CN102016431A - 除湿装置和方法 - Google Patents

除湿装置和方法 Download PDF

Info

Publication number
CN102016431A
CN102016431A CN200980113878.3A CN200980113878A CN102016431A CN 102016431 A CN102016431 A CN 102016431A CN 200980113878 A CN200980113878 A CN 200980113878A CN 102016431 A CN102016431 A CN 102016431A
Authority
CN
China
Prior art keywords
cooling fluid
coil pipe
unit
heat exchange
exchange unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980113878.3A
Other languages
English (en)
Other versions
CN102016431B (zh
Inventor
小约翰·H·比恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric IT Corp
Original Assignee
American Power Conversion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Power Conversion Corp filed Critical American Power Conversion Corp
Publication of CN102016431A publication Critical patent/CN102016431A/zh
Application granted granted Critical
Publication of CN102016431B publication Critical patent/CN102016431B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0042Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20781Liquid cooling without phase change within cabinets for removing heat from server blades

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Central Air Conditioning (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Drying Of Gases (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种除湿机单元,其包括与冷却流体来源流体连通的第一盘管、与冷却流体来源流体连通的第二盘管、与冷却流体来源流体连通的第三盘管和安排在冷却流体来源和第二和第三盘管之间的换热单元。换热单元可能适合除去来自流向第二盘管的冷却流体的热量而且适合给流向第三盘管流动的冷却流体加热。风扇可能配置成使空气跨越第一、第二和第三盘管流动。第一盘管可能配置成预先冷却在第一盘管上流动的空气,第二盘管可能配置成给在第二盘管上流动的空气除湿,而第三盘管可能配置成使在第三盘管之上流动的空气升温。另外,进一步揭示了其它的冷却实施方案和方法。

Description

除湿装置和方法
发明领域
本发明与冷却***有关,更具体地说与配置成可用来调节数据中心里面的空气的除湿装置有关而且与用来冷却或处理数据中心里面的空气的方法有关。
现有技术
用来安装电子设备(例如,数据处理、联网和电信设备)的设备机箱或支架已经用了许多年。这样的支架用来把设备装在和安排在小的布线室和机房和大的数据中心中。在特定的实施方案中,设备支架可能是敞开的配置而且能装在支架机箱里面,虽然在提及支架的时候,机箱可能已被包括在内。数年以来,已经研发了一些不同的标准使设备制造商能够设计能安装在不同的制造商制造的标准支架中的架装设备。标准支架通常包括能把电子设备的多个单元(例如,服务器和CPU)安装和垂直地堆积在支架里面的前面安装导轨。可仿效的工业标准支架是大约六英尺到六英尺半高,大约24寸宽和大约40寸深。这样的支架依照电子工业协会的EIA-310-D标准的定义通常被称为“19英寸”支架。随着英特网的发展,数据中心装数百个这样的支架是正常的。此外,随着不断地减少计算机设备(具体地说,计算机服务器和托板)的尺寸,安装在每个支架中的电器装置的数目已经增加,从而引起对充分冷却设备的关心。
架装设备所产生的热量可能对设备元器件的性能、可靠性和使用寿命产生不利的影响。具体地说,装在机箱里面的架装设备可能在操作期间易受机箱边界内产生的发热和过热点损害。设备支架产生的热量取决于在操作期间支架中的设备吸取的电力的数量。除此之外,电子设备的使用者可能在他们的需要改变和新的需要出现的时候增加、减少和重新安排架装的组成部分。
先前,在特定的配置中,除了作为数据中心基础设施部份的设备冷却***之外,数据中心可能通过使用一个或多个通常作为放置在数据中心机房边界周围靠硬管连接的固定单元的机房空调(“CRAC”)单元被进一步被冷却。这些CRAC单元可以从该单元的前面摄取空气并且向上朝数据中心机房的天花板输出较凉爽的空气。在其它的实施方案中,CRAC单元从数据中心机房的天花板附近摄取空气并且在架空地板之下排放较凉爽的空气以便向设备支架的前面递送。一般地说,这样的CRAC单元摄取室温空气(大约72°F)和排放凉爽空气(大约55°F),后者被吹进数据中心机房并且在设备支架处或其附近与室温空气混合。
架装设备通常通过沿着支架的正面或进风口面吸入空气(从而经过它的组成部分吸入空气)并且随后从支架的背面或排风口面排放空气来冷却它自己。CRAC型空调***的缺点是凉爽的空气与室温空气混合,从而导致效率低下。理想的是,为了使该***尽可能地有效和利用尽可能少的能源和地板空间,温度可能最高的空气应该被吸入CRAC单元,而CRAC产生的出口空气应该比室温低几度。使用CRAC型单元的另一个缺点是虽然它们特别适合处理明显的冷却,但是这样的单元特别不适合处理潜在的冷却。
另一种方式是通过使用通常用硬管与专用的制冷设备连接的机房空气处理器(“CRAH”)单元。在数据中心机房冷却工业中出现的一种趋势是采用以温度较高的补给设定点操作的制冷设备,这将提高传统的CRAH单元的显热比和大大减少单元的除湿能力。传统上,冷水以42°F到46°F的温度递送给空气处理器。在设法促成更有效的冷冻机操作和较高的显热比的努力中,数据中心的设计者目前正将冷水补给设定在较高的水温,例如,水温从48°F到52°F。
发明内容
本发明的一个方面指向包含与冷却流体来源流体连通的第一盘管、与冷却流体来源流体连通的第二盘管、与冷却流体来源流体连通的第三盘管和安排在冷却流体来源和第二和第三盘管之间的换热单元的除湿机单元。在一个实施方案中,换热单元适合把热量从流向第二盘管的冷却流体中除去而且适合给流向第三盘管的冷却流体加热。风扇可能配置成横越空气第一、第二和第三盘管流动。在特定的实施方案中,第一盘管可能配置成预先冷却在第一盘管之上流动的空气,第二盘管可能配置成给在第二盘管之上流动的空气除湿,而第三盘管可能配置成使在第三盘管之上流动的空气升温。
该除湿器单元的实施方案可能进一步包括配置从冷却流体来源以一部分冷却流体流向第一盘管而且以一部分冷却流体经过换热单元流向第二盘管的方式流动的冷却流体。冷却流体可能配置成从冷却流体来源和第一盘管之一经过换热单元流向第三盘管。在一种配置中,从第二盘管排出的冷却流体可能配置成流向第一盘管。换热单元可能把流向第二盘管的冷却流体的温度降低大约15°F。换热单元可能把流向第三盘管的冷却流体的温度升高大约25°F。第一阀门可能放置在冷却流体来源和第一盘管之间,把第一阀门配置成控制流向第一盘管和换热单元的冷却流体的流量。从第一盘管排出的冷却流体可能与冷却流体来源和换热单元流体连通。第二阀门可能放置在换热单元和冷却流体来源之间,把第二阀门配置成控制回到冷却流体来源的冷却流体的流量。
本发明的另一方面指向给空间体积除湿的方法。该方法包括把冷却流体从冷却流体来源递送到第一盘管,把冷却流体从冷却流体来源递送到换热单元,当冷却流体流过换热单元时候,降低一部分冷却流体的温度,把来自换热单元的温度有所降低的冷却流体递送给第二盘管,当冷却流体流过换热单元的时候,升高一部分冷却流体的温度,把来自换热单元的温度有所升高的冷却流体递送给第三盘管,以及使空气在第一、第二和第三盘管之上流动。
该方法的实施方案可能进一步包括控制从冷却流体来源递送到第一盘管和换热单元的冷却流体的数量。从换热单元递送到第二盘管的冷却流体可能比从冷却流体来源递送到第一盘管的冷却流体温度低大约15°F。从换热单元递送到第三盘管的冷却流体可能比从冷却流体来源递送到第一盘管的冷却流体温度高大约25°F。
本发明的另外一个方面指向给空间体积除湿的方法。该方法包括使空气在第一盘管之上流动,预先冷却该空气,来自第一盘管的空气在第二盘管之上流动,给该空气除湿,来自第二盘管的空气在第三盘管之上流动,使该空气升温。
该方法的实施方案可能进一步包括把冷却流体从冷却流体来源递送到第一盘管。该方法可能进一步包括把冷却流体从冷却流体来源递送到换热单元,当冷却流体流过换热单元之时降低冷却流体的温度,以及把来自换热单元的温度有所降低的冷却流体递送给第二盘管。该方法也可能包括把来自冷却流体来源和换热单元之一的冷却流体递送到第一盘管,当冷却流体流过换热单元之时升高冷却流体的温度,以及把来自换热单元的温度有所上升的冷却流体递送给第三盘管。
本发明的另一个方面指向包括壳体;安排在壳体里面的第一盘管,该第一盘管与冷却流体来源流体连通并且被配置成预热用送风装置递送的空气;安排在壳体里面的第二盘管,该第二盘管与冷却流体来源流体连通并且被配置成给空气除湿;安排在壳体里面的第三盘管,该第三盘管与冷却流体来源和第一盘管之一流体连通并且被配置成使由第二盘管递送的空气升温;以及使空气在第一、第二和第三盘管之上流动的送风装置的除湿器单元。
该除湿器单元的实施方案可能进一步包括:安排在冷却流体来源和第二和第三盘管之间的换热单元,该换热单元适合把来自流向第二盘管的冷却流体的热量除去和给流向第三盘管的冷却流体加热。冷却流体可能适合从冷却流体来源以一部分冷却流体流向第一盘管和一部分冷却流体经过换热单元流向第二盘管的方式流动。从冷却流体来源和第一盘管之一流出的流体可能经过换热单元被引向第三盘管。换热单元可能把流向第二盘管的冷却流体的温度降低大约15°F。换热单元可能把流向第三盘管的冷却流体的温度升高大约25°F。第一阀门可能放置在冷却流体来源和第一盘管之间,把第一阀门配置成控制流向第一盘管的冷却流体的流量。第二阀门可能放置在第一盘管和冷却流体来源之间,把第二阀门配置成控制流向冷却流体来源的冷却流体的流量。
在回顾下面的附图、详细描述和权利要求书之后,将对本发明有更全面的了解。
附图说明
这些附图不是依比例绘制的。在这些附图中,各种不同的附图举例说明的每个同一的或几乎同一的组成部分将用相似的数字表示。为了清楚,并非每个组成部分在每幅附图中都被标注出来。在这些附图中:
图1是本发明的实施方案的除湿器装置的透视图;
图2是可仿效除湿器装置的示意图;
图3是本发明的另一个实施方案的除湿器装置的示意图;
图4是本发明的实施方案的方法的功能方框图;而
图5是本发明的实施方案的另一方法的功能方框图。
具体实施方式
本发明在其应用方面不局限于在下面的描述中陈述的和在附图中举例说明的组成部分的构造和安排的细节。在此揭示的实施方案能够有进一步的实施方案和以各种不同的方式实践或实施。另外,在此使用的片语和术语是为了描述,而不应该被视为限制。
本发明的至少一个实施方案指向可选择性地配置成冷却收容在数据中心的设备机箱或支架里面的电子设备的模块式的和可升级的冷却单元。依照本文的用法,“机箱”和“支架”用来描述为支撑电子设备而设计的装置。这样的冷却***能够根据需要使用一个或多个冷却单元在数据中心之内提供局部冷却或空调。明确地说,仅仅作为范例,多个冷却单元可能被散布在一排设备支架中以便更有效地冷却该数据中心。在一个实施方案中,冷却单元特别适合把湿气从数据中心的空气中除去。在另一个实施方案中,冷却单元特别适合适应有温热的补给设定点(例如,52°F)的制冷设备。
在特定的例证中,数据中心通常是为收容数据中心内成排排列的数以百计的电子设备支架而设计的大房间。成排的设备支架可能是以这样的方式安排的,以致有冷走廊和热走廊。冷走廊通向机箱的前面,在那里通常能接近电子设备。热走廊通向设备支架的背面。在需求改变时,设备支架的数目可能增加或减少,取决于数据中心的功能需求。冷却单元的至少一个实施方案是模块式的和可升级的,而且可能采取为满足这些变更的需要而设计的配套形式。另外,虽然相对较大的数据中心是作为这样的冷却单元的倾向性用途讨论的,如同前面提到的那样,在此揭示的单元实施方案是可升级的而且可能按较小的规模用于较小的房间
在一个实施方案中,冷却单元可能是包括众多冷却支架的冷却***的一部份,每个冷却支架都有适合支撑该冷却***的组成部分的壳体。一般来说,冷却单元可能被零星地用在数据中心内以解决数据中心内的湿度问题。当数据中心内的绝对湿度在整个空间中处处相对恒定的时候,冷却单元可能被明确地用在数据中心中易受较高的湿度条件影响的区域,如果它们出现的话。举例来说,而且没有限制,冷却单元可能被安排在一排设备支架之内而且被配置成到在数据中心内从热走廊摄取热空气,举例来说,把湿气从热走廊内的空气中除去。这种配置减少数据中心的空调***提供的潜在冷却,借此减少对增湿的需要。
在特定的实施方案中,冷却单元可能是19英寸设备支架标准尺寸的宽度的一半,例如,12英寸宽,而且可能是模块式的,以便该冷却单元可以被没有经受过加热和冷却训练或专业化训练的数据中心职员用大约数分钟插进一排设备支架之中。该冷却单元和整个冷却***的组成部分可能是以配套形式提供的,以便该冷却***的安装人员不需要专用工具。因为每个冷却单元包括感知和显示***能力、流速、冷冻剂和空气的入口和出口温度以及压差的能力,所以冷却单元的模块式特性允许使用者优化每个冷却单元的位置。因此,冷却单元作为全部冷却***的一部份可以被使用和为最大效率和在数据中心里面使用而被重新部署。
典型的数据中心可能包括由地板、墙壁和天花板定义的房间。数据中心可能被设计成收容众多设备支架。在一个实施方案中,每个设备支架可能是依照2004年11月17日以“EQUIPMENTENCLOSURE KIT AND ASSEMBLY METHOD(设备机箱套件和组装方法)”为题申请的美国专利申请第10/990,927号(现在的美国专利第7,293,666号)所揭示的教导构造的,该专利是本发明的受让人拥有的,在此通过引证将其全部并入。此外,在设备支架之间铺设电缆可能是使用依照美国专利第6,967,283号的揭示在支架顶上包含的电缆分配槽实现的,该专利通过引证被全部并入并且被转让给本发明的受让人。
明确地说,设备支架可能包括适合支撑电子部件(例如,数据处理、联网和电信设备)的框架或壳体。壳体可能包括正面、背面、侧面、底面和顶面。每个设备支架的正面可能包括前门,以便准许接近设备支架的内部。可能提供锁,以避免接触设备支架的内部和支架所收容的设备。设备支架的侧面可能包括至少一个面板以便封住支架的内部区域。设备支架的背面可能也包括至少一个面板或便于从支架的背面接近设备支架内部的后门。在特定的实施方案中,侧面和背面的面板以及前门和后门可能是利用多孔金属片材制造的,为的是,举例来说,让空气流进和流出设备支架的内部区域。
在一个实施方案中,设备支架在构造方面是模块式的而且被配置成靠轮子移动到位的,例如,在数据中心的一排之内。轮脚可能固定在每个设备支架的底部以使支架能够沿着数据中心的地板移动。一旦到位,水平调节脚就可以稳固地部署在地面上把设备支架适当地放在那排之内。部署在这样的设备支架上的轮脚和水平调节脚的范例是美国专利第7,293,666号详细揭示的。
一旦就位,电子设备就可以在设备支架的内部区域中定位。举例来说,设备可能被放在固定在设备支架的内部区域内的搁板上。供电和提供数据通信的电缆可能是穿过设备支架的顶部提供的,要么穿过在有孔口在其中形成的设备支架顶端的盖子(或美国专利第6,967,283号所描述的“屋顶”)要么穿过设备支架敞开的顶端。在这个实施方案中,电缆可能是沿着支架的屋顶捆扎的或是在上述的电缆分配槽中提供的。在另一个实施方案中,电缆可能被安排在架空地板里面并且穿过设备支架的底部与电子设备连接。在这两种配置下,输电线和通信线路都提供给设备支架。
依照前面的讨论,数据中心通常配置有这样安排的数排设备支架,以致凉爽的空气将被从凉爽的走廊吸到支架之中,而温暖的或热的空气将从支架排放到热走廊中。作为范例,设备支架可能被排成两排,设备支架排的正面是按向前的方向安排的而设备支架排的背面是按向后的方向安排的。然而,如上所述,在典型的数据中心中,有多排设备支架,其中各排可能是这样安排的,设备支架的正面彼此面对定义冷走廊,而设备支架的背面彼此面对定义热走廊。
一般地说,为了解决数据中心内的发热和过热点问题和为了解决数据中心内的气候控制问题,在一个实施方案中,提供一种模块式的冷却***。在一个实施方案中,冷却***可能包括众多安排在数据中心里面的为处理空间体积的显热冷却(即,干球温度冷却)而设计的冷却支架。因为了,一个可仿效的安排可能包括在数据中心中每隔两个设备支架提供一个冷却支架。然而,人们应该理解从这份揭示获益的原本熟悉这项技术的人可能在数据中心里面提供更多或更少的冷却支架,取决于数据中心的环境条件。此外,在一些实施方案中,冷却支架的密度和位置可能是基于数据中心内最热支架的位置或基于数据中心信息管理***获得的信息和分析调整的。
可以参考在此通过引证被全部并入的都在2006年1月19日以“COOLING SYSTEM AND METHOD(冷却***和方法)”为题申请的美国专利申请第11/335,856;11/335,874和11/335,901号揭示的冷却单元。其中所揭示的冷却单元特别适合处理数据中心内的显热冷却需求。
如上所述,许多数据中心是为提高冷水温度促成更有效的制冷设备操作和较高的显热比而设计的。在高潜在负荷期期间,冷却支架在需要从数据中心内的空间体积中除去湿气的时候可能是无效的。现在,数据中心的设计者和操作员可能提供特大号的CRAH单元或者在高潜在负荷期期间降低冷水温度。
为了处理空间体积(例如,数据中心)内的潜热冷却需要,专用的除湿器单元可能在战略上被用于空间各处。参照图1,通常以数字10指出的除湿机单元包括构造可能与标准设备支架或CRAC单元的壳体类似的壳体12。举例来说,在一个实施方案中,壳体12可能是有由垂直的和水平的支撑构件构成的框架定义的正面14、背面16、两个侧面18、20、底面22和顶面24的矩形结构。将与下面更为详细的揭示一样,除湿器单元10的壳体12配置成适应设备而且可能配置成为了运输或储藏便于分解和拆装。
如图1所示,在一个实施方案中,除湿器单元10的壳体12有大约为设备支架宽度的一半的宽度。如上所述,典型的19英寸支架有大约24英寸的宽度。因此,除湿器单元10的壳体12的宽度是大约12英寸。这样定尺寸使配置数据中心的人能够把除湿器单元或多样的除湿器单元放置在设备支架之间,同时能够维持支架在几排当中相等的间隔。壳体12的较狭窄的宽度还占据较少的空间,而且,与除湿器单元的模块性和和可移动性联系起来,使除湿器单元能够方便地以易于升级的方式放在两个设备支架之间。
除湿器单元10的壳体12的正面14可能包括适当地固定在框架上的前面板(未展示)。该前面板使数据中心的操作员能够接近除湿器单元10的内部区域。除湿器单元10可能包括可附着到壳体12的框架上覆盖除湿器单元的侧面18、20的侧面面板(未展示)。然而,由于除湿器单元10可能被放在两个设备支架之间,所以侧面面板可能是不需要的。同样,壳体12可能进一步包括覆盖除湿器单元10的背面16的背面面板(未展示)。在一个实施方案中,正面的、侧面的和背面的面板可能被适当地(例如,借助适当的螺钉紧固件)固定到除湿器单元的框架上。在另一个实施方案中,能够用手操作的紧固件(例如,翼形螺钉或直角回转紧固件)可能用来把面板固定到框架上。在特定的实施方案中,正面面板和/或背面面板可能都包含通过铰链附着到除湿器单元10的壳体12的框架上的门。
在至少一个实施方案中,除湿器单元10在构造方面可能是模块式的而且配置成靠轮子移动到位,例如,在数据中心的一排里面在两个设备支架之间。为了提高机动性,脚轮(每个都以数字26指出)可能被适当地固定在除湿器单元10的壳体12的底部22以使除湿器单元能够沿着数据中心的地板移动。一旦就位,水平调节脚28可能被稳固地部署在地面上将除湿器单元10适当地置于该排之内。与设备支架一样,脚轮26和水平调节脚28以及它们对除湿器单元10的壳体12的连接是在美国专利第7,293,666号详细地揭示的。在另一个实施方案中,除湿器单元10的壳体12可能有吊环螺栓,使起重机或一些其它的起重装置能够把除湿器单元升起并且放在数据中心内。
在一个实施方案中,安排是这样的,以致设备支架和除湿器单元的正面都毗连冷走廊,而支架和单元的背面都毗连热走廊。除湿器单元10的模块性和机动性使它在把湿气从数据中心里面需要气候控制的位置(例如,毗连热走廊)除去方面特别有效。这种配置使除湿器单元10能够在数据中心的操作员根据需要增添和除去除湿器单元(和/或冷却支架)之时作为结构单元用于数据中心的冷却和气候控制。
如图所示,除湿器单元10的壳体12的正面14有许多变速风扇(例如,八个,每个都以数字30指出),那些风扇适合把经过过滤的空气从除湿器单元的背面吸到除湿器单元的前面,如箭头A所示。在一个实施方案中,风扇30可能是在除湿器单元10的壳体12里面装配和配线的,以致风扇能被拆除,方法是拆除螺钉和将风扇从在除湿器单元的壳体上形成的容器(未展示)中滑出。提供给每个风扇的电力可能是借助适当的接插件(例如,傻瓜接插件(blindmate connector))连接和断开的。这种安排是这样的,以致风扇基于它们的低电压需求和它们易于从容器和傻瓜接插件上拆除是“热插拔的”。除此之外,控制器可能配置成监视每个风扇的操作,以便根据风扇的功耗差异预测风扇的故障。
在特定的实施方案中,每个风扇可能都是ebm-pabst Inc.ofFarmington,Connecticut根据型号W1G250制造的那种类型的直流轴流风扇。
在除湿器单元10的壳体12里面进一步提供的是一些盘管。在一个实施方案,提供三个盘管,分别以数字32、34和36指出,每个盘管都有众多散热片(未展示)以增加盘管的表面积。明确地说,盘管32、34和36可能通常是相对于流过除湿器单元10的壳体12的空气的方向(平行于箭头A)垂直放置的,这些盘管是相对于理论上与壳体的正面和背面平行的垂直平面以微小的角度放置的,为的是增大盘管的表面积,适应较大的热空气体积。这种安排是这样的,以致通过除湿器单元10的背面16吸入的和经过盘管32、34、36的热的和/或潮湿的空气以下面描述的方式把湿气从热空气中除去。依照描述,除湿器单元10可能是这样放置的,以致除湿器单元16的背面毗连热走廊。因此,通过除湿器单元10的背面16吸入的空气相对而言在数据中心里面比周围的空气热。风扇30配置成把来自盘管32、34、36经过调节的空气吹到除湿器单元10的正面14。
在特定的实施方案中,每个盘管可能都是由密西西比州格林纳达市的Heatcraft公司根据型号3FZ1203D 12.00×24.00制造的那种类型的盘管。
现在参照图2,除湿器单元10通过管线40、42与在图2中标识为冷冻机38的冷却流体来源连接。如图所示,管线40把来自冷冻机38的已冷的冷冻剂(例如,52°F的冷冻剂)提供给除湿器单元10的壳体12。管线42把升温后(例如,62°F)的冷冻剂从除湿器单元10的壳体12的背面送回冷冻机38。冷冻剂可能是任何适合冷却应用的介质(例如,水、冷冻剂R134A和冷冻剂R410A)。在特定的实施方案中,冷冻剂用管线40以4.0加仑每分钟(“gpm”)的速率递送到除湿器单元10并且用管线42以相同的速率4.0gpm送回冷冻机38。
如上所述,除湿器单元10包含三个盘管,如同在图2中从左到右看到的那样:第一预冷盘管32、第二除湿盘管34(有时在此称为“过度冷却”盘管)和第三回温盘管36。这样的安排致使风扇(在图2中被示意地表示为一个风扇30)跨过预冷盘管32、除湿盘管34和回温盘管36连续地沿着箭头B指示的方向抽吸空气。这样的安排致使潮湿的空气被吸入除湿机单元10并且途经第一盘管32被预先冷却。接下来,经预先冷却的空气途经第二盘管34被过度冷却。这导致空气中的任何湿气在第二盘管34上冷凝。然后,经过度冷却的空气途经第三盘管36被回温。回温的空气通过单元的背面16退出除湿器单元10进入空间体积。
通过管线40进入除湿器单元10的冷冻剂首先经过电磁阀44,然后被分离进入管线46和管线48。管线46在延伸到预冷盘管32之前与机械式调节阀50流体连通。管线48把冷冻剂递送到部份地为把冷冻剂冷却到指定的温度设计的热电型冷却/加热单元52的冷边52a。在一个实施方案中,热电单元52可能预定把进入该单元的冷冻剂从52°F的温度冷却到37°F的温度,后者比冷冻剂的进入温度低15°F。热电单元52可能配置成把冷冻剂冷却到与这份揭示提供的教导一致的任何预期温度。
在特定的实施方案中,热电冷却/加热单元可能是BSST,LLCof Irwindale,California制造的用户定制设计的单元。可以通过操纵机械式调节阀50控制通过管线46和48的冷冻剂流量。在特定的实施方案中,机械式调节阀50可以控制到使冷冻剂能够以1.5gpm的速率流过管线46和以2.5gpm的速率流过管线48。如图2所示,来自机械式调节阀50通过管线46流动的冷冻剂进入第一预冷盘管32。冷冻剂流过第一盘管32后从第一盘管的顶端通过以其另一端与热电单元52的热边52b连接的管线54退出。如上所述,风扇30(或其它适当的送风装置)工作使空气在第一盘管32上流动。这样的安排致使在第一盘管32之上流动的空气把在盘管里面流动的冷冻剂加热到大约56°F的温度。管线54把冷冻剂递送给热电单元52。管线54通过热电单元52递送的冷冻剂的调节将在下面更详细地描述。
在管线48中经过热电单元52被冷却到预定温度(例如,37°F)的冷冻剂被管线56以2.5gpm的速率递送到第二除湿盘管34。通过第二盘管34流动的冷冻剂被从第一盘管32通过除湿器单元10的流动的已被预先冷却的空气加热。在一个实施方案中,冷冻剂被加热到大约47°F的温度。因此,如上所述,从第一盘管32经过第二盘管34流动的已被预先冷却的空气被冷却到足以使空气里包含任何湿气在第二盘管上冷凝的温度。除湿器单元10可能配置有收集第二盘管34所产生的水的接水盘58。虽然在图2中展示的是放置在第二盘管34下面,接水盘58可能配置成伸展到所有的三个盘管32、34、36下面。
一旦通过第二盘管34,冷冻剂用管线60递送到第一盘管32。如图2所示,管线60与从机械式调节阀50延伸出来的管线46合并。从第一盘管32流过的流体数量是4.0gpm,起因于来自管线46的1.5gpm和来自管线60的2.5gpm。因此,离开第一预冷盘管32的流体速率(4.0gpm)与进入除湿器单元10的流体的速率(4.0gpm)一样。
依照讨论,流过管线46、56的冷冻剂分别流向第一和第二盘管32、34。一旦从第一盘管32排出,冷冻剂就通过管线54流回热电单元52的热边52b。在到达热电单元52之前,冷冻剂可能流过管线62。冷冻剂经过管线62的流速受机械式调节阀64控制。从热电单元52的热边52b排出的冷冻剂流过管线66。在一个实施方案中,冷冻剂以2.3gpm的速率流过管线66并且以1.7gpm的流速流过管线62。如所述,在特定的实施方案中,冷冻剂当它进入热电单元52的时候温度是大约56°F,该热电单元配置成利用从该单元的冷边除掉的热量把冷冻剂加热到80°F的温度,该温度比进入热电单元的冷冻剂的温度高大约25°F。与热电单元52的冷边52a一样,热边52b可能配置成把冷冻剂加热到与这份揭示提供的教导一致的任何预期的温度。
冷冻剂从热电单元52通过管线66流到控制阀68,这个阀门调整通过该管线的冷冻剂流量。虽然第二管线70被展示为从控制阀门68延伸出去,但是,在一个实施方案中,没有冷冻剂在除湿器单元10工作期间流过该第二管线。如上所述,在特定的实施方案中,冷冻剂以2.3gpm的速率流过管线66。这条管线66与第三回温盘管36连接。流过第三盘管36的温暖冷冻剂(例如,80°F的冷冻剂)使第三盘管36能够使从第二盘管34通过第三盘管流动的冷空气在被除湿器单元10排放之前升温。在一个实施方案中,冷冻剂经过第三回温盘管36被冷却到大约66.5°F的温度。这个冷冻剂被递送到用管线70与冷冻机38连接的管线72。
依照下面更为详细的讨论,可能提供控制器74控制除湿器单元的操作。
仅仅作为范例,在一个实施方案中,假定入口条件为干球75°F和湿球63.6°F(每磅70格令水分)和来源冷水温度52°F,那么除湿器单元10可能配置成每磅循环空气除去21.6格令水分。递送回空间体积的经调节的空气优选适度地接近该空间体积的预期温度。所陈述的另一种方法,对于更有效的冷却操作,再次进入该空间体积的空气不应该过冷。传统的CRAH单元已经限制在相同的条件下除湿能力究竟何时不存在。
通过上述范例,除湿器单元10提供大约18%的显热比。陈述的另一种方法,空气减少的焓82%是潜在的,从而对干球温度产生最小的影响。此外,除湿器单元10提供大约99.5%的性能潜系数。从空气中除去(例如,作为冷凝物除去的蒸汽)的潜在能量大约等于除湿器单元10的主要能耗。通过比较,使用蒸汽压缩循环的传统的除湿器单元将需要让空间条件达到干球95°F和湿球82.7°F(每磅151格令水分)才实现相似的除湿和功耗,这是数据中心无法接受的。
图3展示除湿器单元的另一个实施方案,通常以数字80指出,该除湿器单元与除湿器单元10类似,其中每个同一的或几乎同一的组成部分用相似的数字表示。如图所示,除湿器单元80通过管线82、84接到冷冻机38上。如图所示,管线82把来自冷冻机38的已冷的冷冻剂(例如,52°F的冷冻剂)提供给除湿器单元80的壳体12。管线84将升温的冷冻剂(例如,大约57°F)从除湿器单元10的壳体12送回冷冻机38。在特定的实施方案中,冷冻剂用管线82以8.4加仑每分钟(“gpm”)的速率递送到除湿器单元80并且用管线84以8.4gpm的相同速率送回冷冻机38。
与除湿器单元10一样,除湿器单元80包含三个盘管,如同在图3中从左面向右看到的那样:第一预冷盘管32、第二除湿盘管34和第三回温盘管36。通过管线82进入除湿器单元80的冷冻剂首先经过过电磁阀86,然后被分往管线88和管线90。管线88与预冷盘管32流体连通。管线90把冷冻剂递送给热电单元52。与除湿器单元10一样,除湿器单元80的热电单元52可能预定把进入该单元的冷冻剂从52°F冷却到37°F,后者比冷冻剂的进入温度低15°F。
在特定的实施方案中,冷冻剂以4.0gpm的速率流过管线88并且以4.4gpm的速率流过管线90。如图3所示,冷冻剂通过第一盘管32,然后经由通过管线84与冷冻机38连接的管线92从第一盘管的顶端退出。如上所述,风扇30工作使空气在第一盘管32上流动。这样的安排致使在第一盘管32上流动的空气把在盘管里面流动的冷冻剂加热到大约58°F的温度。
仍然参照图3,在管线90中经过热电单元52并且被热电单元52的冷边52a冷却到预定温度(例如,37°F)的冷冻剂以2.5gpm的速率通过管线94被递送到第二除湿盘管34。冷冻剂流过第二盘管34被从第一盘管32旁流过除湿器单元80的空气加热。在一个实施方案中,冷冻剂被加热到大约47°F的温度。因此,从第一盘管32经过第二盘管34流动的预先冷却的空气被冷却到使包含在空气里面的任何水分凝结在第二盘管上。与除湿器单元10一样,除湿器单元80可能配置有收集第二盘管34产生的水的接水盘58。虽然在图3中展示的是放置在第二盘管34下面,但是接水盘58可能配置成在所有的三个盘管32、34、36下面延伸。一旦通过第二盘管34,冷冻剂就通过管线96经由管线84被递送到冷冻机38。
如上所述,在一个实施方案中,热电单元52的冷边52a的冷冻剂以2.5gpm的速率流动。剩余的冷冻剂以1.94gpm的速率流向热电单元52的热边52b。如所述,在特定的实施方案中,冷冻剂在进入热电单元52之前是在大约56°F的温度下,热电单元配置成利用从该单元的冷边释放的热量将冷冻剂加热到79°F的温度。与热电单元52的冷边52a一样,热电单元的热边52b可能配置成把冷冻剂加热到与这份揭示提供的教导一致的任何预期的温度。冷冻剂从热电单元52的热边52b通过管线98流向控制阀68,该控制阀调整通过该管线的冷冻剂流量。虽然第二管线100被展示成从控制阀68延伸出来,但是,在一个实施方案中,没有冷冻剂在除湿器单元80工作期间流过第二管线。如上所述,在特定的实施方案中,冷冻剂以1.94gpm的速率流过管线98。这条管线98与第三回温盘管36连接。通过第三盘管36流动的温暖的冷冻剂(例如,79°F的冷冻剂)使第三盘管能够使从第二盘管34经过第三盘管流动的冷空气在从除湿器单元80排放空气之前升温。在一个实施方案中,冷冻剂经过第三回温盘管36被冷却到大约66°F的温度。这样的冷冻剂被递送到管线102,该管线经由管线84与冷冻机38相连。控制器74可能是为以下述方式控制除湿器单元80的操作而提供的。
现在参照图4和图5,更具体地说,参照图4,进一步揭示给空间体积除湿的方法。如图4所示,在一个实施方案中,方法200包含:(a)在步骤202,把冷却流体从冷却流体来源递送到第一盘管;(b)在步骤204,把冷却流体从冷却流体来源递送到换热单元;(c)在步骤206当冷却流体流过换热单元时候,降低一部分冷却流体的温度;(d)在步骤208,把来自换热单元的温度有所降低的冷却流体递送给第二盘管;(e)在步骤210,当冷却流体流过换热单元时候,升高一部分冷却流体的温度;(f)在步骤212,把来自换热单元的温度有所上升的冷却流体递送给第三盘管;以及(g)在步骤214,让空气在第一、第二和第三盘管之上流动。在特定的实施方案中,该方法进一步包括控制从冷却流体来源递送到第一盘管和换热单元的冷却流体的数量。该方法的实施方案可能是用除湿器单元10和80实现的。
转向图5,另一种方法300包含:(a)在步骤302,让空气在第一盘管旁流动,预先冷却该空气;(b)在步骤304,让来自第一盘管的空气在第二盘管旁流动,除去空气里的水分;以及(c)在步骤304,让来自第二盘管的空气在第三盘管旁流动,使该空气回温。该方法的实施方案可能是用除湿器单元10和80实现的。
在一个实施方案中,把冷冻机与除湿器单元连接起来的管线可能是用适当的管接头与除湿器单元连接的软管。在特定的实施方案中,依据控制器和网络管理器***的配置,可能提供流量计,以便与控制器切实可行地连接测量通过软管的冷冻剂流量。本发明的实施方案的除湿器单元可能利用流量计把冷冻剂的流速提供给控制器。在进一步的实施方案中,流量计使控制器能够以控制器获得的信息为基础计算除湿器单元的工作能力。
在特定的实施方案中,可能提供控制器,以便一般地控制冷却***的操作和具体地以控制器获得的环境参数为基础控制除湿器单元。在一特定的实施方案中,控制器可能包含在冷却支架中提供的控制器单元和/或在控制器区域网络(CAN)总线上与对方通信的除湿器单元。在其它的实施方案中,可能提供主控制器,控制该控制器单元的操作。明确地说,每个冷却支架和/或除湿器单元可能有与控制器切实可行地连接的显示器组件。该显示器组件可能适合显示数据室的环境条件,例如,但不限于,在冷却支架和/或除湿器单元旁数据中心的温度和湿度、进入和离开冷却支架和/或除湿器单元的空气的温度、进入和离开离冷却支架和/或除湿器单元的冷冻剂的温度、进入冷却支架和/或除湿器单元的冷冻剂的流速和冷却支架和/或除湿器单元的冷却能力。可能提供适当的监视器和/或测量仪器以获得这样的信息。作为替代,或作为对上述实施方案的补充,环境条件可能显示在与整合的数据中心监控***一起提供的单元上。
环境条件(例如,数据中心的温度)的变化导致输入(包括流进和流出每个冷却支架和/或除湿器单元的冷冻剂的温度)的变化。提供给控制器的进一步的输入包括通过流量计进入冷却支架和/或除湿器单元的冷冻剂的流速和冷冻剂(例如,水)的已知值。基于冷冻剂温度和冷冻剂流速,总传热可以确定,这可能是通过流速乘以冷冻剂密度乘以冷冻剂比热再乘以冷冻剂出口和入口之间的温差计算的。这种传热计算可能是由控制器这样决定的,以致可以计算通过冷却支架的流量计递送给冷却支架和/或除湿器单元的冷冻剂的数量。控制器可能被进一步配置成考虑到用来实时地计算每个冷却支架和/或除湿器单元的负荷能力的用户输入。所获得的数值可能与最大的潜在冷却能力进行比较以评定该冷却***的储备冷却能力。
在特定的实施方案中,显示器组件包括有液晶显示器的显示器单元,以便,举例来说,显示环境条件,例如,数据中心的温度和湿度,进入和离开每个冷却支架和/或单元的空气的温度,进入和离开离每个冷却支架和/或单元的冷冻剂的温度和进入这样的冷却支架和/或单元的冷冻剂的流速。在显示器单元上进一步提供众多控制按钮和状态指示器使操作员能够操纵冷却***的操作。显示器组件可能是借助密封垫圈和安装支架固定到在冷却支架的正面面板中形成的孔口之内的,其中可能提供螺钉紧固件(未展示)把显示器组件在该孔口里面固定到正面面板上。
如上所述,每个设备支架能够产生巨大的热量。有时,在特定的实施方案中,提供专门除去特定设备支架所产生的潮气的除湿器单元可能是令人想要的。举例来说,冷却***可能包括适合附着到设备和除湿器单元的正面和背面的正面和背面的强制通风。这样的安排致使设备支架和除湿器单元在除去设备支架的前后门和除湿器单元的前后面板(或门)之后并排地排列。这样的安排致使强制通风捕获设备支架和除湿器单元里面的空气在设备支架和冷却支架之间产生隔离环境以便热空气通过背面的强制通风直接从设备支架的背面流向冷却支架的背面。本发明的实施方案的除湿器单元可能是有为处理显热冷却需求提供的冷却支架的冷却***的一部份。强制通风可能是为连同设备支架和冷却支架和/或除湿器单元一起工作提供最大的冷却可预测性、冷却能力和冷却效率而设计的模块式***的一部份。
如同展示和描述的那样,本发明的实施方案的除湿器单元是模块式的和可升级的,以便为数据中心设计冷却***的人可以选择该除湿器单元作为把许多个别组成部分合并的整体***的一部份。明确地说,依据部署在数据中心内的电子设备和该设备需要的最佳操作条件,人们可以设计针对特定的数据中心优化和调整的冷却***。
如同前面提到的那样,在一个实施方案中,控制器可能是独立地致力于控制除湿器单元的操作的单元。在另一个实施方案中,控制器可能是在冷却支架和/或除湿器单元之一中提供的,代替控制器单元之一,有控制器的冷却支架和/或除湿器单元作为主要的冷却支架起作用,而其它的冷却支架和/或除湿器单元作为辅助的冷却支架起作用。在另外一个实施方案中,冷却***的操作可能是在整合的数据中心监控***的控制下操作的,其中每个冷却支架都有在网络上与其它冷却支架通信的控制器单元。在一个这样的实施方案中,控制器可能与数据中心控制***通信,提供冷却***各组成部分的状态并且接受给数据中心控制***的控制指令。在一个实施方案中,每个除湿器单元可能包括在网络(例如,CAN总线网络)上与数据中心的控制器通信的控制器,而且在一个这样的实施方案中,数据中心的控制器可能是使用整合的数据中心监控***(例如,由本发明的受让人、American PowerConversion Corporation of West Kingston,Rhode Island(罗德岛西金斯敦的美国电力转换公司)出售的InfraStruXureTM数据中心管理器)实现的。
因此,应该观察到本发明的除湿器单元是为在数据中心内可升级的模块式落实特地配置的。除湿器单元可能是作为可以由没有受过冷却***安装的特别培训而且没有专用工具的人员安装的装备的部件提供的。该冷却***的一个好处是当数据中心里面的环境条件或需要改变的时候冷却支架和/或单元可以在数据中心里面移动或移到另一个数据中心。
除此之外,因为在此揭示的实施方案的除湿器单元可能是作为排中产品提供的,所以该除湿器单元可能被放置成摄取数据中心中最潮湿的空气并处理它以减少空气中的潮气。效率方面的改进可以从除湿机单元的着地面积可能减少这一事实清楚地看到。为了帮助操作员优化除湿器单元的位置,每个单元的冷却能力可能连同流速、水和空气的入口和出口的温度和压力差一起受操作员监视。这些读数使操作员能够从战略上把除湿器单元放在适当的位置,以致每个除湿器单元都可以在把较大的房间设计和布局灵活性提供给操作员和撤消有放置在数据中心边界周围的空调机的限制的同时消除最大数量的潮气。从电力角度看,每个除湿器单元可以在直流下操作,因此把一定的灵活性提供给所提供的输入功率。因此,除湿机单元不再需要为特定的电压建造。
如上所述,本发明的冷却***实施方案可能是作为整合的数据中心监控***的一部份进一步提供的。当与这种整合的监控***一起使用的时候,本发明的冷却***使一个或多个除湿机单元容易移开便于在数据中心内维护保养和重新布置到另一个位置。该冷却***也可能被整合到收容数据中心的建筑物的现有的冷却***之中,举例来说,连同一个或多个CRAC和/或CRAH单元一起用来把补充的冷空气提供给数据中心中需要的地方。
该冷却***可能是通过利用许多因素连同预测故障组件一起提供的。明确地说,通过控制器,每个除湿器单元可能被设计成当特定的部件(例如,马达,风扇或任何其它遭受磨损的部件)即将结束它们的使用寿命的时候通知数据中心的操作员。准备这样的组件将使适度计时的预防性维护工作能够完成和节约可能的停工时间。通知可能被递送到支架的显示器,或通过整合的监控***提供给数据中心的操作员。除此之外,冷却***的作为主控制器配置的控制器可能通过增加其它位于故障除湿器单元附近的冷却单元的输出补偿特定除湿器单元的失灵。
至此已经描述了本发明的至少一个实施方案的一些方面,人们将领会到各种不同的变更、修正和改进对于熟悉这项技术的人将很容易发生。这样的变更、修正和改进倾向于成为本发明的一部份,而且倾向于落在本发明的精神和范围里面。因此,前面的描述和附图仅仅作为范例。

Claims (25)

1.一种除湿机单元,其中包括:
与冷却流体来源流体连通的第一盘管;
与冷却流体来源流体连通的第二盘管;
与冷却流体来源流体连通的第三盘管;
安排在冷却流体来源和第二和第三盘管之间的换热单元,该换热单元适合除去来自流向第二盘管的冷却流体的热量而且适合给加热流向第三盘管的冷却流体;以及
配置成使空气横越第一、第二和第三盘管流动的风扇,其中第一盘管配置成预先冷却在第一盘管之上流动的空气,第二盘管配置成给在第二盘管之上流动的空气除湿,而第三盘管配置成使在第三盘管之上流动的空气升温。
2.根据权利要求1的除湿器单元,其中冷却流体配置成从冷却流体来源以一部分冷却流体流向第一盘管和一部分冷却流体经过换热单元流向第二盘管的方式流动。
3.根据权利要求2的除湿器单元,其中冷却流体配置成从冷却流体来源和第一盘管之一经过换热单元流向第三盘管。
4.根据权利要求3的除湿器单元,其中从第二盘管排出的冷却流体配置成流向第一盘管。
5.根据权利要求1的除湿器单元,其中换热单元将流向第二盘管的冷却流体的温度降低大约15°F。
6.根据权利要求5的除湿器单元,其中换热单元将流向第三盘管的冷却流体的温度升高大约25°F。
7.根据权利要求1的除湿器单元,进一步包括放置在冷却流体来源和第一盘管之间的第一阀门,第一阀门配置成控制流向第一盘管和换热单元的冷却流体的流量。
8.根据权利要求7的除湿器单元,其中从第一盘管排出的冷却流体与冷却流体来源和换热单元流体连通。
9.根据权利要求8的除湿器单元,进一步包括放置在换热单元和冷却流体来源之间的第二阀门,第二阀门配置成控制回到冷却流体来源的冷却流体的流量。
10.一种给空间体积除湿的方法,该方法包括:
把来自冷却流体来源的冷却流体递送到第一盘管;
把来自冷却流体来源的冷却流体递送到换热单元;
当冷却流体流过换热单元的时候,降低一部分冷却流体的温度;
把温度有所降低的冷却流体从换热单元递送到第二盘管;
当冷却流体流过换热单元时候,升高部分冷却流体的温度;把温度有所上升的冷却流体从换热单元递送到第三盘管;以及
使空气在第一、第二和第三盘管之上流动。
11.根据权利要求10的方法,进一步包括控制从冷却流体来源递送到第一盘管和换热单元的冷却流体的数量。
12.根据权利要求10的方法,其中从换热单元递送到第二盘管的冷却流体比从冷却流体来源递送到第一盘管的冷却流体温度低大约15°F。
13.根据权利要求12的方法,其中在从换热单元递送到第三盘管的冷却流体比从冷却流体来源递送到第一盘管的冷却流体温度高大约是25°F。
14.一种给空间体积除湿的方法,该方法包括:
让空气在第一盘管之上流动以便预先冷却该空气;
让来自第一盘管的空气在第二盘管之上流动以便给该空气除湿;以及
让来自第二盘管的空气第三盘管之上流动以使该空气升温。
15.根据权利要求14的方法,进一步包括把冷却流体从冷却流体来源递送到第一盘管。
16.根据权利要求15的方法,进一步包括把冷却流体从冷却流体来源递送到换热单元,从而在冷却流体流过换热单元之时降低冷却流体的温度,以及把温度有所降低的冷却流体从换热单元递送到第二盘管。
17.根据权利要求16的方法,进一步包括把来自冷却流体来源和第一盘管之一的冷却流体递送到换热单元,从而在冷却流体流过换热单元之时升高该冷却流体的温度,以及把温度有所上升的冷却流体从换热单元递送到第三盘管。
18.一种除湿机单元,其中包括:
壳体;
安排在壳体里面的第一盘管,该第一盘管与冷却流体的来源流体连通并且被配置成预热用送风装置递送的空气;
安排在壳体里面的第二盘管,该第二盘绕与冷却流体来源流体连通并且配置成给空气除湿;
安排在壳体里面的第三盘管,该第三盘管与冷却流体来源和第一盘管之一流体连通并且配置成使从第二盘管递送的空气升温;以及
使空气在第一、第二和第三盘管之上流动的送风装置。
19.根据权利要求18的除湿器单元,进一步包括安排在冷却流体来源和第二和第三盘管之间的换热单元,该换热单元适合把除去来自流向第二盘管的冷却流体的热量和给流向第三盘管的冷却流体加热。
20.根据权利要求19的除湿器,其中冷却流体适合从冷却流体来源以一部分冷却流体流向第一盘管、一部分冷却流体经过换热单元流向第二盘管的方式流动。
21.根据权利要求20的除湿器,其中从冷却流体来源和第一盘管之一流出的流体经过换热单元被引向第三盘管。
22.根据权利要求19的除湿器,其中换热单元将流向第二盘管的冷却流体的温度降低大约15°F。
23.根据权利要求22的除湿器,其中换热单元将流向第三盘管的冷却流体的温度升高大约25°F。
24.根据权利要求19的除湿器,进一步包括放置在冷却流体来源和第一盘管之间的第一阀门,该第一阀门配置成控制流向第一盘管的冷却流体的流量。
25.根据权利要求24的除湿器,进一步包括放置在第一盘管和冷却流体来源之间的第二阀门,该第二阀门配置成控制流向冷却流体来源的冷却流体的流量。
CN200980113878.3A 2008-03-04 2009-02-25 除湿装置和方法 Active CN102016431B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/041,919 US8033122B2 (en) 2008-03-04 2008-03-04 Dehumidifier apparatus and method
US12/041,919 2008-03-04
PCT/US2009/035134 WO2009111243A1 (en) 2008-03-04 2009-02-25 Dehumidifier apparatus and method

Publications (2)

Publication Number Publication Date
CN102016431A true CN102016431A (zh) 2011-04-13
CN102016431B CN102016431B (zh) 2013-06-26

Family

ID=40651168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980113878.3A Active CN102016431B (zh) 2008-03-04 2009-02-25 除湿装置和方法

Country Status (10)

Country Link
US (1) US8033122B2 (zh)
EP (1) EP2255131B1 (zh)
JP (1) JP5479374B2 (zh)
KR (1) KR101603958B1 (zh)
CN (1) CN102016431B (zh)
AU (1) AU2009222202B2 (zh)
BR (1) BRPI0909635A2 (zh)
CA (1) CA2717267C (zh)
RU (1) RU2498164C2 (zh)
WO (1) WO2009111243A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990710B2 (en) * 2008-12-31 2011-08-02 Vs Acquisition Co. Llc Data center
US8264840B2 (en) 2009-05-15 2012-09-11 NxGen Modular, LLC Modular data center and associated methods
US8973380B2 (en) * 2009-05-28 2015-03-10 Schneider Electric It Corporation Systems and methods for detecting refrigerant leaks in cooling systems
CN101822934B (zh) * 2010-02-01 2012-05-23 北京亚都空气污染治理技术有限公司 风路结构以及具有该风路结构的空气调节装置
US20120174612A1 (en) * 2010-05-21 2012-07-12 Liebert Corporation Computer Room Air Conditioner With Pre-Cooler
US8782443B2 (en) 2010-05-25 2014-07-15 Microsoft Corporation Resource-based adaptive server loading
US9038406B2 (en) 2010-05-26 2015-05-26 International Business Machines Corporation Dehumidifying cooling apparatus and method for an electronics rack
US8144467B2 (en) * 2010-05-26 2012-03-27 International Business Machines Corporation Dehumidifying and re-humidifying apparatus and method for an electronics rack
US8189334B2 (en) 2010-05-26 2012-05-29 International Business Machines Corporation Dehumidifying and re-humidifying cooling apparatus and method for an electronics rack
US8384244B2 (en) * 2010-06-09 2013-02-26 Microsoft Corporation Rack-based uninterruptible power supply
US8487473B2 (en) 2010-06-24 2013-07-16 Microsoft Corporation Hierarchical power smoothing
US8952566B2 (en) 2010-10-26 2015-02-10 Microsoft Technology Licensing, Llc Chassis slots accepting battery modules and other module types
US8402816B2 (en) 2010-12-30 2013-03-26 Schneider Electric It Corporation Systems and methods for detecting leaks
US9445529B2 (en) 2012-05-23 2016-09-13 International Business Machines Corporation Liquid cooled data center design selection
CN103542469B (zh) * 2012-07-12 2018-06-15 开利公司 温湿独立控制空调***与方法
US9719423B2 (en) 2012-09-04 2017-08-01 General Electric Company Inlet air chilling system with humidity control and energy recovery
US11076509B2 (en) 2017-01-24 2021-07-27 The Research Foundation for the State University Control systems and prediction methods for it cooling performance in containment
RU2673002C1 (ru) * 2018-03-02 2018-11-21 Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) Термоэлектрическая установка осушения воздуха помещений сельскохозяйственного назначения
US10900705B2 (en) * 2018-03-16 2021-01-26 John Bean Technologies Ab Method and system for reducing moisture content of a cooling compartment
CN110925903A (zh) * 2019-12-09 2020-03-27 广州多乐信电器有限公司 一种可模块组合的半导体除湿机及其使用方法
EP4073436A4 (en) * 2019-12-10 2023-12-13 Dehumidified Air Solutions, Inc. COOLING SYSTEM
KR102271051B1 (ko) * 2020-01-31 2021-06-30 주식회사 삼화에이스 데이터센터 공기조화시스템
CN111343814B (zh) * 2020-03-11 2021-04-09 张树征 一种电力监测放置桩及其使用方法
RU201764U1 (ru) * 2020-07-14 2021-01-12 Евгений Анатольевич Проскурин Воздухоосушитель

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2200118A (en) * 1936-10-15 1940-05-07 Honeywell Regulator Co Air conditioning system
SU138349A1 (ru) * 1960-04-01 1960-11-30 ков В.А. Проскур Воздухоосушитель
US3585811A (en) * 1969-12-23 1971-06-22 Visual Graphics Corp Air conditioned storage system
SU724884A1 (ru) * 1978-10-02 1980-03-30 Войсковая Часть 25840 Воздухоосушитель
US4905479A (en) * 1989-01-27 1990-03-06 Gas Research Institute Hybrid air conditioning system
US5493871A (en) * 1991-11-12 1996-02-27 Eiermann; Kenneth L. Method and apparatus for latent heat extraction
JP3353924B2 (ja) 1992-04-30 2002-12-09 株式会社小松製作所 温湿度調整装置及びその制御方法
US5361587A (en) * 1993-05-25 1994-11-08 Paul Georgeades Vapor-compression-cycle refrigeration system having a thermoelectric condenser
US5309725A (en) * 1993-07-06 1994-05-10 Cayce James L System and method for high-efficiency air cooling and dehumidification
JPH07103506A (ja) * 1993-08-12 1995-04-18 Komatsu Ltd 空調装置
JPH07233968A (ja) * 1994-02-22 1995-09-05 Sony Corp 空気調和システム
US5799728A (en) 1996-04-30 1998-09-01 Memc Electric Materials, Inc. Dehumidifier
US6658874B1 (en) 1999-04-12 2003-12-09 Richard W. Trent Advanced, energy efficient air conditioning, dehumidification and reheat method and apparatus
US6967283B2 (en) 2001-03-20 2005-11-22 American Power Conversion Corporation Adjustable scalable rack power system and method
US6694757B1 (en) * 2002-02-21 2004-02-24 Thomas J. Backman Multiple stage dehumidification and cooling system
JP4288934B2 (ja) * 2002-11-15 2009-07-01 ダイキン工業株式会社 空気調和装置
CN2679565Y (zh) * 2003-12-21 2005-02-16 陈培坤 一种智能化制茶用空调
US7197433B2 (en) 2004-04-09 2007-03-27 Hewlett-Packard Development Company, L.P. Workload placement among data centers based on thermal efficiency
US7155318B2 (en) 2004-11-05 2006-12-26 Hewlett-Packard Development Company, Lp. Air conditioning unit control to reduce moisture varying operations
US7293666B2 (en) 2004-11-17 2007-11-13 American Power Conversion Corporation Equipment enclosure kit and assembly method
JP4555097B2 (ja) * 2005-01-25 2010-09-29 三機工業株式会社 クリーン室空調装置
CN2861836Y (zh) * 2005-09-21 2007-01-24 上海海事大学 复合式热管除湿器
US7310953B2 (en) * 2005-11-09 2007-12-25 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
US20070101737A1 (en) * 2005-11-09 2007-05-10 Masao Akei Refrigeration system including thermoelectric heat recovery and actuation
US20070163748A1 (en) 2006-01-19 2007-07-19 American Power Conversion Corporation Cooling system and method
US8672732B2 (en) 2006-01-19 2014-03-18 Schneider Electric It Corporation Cooling system and method
US7365973B2 (en) 2006-01-19 2008-04-29 American Power Conversion Corporation Cooling system and method

Also Published As

Publication number Publication date
AU2009222202A1 (en) 2009-09-11
CA2717267C (en) 2016-05-31
JP5479374B2 (ja) 2014-04-23
AU2009222202B2 (en) 2013-02-07
CA2717267A1 (en) 2009-09-11
US20090223240A1 (en) 2009-09-10
KR101603958B1 (ko) 2016-03-16
JP2011514504A (ja) 2011-05-06
CN102016431B (zh) 2013-06-26
BRPI0909635A2 (pt) 2015-09-22
EP2255131B1 (en) 2015-04-08
US8033122B2 (en) 2011-10-11
KR20100138972A (ko) 2010-12-31
WO2009111243A1 (en) 2009-09-11
RU2010140373A (ru) 2012-04-10
EP2255131A1 (en) 2010-12-01
RU2498164C2 (ru) 2013-11-10

Similar Documents

Publication Publication Date Title
CN102016431B (zh) 除湿装置和方法
US9677777B2 (en) HVAC system and zone control unit
US8672732B2 (en) Cooling system and method
US7365973B2 (en) Cooling system and method
CN102112826B (zh) 用于冷却的方法
US9459015B2 (en) HVAC system and zone control unit
US20070163748A1 (en) Cooling system and method
CN105409341B (zh) 冷却单元和冷却方法
NL2007293C2 (en) Cooling system for cooling air in a room and data centre comprising such cooling system.
US20160102919A1 (en) Cooling system and method of cooling an interior space
JP2003166729A (ja) 通信・情報処理機器室等の空調システム
AU2007207648B2 (en) Cooling system and method
CN104676766B (zh) 一种窗框式空气除湿装置
Koskiniemi Data center cooling
Roncoli Venegas Data Center Design and Airflow Management (Insight into Increasing Performance and Efficiency)
Moody Hot Aisle Versus Cold Aisle Containment
KR20150091694A (ko) 외기 도입용 필터 모듈 및 이를 구비하는 데이터 센터의 공조 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant