。在闭环操作中,基站从移动台接收部分或全部信道状态信息。由于缺少了信道状态信息,开环传输导致性能损失,但是提供了简单的操作。在开环传输的环境中已经考虑CDD。采用CDD,用不同的延迟从天线振子发送相同的信号。例如,当存在两个天线振子时,从第二个天线振子发送的信号是从第一个天线振子发送的信号的延迟版本。在开环操作中利用一个固定的延迟值(或者在利用多于两个的天线振子进行传输时为固定的延迟值的集合)。一个固定的延迟值可能为一些用户提供更好的接收质量,但并不能为其它用户提供大的增益。这可以通过经由闭环操作为各用户(或用户群)分配不同的最优(或次最优)延迟值来克服,在闭环操作中,各用户需要计算提供最佳量度(如SINR)的延迟值并需要将该值反馈给中心控制器(如蜂窝通信***中的基站)。但是,闭环的方法将增加开销传输,因此导致能力下降。此外,由于反馈过程中的固有延迟,在中心控制器中使用的延迟值可能是过期的。
发明内容
在本发明的一种示例性实施方式中,提供了一种在多天线传输***中提供延迟信息的方法。从时间延迟值集合中选择时间延迟值。向移动台通知与所选择的时间延迟值相关的信息。从第一天线发送数据并从第二天线发送该数据。在从所述第一天线发送所述数据后,根据所选择的时间延迟值从所述第二天线发送所述数据。基于确定性方法或随机方法来选择所述时间延迟值。
在一个实施方式中,从所述时间延迟值集合中随机选择所述时间延迟值。
在一个实施方式中,基于与所述时间延迟值集合中的各时间延迟值相关的概率来随机选择所述时间延迟值。
在一个实施方式中,在所述随机方法中,所述时间延迟值集合中的各时间延迟值的概率是变化的。
在一个实施方式中,按照所述时间延迟值集合的顺序来选择所述时间延迟值。
在一个实施方式中,基于来自接收机的非循环延迟分集信息来选择所述时间延迟值。
在一个实施方式中,所述非循环延迟分集信息为信道质量信息或确认信息。
在一个实施方式中,为所述时间延迟值集合中的各时间延迟值分配概率。如果针对采用特定时间延迟值发送的数据接收到了所述否定确认并且如果所述否定确认的数量大于否定确认阈值,则降低与所述特定时间延迟值相关的概率,并增加其他时间延迟值的概率。如果针对采用所述特定时间延迟值发送的数据接收到了所述肯定确认并且如果所述肯定确认的数量大于肯定确认阈值,则增加与所述特定时间延迟值相关的概率,并降低其他时间延迟值的概率。
在一个实施方式中,时间延迟值集合中各概率的总和等于1。
在一个实施方式中,与所选择的时间延迟值相关的信息为时间延迟值。
在一个实施方式中,与所选择的时间延迟值相关的信息为向移动台通知时间延迟值没有变化的信息或向移动台通知时间延迟值发生变化的信息。
在一个实施方式中,时间延迟值选自时间延迟值集合的子集,所述子集小于所述时间延迟值集合。
在一个实施方式中,修改对所述时间延迟值进行选择之间的时间间隔。
在一个实施方式中,从所述时间延迟值集合中选择至少一个额外的时间延迟值。向所述移动台通知与所选择的至少一个额外的时间延迟值相关的信息。从至少一根额外的天线发送所述数据。采用与所选择的所述至少一个额外的时间延迟值中各时间延迟值相对应的延迟从所述至少一根额外的天线中的各天线发送数据。
在一个实施方式中,多天线传输***为具有延迟跳变的、基于循环延迟分集的传输***。
在本发明的一个示例性实施方式中,提供一种在多天线传输***中提供延迟信息的方法。该方法包括:周期性地确定是否需要改变时间延迟值集合中的第一时间延迟值;如果确定不需要改变所述第一时间延迟值,则从所述时间延迟值集合中选择所述第一时间延迟值;如果确定需要改变所述第一时间延迟值,则从所述时间延迟值集合中选择第二时间延迟值;向移动台集合通知与所选择的时间延迟值相关的信息;并且从第一天线以及从第二天线发送与所述移动台集合中的各移动台相对应的数据,在从所述第一天线发送所述数据后,根据所选择的时间延迟值从所述第二天线发送所述数据。
在一个实施方式中,根据信道相干性或频率选择性中的至少一项来确定需要改变所述第一时间延迟值。
在一个实施方式中,基站确定该基站所服务的哪个移动台包括在所述移动台集合中,并且所述基站基于所述基站所服务的各移动台的速度来做出该确定。
在一个实施方式中,基于确定性方法或随机方法来选择所述第二时间延迟值。
在一个实施方式中,在基于所述确定性方法选择所述第二时间延迟值时,所述第二时间延迟值始终不同于所述第一时间延迟值。
在本发明的示例性实施方式中,提供一种在多天线传输***中提供延迟信息的方法。该方法包括:针对多个基站中的各基站从时间延迟值集合中选择时间延迟值;向与各基站对应的移动台集合通知与所选择的时间延迟值相关的信息;使用多根基站天线从各基站向相应的移动台集合发送数据,根据所选择的时间延迟值通过多根天线从各基站多次发送数据,其中在各次发送之间存在延迟。基于确定性方法或随机方法来选择所述时间延迟值。
在一个实施方式中,针对所述多个基站中的第一基站选择的时间延迟值不同于针对所述多个基站中的第二基站选择的时间延迟值。
在一个实施方式中,针对所述多个基站中的第一基站选择的时间延迟值与针对所述多个基站中的第二基站选择的时间延迟值相同。
在一个实施方式中,针对所述多个基站中的第一基站选择的时间延迟值不同于针对所述多个基站中的第二基站选择的时间延迟值。
附图说明
图1为在各天线传输之间没有时间延迟的多天线传输***的图。
图2为示出了针对图1的多天线传输,信道增益相对于子载波数量和正交频分复用符号数量的曲线图。
图3为用于执行CDD的、在各天线传输之间具有时间延迟的多天线传输***的图。
图4为示出了针对图3的多天线传输,信道增益相对于子载波数量和正交频分复用符号数量的曲线图。
图5为示出了CDD延迟大小的效果的图。
图6为根据本发明的一种示例性实施方式的、在多天线传输***中提供延迟信息的流程图。
图7为根据本发明的一种示例性实施方式的更新时间延迟值集合的概率的方法的流程图。
图8为示出了根据本发明的一种示例性实施方式的、在多天线传输***中提供延迟信息的方法的示例。
具体实施方式
对于开环的基于CDD的传输,固定的延迟值可能无法为一些用户提供性能增益。为了获得性能增益,可以使用闭环的基于CDD的传输,但是闭环的基于CDD的传输增加了开销。此外,由于过期的延迟值,在闭环的基于CDD的传输中仅可以获得有限的性能增益甚至没有性能增益。根据本发明的示例性实施方式,提供了克服常规的基于CDD的开环传输中存在的缺点的开环的基于CDD的传输方法。所提供的基于CDD的传输方法通过延迟跳变克服了现有技术的缺点。
图1为在各天线传输之间没有时间延迟的多天线传输***100的图。图2为示出了针对图1的多天线传输,信道增益相对于子载波数量和正交频分复用(OFDM)符号数量关系的曲线图。如图1所示,OFDM信号生成器101向用于进行传输的多个天线振子102提供相同信号的多个版本。该分集方案通过利用具有不同的特性的两个或更多个通信信道来提高消息信号的可靠性。
图3为用于执行CDD的、在各天线传输之间具有时间延迟的多天线传输***300的图。图4为示出了针对图3的多天线传输,信道增益相对于子载波数量和正交频分复用符号数量的关系的曲线图。CDD将多输入多输出信道转换为单输入单输出信道,引入了模拟多径(artificialmulti-path)(即来自多根天线的时间延迟的重复信号),并增加了频率的选择性。图4示出了与针对使用CDD的、基于OFDM的通信***的图2相比改进了的信道增益。
图5为示出了CDD延迟大小的效果的图。在采用零延迟的情况下,对于一些用户(UE1),信号干扰噪声比(SINR)高于所有频率所必需的阈值,但对于另一些用户(UE2),SINR低于所有频率的阈值。在采用小延迟CDD的情况下,可以将SINR高于阈值的子带分配给用户UE1。对于UE2,相同的子带具有低于阈值的SINR,因此可以将不同的子带分配给UE2。小延迟CDD在频域提供了多用户分集,即,如果存在一个用户,则该一个用户仅可以使用频谱的一半,但是如果存在多个用户,该多个用户可以使用整个频谱。CDD将频率平坦信道转换为频率选择性信道。例如,如果存在两个用户,在频率平坦信道中,当UE1的信道与UE2相比更有利,则基站选择UE1进行传输,而不服务于UE2。在频率选择性信道中,频带中的某部分(称为子带)对UE1有利,而某其他频带对UE2有利。各用户可以在表现出有利条件的子带上被提供服务。在采用大延迟CDD的情况下,可以为UE1和UE2二者分配相同频率的子带,UE1和UE2在所分配的频率子带内被分配SINR高于阈值的更窄的子带。大延迟CDD提供了频率分集,这使得能够使用比小延迟CDD更精细的特定频率。在3GPP长期演进(LTE)中对于大CDD传输中的延迟值定义了最多达2/3的OFDM符号时间。
在基于CDD的传输中,通过在移动台可见的信道响应中引入频率选择性来向移动台提供频率分集增益。如涉及图3所描述的,通过对全部天线振子施加相同的信号并延迟天线阵子的发送时间来引入频率选择性。例如,当基站具有两根发送天线,将来自第二根天线的发送延迟达固定的持续时间。由于各移动台经历的信道条件导致对为获得特定增益的频率选择性(或频率分集增益)的程度的要求可以针对各用户而不同。郊区的宏小区中的移动台比市区的微小区中的移动台可能需要更大的延迟值。即使在郊区的宏小区内,为获得特定性能而需要的延迟值可能随移动台的不同而不同。具有较短的延迟扩展的移动台可能比具有较长的延迟扩展的移动台需要更大的延迟值。此外,在一个时间场合下选择的延迟值在另一时间场合可能无法提供特定所需的性能。所选择的延迟值的不一致的性能是由于信道的时间变化(被称为多普勒扩展)。
如上所述,由于一个固定的延迟值不适用于***中的所有移动台,各移动台可能需要不同的延迟值。即使为各移动台分配了不同的延迟值,所分配的延迟值对于信道也不总是最优的。因此,需要一种随时间改变为移动台分配的延迟值的方法。分配的延迟值可以通过来自移动台的反馈来改变(闭环),或由基站自发地改变(开环)。本发明的示例性实施方式是针对由基站自发地改变对移动台集合分配的延迟值的开环方法,该移动台集合可以是该基站所服务的一个移动台、移动台的子集或移动台的整个集合。在本发明的示例性实施方式中,分配的延迟值选自对基站提供的预定的延迟值的集合。
图6为根据本发明的一种示例性实施方式的、在多天线传输***中提供延迟信息的方法的流程图。在本发明的示例性实施方式中,各基站(或扇区)被提供或分配延迟值集合(600)。该集合可以与提供给其它基站的集合没有交集或与提供给其它基站的集合重叠(部分地或全部地重叠)。例如,可以为第一基站分配延迟值T1、T3、T5和T6的集合,并为第二基站分配延迟值T2、T3、T4和T7的集合。在这种情况下,为第二基站分配的集合与为第一基站分配的子集部分地重叠。
基站周期性地确定移动台集合的时间延迟值是否需要改变(601)。该移动台集合可以是该基站所服务的一个移动台、移动台的子集或移动台的整个集合。基站可以基于信道相干性或频率选择性来确定改变时间延迟值。如果需要改变时间延迟值,则基站选择移动台集合的时间延迟值(602)。如果移动台集合是基站所服务的移动台的子集,基站确定时间延迟值是否需要改变,并针对与该子集构成基站所服务的整个移动台集合的其它移动台子集中的各子集分配新的时间延迟值。
基站基于确定性方法(如预定方法)或随机方法选择时间延迟值。对于确定性选择,可以按照所分配的时间延迟值的顺序来选择时间延迟值。或者,对于确定性选择,可以基于在分配的集合中的元素的循环移位来选择时间延迟值。对于随机选择,基站根据为所分配的时间延迟值中的各时间延迟值分配的概率,从所分配的时间延迟值中随机选择时间延迟值。所分配的时间延迟值中时间延迟值的概率分布可以被均等地分布,或者可以基于从接收机收集的统计或非循环延迟分集信息(如来自移动台的反馈)来进行更新。
接着,基站向移动台集合通知与所选择的时间延迟值相关的信息(603)。基站可以采用确切通知方法或差分通知方法。在确切通知方法中,基站将该基站所使用的确切的时间延迟值通知移动台集合。在差分通知方法中,基站从分配给基站的时间延迟值集合中向移动台集合提供一个时间延迟值集合,并且该基站向移动台集合通知将保留当前的时间延迟值或将使用不同的时间延迟值。如果移动台被通知将使用不同的时间延迟值,移动台确定基站选择了提供的时间延迟值集合中的哪个时间延迟值。确切通知方法可以和差分方法相结合。可以按照预定的时间间隔来通知确切的时间延迟值,并且可以在两个连续的确切的通知之间使用差分通知。确切的通知方法使用更多的比特,而差分通知方法仅需要一个比特。
确切的通知方法可以是周期性的或非周期性的。在确切通知周期性模式中,即使时间延迟值没有改变,基站也还是会周期性地向移动台集合通知确切的时间延迟值。通知的周期(即两次连续的通知消息之间的时间间隔)根据移动台经历的信道条件是可调节的。例如,如果移动台是静止的,周期可以大,如果移动台是移动的,周期可以小。在确切通知非周期性模式中,基站仅在时间延迟值改变时向移动台集合通知确切的时间延迟值。差分通知方法是周期性的,在每个定义的间隔向移动台集合通知是保持还是改变当前的时间延迟值。在向移动台集合通知了关于时间延迟值的信息后,基站对于移动台集合中的各移动台根据选择的时间延迟值发送来自其N个天线振子的对应相同数据(604)。在示例性实施方式中,N个天线振子的时间延迟值为0、T、2T、3T、……、(N-1)T,其中T为基站使用的时间延迟值。这样,来自天线振子的各连续发送之间的时间延迟值等于T。
图7为根据本发明的一种示例性实施方式的更新时间延迟值集合的概率的方法的流程图。图7适用于在602中的选择方法是基于随机方法并且基站接收基于非CDD的反馈(可以利用该反馈分配概率)的情况。如图7所示,基站从移动台接收基于非CDD的反馈(700)。该基于非CDD的反馈可以为来自移动台的确认反馈或信道质量反馈。该确认反馈和信道质量反馈为数据传输的正常操作的一部分,并且为了基于CDD的传输目的重新利用现有的信息,因此保持了开环操作。
基站使用基于非CDD的反馈为各时间延迟值分配概率。对于采用特定时间延迟值发送的数据,如果按照预定时间间隔接收到的否定反馈的数量大于否定阈值,则基站降低与该特定时间延迟值有关的概率,并增加集合中其它时间延迟值的概率(701/702)。对于采用特定时间延迟值发送的数据,如果按照预定时间间隔接收到的肯定反馈的数量大于肯定阈值,则基站增加与该特定时间延迟值有关的概率,并降低集合中其它时间延迟值的概率(701/703)。这样调整概率以使得概率的总和等于1(即100%)。基站随机选择取决于概率时间延迟值(704)。如上所述,该选择可以是非周期性的或周期性的。如果采用确切通知,该选择可以是非周期性的或周期性的。如果采用差分通知,该选择是周期性的。
一个示例最好地证明了该方法。假设基站已经分配了时间延迟值T2、T3、T5和T6的集合,基站运用了随机的选择方法,并且基站周期性地确定特定移动台的时间延迟值是否需要改变。如果基站确定时间延迟值需要改变,基站从所分配的时间延迟值T2、T3、T5和T6的集合中选择时间延迟值,基站可以初始地为这些时间延迟值中的各时间延迟值分配概率25%。假设基站最初选择了T3(704)。基站接着在发送数据时使用时间延迟T3。如果基站从移动台集合接收到足够多的、证明在使用时间延迟值T3时移动台的性能差的反馈(700)(即,诸如针对数据传输的否定确认的反馈的数量大于否定阈值),基站可以将T3的概率降低至19%,并将T1、T5和T6的概率增加至27%(702)。接下来,假设基站接着根据概率随后随机地选择了T1(704)。基站于是在发送数据时使用时间延迟T1。如果基站从移动台集合接收到足够多的、证明在使用时间延迟值T1时移动台的性能良好的反馈(701)(即,诸如针对数据传输的肯定确认的反馈的数量大于肯定阈值),基站可以将T1的概率增加至33%,并将T3的概率降低至17%,将T5的概率降低至25%,以及将T6的概率降低至25%(703)。
如上面关于图6所描述的,在示例性实施方式中,采用各自的时间延迟0、T、2T、…、(N-1)T,从N根天线发送相同的信号,其中T为选择的时间延迟值。在示例性实施方式中,通过确切通知方法和/或差分通知方法通知移动台的集合(603)。在差分通知方法和确切通知方法二者中,最初向移动台的集合提供基站从中进行选择的时间延迟值的集合。在差分通知方法中,移动台的集合必须随后确认从提供的时间延迟值的集合中选择了哪个时间延迟值。
但是,在另选的实施方式中,在各连续的传输之间的时间延迟不是单个时间延迟值的倍数。在该另选的实施方式中,在确切通知方法和差分通知方法二者中,为移动台的集合提供了时间延迟值的集合而不是单个的时间延迟值。例如,如果N=3,并且基站已经分配了时间延迟值T1、T3、T5和T6,基站可以向移动台提供时间延迟值的集合{{T1,T3},{T1,T5},{T5,T6}}。在确切通知方法中,基站向移动台的集合通知基站是将要使用时间延迟值的第一集合、第二集合还是第三集合。在差分通知方法中,基站向移动台的集合通知基站是将保持还是改变时间延迟值的集合,并且移动台的集合必须接着确定基站是在使用时间延迟值的第一集合、第二集合还是第三集合。在该另选的实施方式中,基站为所提供的时间延迟值集合中的各时间延迟集合分配概率。这样,基站将为{T1,T3}、{T1,T5}和{T5,T6}分配单独的概率。
随机选择时间延迟值的速率取决于各移动台的集合的移动性。在基站确定特定的移动台集合需要新的时间延迟值时,基站可以选择新的时间延迟值。如上所述,来自移动台的反馈可能不必与基于CDD的传输有关,而是与正常的操作模式(即基于非CDD的传输)有关。在正交频分多址接入(OFDMA)中,一个OFDM符号可以携带针对多个用户的信息。基站可以基于根据特定的移动台集合提供的反馈(如确认和信道质量反馈)所计算的概率分布来选择延迟值。
当为各基站或扇区分配延迟值的不同子集(部分重叠或不没有交集)时,在小区边缘的移动台可以从来自多基站或扇区的传输中发现更丰富的频率选择性复合信道。这反过来将为小区边缘区域中的移动台提供更多的频率分集增益,由此增强整个***的吞吐量。各基站或扇区可以从延迟值集合中按照循环移位的方式使用不同的开始延迟值。在这种情况下,所有的基站使用相同的延迟值集合,但是使用进行循环移位的不同的开始点。此外,各基站或扇区可以与扇区内收集的统计无关地选择时间延迟值。
图8为例示了根据本发明的一种示例性实施方式的、在多天线传输***中提供延迟信息的方法的示例。具体地说,图8示出了Message_type_1和Message_type_2的示例性定时关系。在图8中,存在4个时间延迟值T1、T2、T3和T4,并且每个时间延迟值维持4个物理帧持续期间,并且提前3个物理帧向移动台集合通知下一延迟值。如图8所示,存在两种类型的消息:Message_type_1和Message_type_2。
Message_type_1向移动台集合提供时间延迟值或预定义的可用时间延迟值的子集。Message_type_1可以作为***范围或扇区范围的广播消息来发送,并可以偶尔发送。Message_type_1可以与重复的预定延迟跳变序列的开始相一致。例如,如果预定义的可用时间延迟值的子集包含四个时间延迟值T1、T2、T3和T4,并且各选择的时间延迟值具有四个物理帧持续时间,则可以每16个物理帧发送一次Message_type_1。
Message_type_2以确切通知模式向移动台集合提供特定的时间延迟值,或以差分通知模式向移动台集合请求改变其时间延迟值。确切通知模式需要更多的比特来传输信息,但有助于移动台集合中的信道估计。在确切通知模式中,Message_type_2提供选择的时间延迟值。在差分通知模式中,Message_type_2请求移动台集合保持其时间延迟值或请求移动台集合改变其时间延迟值。当被请求改变其时间延迟值,移动台集合中的各移动台将其时间延迟值改变到基站在Message_type_1中提供的预定义的可用时间延迟值的子集中的另一时间延迟值。Message_type_2还可以在施加特定时间延迟值的期间或在连续的Message_type_2消息发送之间的时间间隔向移动台集合提供信息。在差分通知模式中,该信息另选地可以被包括在Message_type_1中。
在差分通知模式中,当基站请求移动台集合改变其时间延迟值时,该移动台集合中的各移动台必须确定基站所选择的时间延迟值。基站可以根据分配的概率随机地从可用的子集中选择时间延迟值,或者以确定的方式从可用的子集中选择时间延迟值。在差分模式中,移动台集合中的各移动台必须确定选择了哪个时间延迟值,并应用该特定的时间延迟值。例如,如果基站通过Message_type_1为移动台集合分配了四个时间延迟值T1、T2、T3和T4,并且在移动台集合当前使用时间延迟值T2时,基站随机地选择时间延迟值T3,移动台集合中的各移动台必须确定基站是选择了T1、T3还是T4,并随后应用被确定为基站已经选择了的时间延迟值,以正确地预见对来自基站的数据的接收。
在上面关于图8的描述适用于针对N个天线振子使用一个时间延迟值的情况,在从天线振子的各连续的发送之间的延迟等于一个时间延迟值。如果使用多个时间延迟值(参见上面另选地示例性实施方式中的讨论),则在确切通知模式中,Message_type_1将包含时间延迟值的集合,Message_type_2将包含这样的数字,该数字向移动台集合通知基站将采用时间延迟集合中的哪个集合进行传输。如果使用多个时间延迟值,则在差分通知模式中,Message_type_1将包含与确切通知模式中的Message_type_1相同的信息。
如上所述,基站为该基站所服务的各移动台集合选择时间延迟值。例如,假设存在100个由特定基站所服务的移动台。第一移动台集合可以包含100个移动台中的20个,第二移动台集合可以包含其余的80个移动台中的30个,第三移动台集合可以包含其余的50个移动台。基站为第一移动台集合选择第一时间延迟值,为第二移动台集合选择第二时间延迟值,并为第三移动台集合选择第三时间延迟值。这样,基站选择了时间延迟值并向由该基站所服务的各移动台集合通知其各自的时间延迟值。
基站可以改变在各移动台集合中存在了哪些移动台。也就是说,在上面的例子中,基站可以根据某些特性来改变在第一集合、第二集合和第三集合的各集合中存在哪些移动台,这些特性中的一个特性包括移动终端的速率/速度。当移动终端以增加的速度移动时(如用户正在驾驶),移动终端经历增加的频率选择性,因此基站可以选择小的时间延迟值,以提供小的增益。但是,如果移动终端是静止的,则移动终端是频率平坦的,则基站可以选择更大的时间延迟值,以提供更大的增益。因此,基站可以根据该基站所服务的移动台的速度将移动台分组为特定的集合。基站可以随后向各移动台集合分配时间延迟值。
提供了一种实现改进的基于CDD的传输的方法,该方法在无需依赖于来自移动台的明确的反馈的情况下反映实际的信道条件。该方法是根据开环的基于CDD的传输。为了实现该方法,提出了两种类型的消息。消息的数量并不重要,重要的是执行期望的特征的字段。使用所提供的方法甚至对于具有高移动性或处于小区边缘区域的移动台都增强了基于CDD传输。相应地,所提供的方法提高了***吞吐量。
通过以具体的形式结合本发明的组成组件和特征来提供了上述实施方式。如果没有明确的说明,本发明的组件或特征应当被理解为是可选的。这些组件和特征可以在不结合其它组件或特征的情况下实施。还可以通过对一些组件和/或特征进行组合来实现本发明的实施方式。在本发明实施方式中前述的操作的顺序是可以改变的。一个实施方式中的组件和特征可以包括在另一实施方式中,或者由另一实施方式的相应的组件或特征来代替。应当理解,没有明确地相互引用的权利要求可以相互结合以提供实施方式,或者可以通过该申请提交之后通过修改来添加新的权利要求。
本发明实施方式主要专注于移动台(MS)和基站(BS)之间的数据通信关系进行了描述。已经描述为由BS执行的具体操作还可以按照需要由上级节点来执行。也就是说,基站或任意其它网络节点可以执行用于与包括多个网络节点(包括BS)的网络中的终端进行通信的各种操作,这对本领域技术人员是显而易见的。术语“基站(BS)”还可以由如固定站、Node B、eNode B(eNB)或接入点之类的其他术语来代替。术语“移动台(MS)”还可以由如用户设备(UE)、终端或移动用户站(MSS)之类的其他术语来代替。
本发明的实施方式可以由硬件、固件、软件或它们的结合来实现。在本发明由硬件来实现的情况下,本发明的实施方式可以由一个或更多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器或微处理器等来实施。
在本发明由固件或软件来实施的情况下,本发明的实施方式可以以执行前面所描述的特征或操作的模块、过程或功能等的形式来实现。可以将软件代码存储在存储单元中,以由处理器来执行。存储单元可以位于处理器内部或外部,并可以通过各种已知的手段与处理器进行通信。
虽然根据示例性实施方式描述了本发明,但是本领域技术人员应当理解,所用的文字为描述性文字而非限制性文字。如本领域技术人员所理解的,可以在不脱离由应当给出最完整和公正的范围的所附权利要求所限定的本发明的范围内做出各种变型。

Claims (4)

1.一种在多天线传输***中提供延迟信息的方法,该方法包括以下步骤:
基于移动台的速度对所述移动台进行分组;
将包括预定的时间延迟值集合的第一消息发送到所述移动台的各个分组集合;
基于所述时间延迟值中的每一个的概率从所述预定的集合中选择用于所述移动台的所述各个分组集合的时间延迟值;
将包括所选择的时间延迟值的第二消息发送到所述移动台的所述各个分组集合;
在通过第一天线将数据发送到所述移动台的一个分组集合之后,根据用于所述移动台的所述一个分组集合的时间延迟值通过第二天线将所述数据发送到所述移动台的所述一个分组集合。
2.根据权利要求1所述的方法,其中,用于静止的移动台的集合的所选择的时间延迟值比用于移动的移动台的集合的所选择的时间延迟值大。
3.根据权利要求1所述的方法,所述方法还包括:修改对所述时间延迟值进行选择之间的时间间隔。
4.根据权利要求1所述的方法,其中,所述多天线传输***为基于循环延迟分集的、具有延迟跳变的传输***。
CN200980116296.0A 2008-05-05 2009-02-24 基于循环延迟分集的、具有延迟跳变的传输 Active CN102017444B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5059508P 2008-05-05 2008-05-05
US61/050,595 2008-05-05
PCT/KR2009/000871 WO2009136690A1 (en) 2008-05-05 2009-02-24 Cyclic delay diversity based transmission with delay hopping

Publications (2)

Publication Number Publication Date
CN102017444A CN102017444A (zh) 2011-04-13
CN102017444B true CN102017444B (zh) 2015-05-20

Family

ID=41257443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980116296.0A Active CN102017444B (zh) 2008-05-05 2009-02-24 基于循环延迟分集的、具有延迟跳变的传输

Country Status (6)

Country Link
US (1) US8200264B2 (zh)
EP (1) EP2255456B1 (zh)
JP (1) JP5226122B2 (zh)
KR (1) KR101513045B1 (zh)
CN (1) CN102017444B (zh)
WO (1) WO2009136690A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4425880B2 (ja) * 2006-01-18 2010-03-03 株式会社エヌ・ティ・ティ・ドコモ 通信装置、移動局及び方法
US8374273B1 (en) * 2007-03-30 2013-02-12 Marvell International Ltd. Method and apparatus for transmit beamforming
US9300371B1 (en) 2008-03-07 2016-03-29 Marvell International Ltd. Beamforming systems and methods
US8913563B2 (en) * 2009-02-06 2014-12-16 Empire Technology Development Llc Velocity based random access scheme
KR101055446B1 (ko) * 2009-05-29 2011-08-08 주식회사 팬택 차등 순환지연 다이버시티 mimo 기법을 이용한 송수신 장치 및 그 방법
US9726748B2 (en) * 2012-09-21 2017-08-08 Qualcomm Incorporated Cyclic shift delay detection using signaling
US9456344B2 (en) 2013-03-15 2016-09-27 Ologn Technologies Ag Systems, methods and apparatuses for ensuring proximity of communication device
US9698991B2 (en) 2013-03-15 2017-07-04 Ologn Technologies Ag Systems, methods and apparatuses for device attestation based on speed of computation
US10177915B2 (en) 2013-03-15 2019-01-08 Ologn Technologies Ag Systems, methods and apparatuses for device attestation based on speed of computation
WO2014181313A1 (en) 2013-05-10 2014-11-13 Ologn Technologies Ag Ensuring proximity of wifi communication devices
US9455998B2 (en) 2013-09-17 2016-09-27 Ologn Technologies Ag Systems, methods and apparatuses for prevention of relay attacks
CN106712916B (zh) * 2015-11-17 2021-02-12 华为技术有限公司 一种循环延时选择方法及装置
US10355760B2 (en) * 2016-08-12 2019-07-16 Qualcomm Incorporated Techniques for small cyclic delay diversity in new radio
KR20190132502A (ko) * 2017-04-06 2019-11-27 엘지전자 주식회사 무선 통신 시스템에서 단말이 다중 안테나를 이용하여 CDD(cyclic delay diversity)에 따른 통신을 수행하는 방법 및 이를 위한 장치
KR102403763B1 (ko) * 2017-06-27 2022-05-30 삼성전자주식회사 무선 통신 시스템에서 명시적 채널 상태 정보 피드백을 위한 피드백 정보 설정하기 위한 방법
US10972169B2 (en) * 2017-11-06 2021-04-06 Lg Electronics Inc. Method for feedback of channel quality information in wireless communication system, and device for same
CN110166093B (zh) * 2018-02-13 2021-06-29 华为技术有限公司 一种传输方法和通信设备
US11108453B2 (en) * 2019-03-12 2021-08-31 Intel Corporation Antenna configuration parameters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728616A (zh) * 2004-06-12 2006-02-01 三星电子株式会社 一种利用循环延迟分集有效地传输广播信道的装置和方法
US20060077886A1 (en) * 2004-10-13 2006-04-13 Samsung Electronics Co., Ltd. Transmission apparatus and method for a base station using block coding and cyclic delay diversity techniques in an OFDM mobile communication system
CN1964218A (zh) * 2005-11-09 2007-05-16 华为技术有限公司 一种无线信号的多天线发送***、方法及无线通信***
CN1989722A (zh) * 2004-05-17 2007-06-27 高通股份有限公司 Ofdm***的时变循环延迟分集

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233555B2 (en) * 2004-05-17 2012-07-31 Qualcomm Incorporated Time varying delay diversity of OFDM
JP5107711B2 (ja) * 2004-09-17 2012-12-26 パナソニック株式会社 無線伝送システムおよび無線伝送方法、ならびにそれらに用いられる無線局および送信局
EP1950900A4 (en) * 2005-10-28 2010-01-20 Sharp Kk TRANSMITTER, COMMUNICATION SYSTEM AND TRANSMISSION METHOD
US20070147543A1 (en) * 2005-12-22 2007-06-28 Samsung Electronics Co., Ltd. Extension of space-time block code for transmission with more than two transmit antennas
TWI343200B (en) * 2006-05-26 2011-06-01 Lg Electronics Inc Method and apparatus for signal generation using phase-shift based pre-coding
US7865153B2 (en) 2006-08-11 2011-01-04 Samsung Electronics Co., Ltd. Apparatus and method for transmit diversity and beamforming in a wireless network
US7944985B2 (en) * 2006-08-24 2011-05-17 Interdigital Technology Corporation MIMO transmitter and receiver for supporting downlink communication of single channel codewords
WO2008047686A1 (fr) * 2006-10-13 2008-04-24 Sharp Kabushiki Kaisha Dispositif de transmission et de réception radio à multiporteuse, système de communication radio à multiporteuse, procédé de transmission radio à multiporteuse et programme
US8780771B2 (en) * 2007-02-06 2014-07-15 Qualcomm Incorporated Cyclic delay diversity and precoding for wireless communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1989722A (zh) * 2004-05-17 2007-06-27 高通股份有限公司 Ofdm***的时变循环延迟分集
CN1728616A (zh) * 2004-06-12 2006-02-01 三星电子株式会社 一种利用循环延迟分集有效地传输广播信道的装置和方法
US20060077886A1 (en) * 2004-10-13 2006-04-13 Samsung Electronics Co., Ltd. Transmission apparatus and method for a base station using block coding and cyclic delay diversity techniques in an OFDM mobile communication system
CN1964218A (zh) * 2005-11-09 2007-05-16 华为技术有限公司 一种无线信号的多天线发送***、方法及无线通信***

Also Published As

Publication number Publication date
EP2255456A1 (en) 2010-12-01
JP5226122B2 (ja) 2013-07-03
JP2011521529A (ja) 2011-07-21
EP2255456B1 (en) 2016-02-24
KR101513045B1 (ko) 2015-04-17
US20090275352A1 (en) 2009-11-05
KR20110021737A (ko) 2011-03-04
CN102017444A (zh) 2011-04-13
EP2255456A4 (en) 2014-06-18
US8200264B2 (en) 2012-06-12
WO2009136690A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
CN102017444B (zh) 基于循环延迟分集的、具有延迟跳变的传输
CN101073206B (zh) 宽带无线网络中用于切换天线和信道分配的方法和***
CN1891007B (zh) 分配适合信道特性的导频信号的方法及设备
CN101640936B (zh) 用于移动无线***的基于ofdma争用的随机接入信道设计
KR100956493B1 (ko) 적응형 섹터화를 위한 채널 품질 보고
EP1719315B1 (en) Channel adaption using variable sounding signal rates
US9161336B2 (en) Method and apparatus for multi-carrier allocation
US20080002733A1 (en) Method and apparatus for scheduling transmissions in multiple access wireless networks
US8902874B2 (en) Sounding channel apparatus and method
CN102017464A (zh) 无线接入***的信道分配的方法
CN101584127A (zh) 用于演进型通用陆地无线接入上行链路的跳频技术
JP2006527959A (ja) Ofdmaシステムおよび方法
KR20120103201A (ko) 이동통신 시스템에서 하향링크 송수신 장치 및 방법
CN109156029A (zh) 数据传输的方法、装置及***
CN101611604A (zh) 局部化及分布式分配多路复用及控制
JP6794389B2 (ja) 情報送信及び受信方法及びデバイス
CN116897511A (zh) 用于活动协调集的动态码本
JP2019180100A (ja) 情報送信及び受信方法及びデバイス
JP2018125854A (ja) 情報送信及び受信方法及びデバイス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221031

Address after: Illinois, America

Patentee after: Tessa Research Co.,Ltd.

Address before: Seoul, South Kerean

Patentee before: LG ELECTRONICS Inc.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230423

Address after: Delaware

Patentee after: Rosedale Power Co.,Ltd.

Address before: Illinois, America

Patentee before: Tessa Research Co.,Ltd.

TR01 Transfer of patent right