CN101984015B - 一种微波辐射制备(Y,Gd)2O3:Eu发光材料的方法 - Google Patents

一种微波辐射制备(Y,Gd)2O3:Eu发光材料的方法 Download PDF

Info

Publication number
CN101984015B
CN101984015B CN201010500528.7A CN201010500528A CN101984015B CN 101984015 B CN101984015 B CN 101984015B CN 201010500528 A CN201010500528 A CN 201010500528A CN 101984015 B CN101984015 B CN 101984015B
Authority
CN
China
Prior art keywords
reaction
oxalic acid
luminescent material
microwave
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010500528.7A
Other languages
English (en)
Other versions
CN101984015A (zh
Inventor
吕忆农
戴沈华
刘云飞
夏丽莉
闵辉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201010500528.7A priority Critical patent/CN101984015B/zh
Publication of CN101984015A publication Critical patent/CN101984015A/zh
Application granted granted Critical
Publication of CN101984015B publication Critical patent/CN101984015B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种微波辐射(Y,Gd)2O3:Eu发光材料的制备方法,首先在反应容器中配置5~30mM的Re3+的稀土盐溶液,其中Re为Y、Gd和Eu,然后加入乙二醇和草酸,搅拌溶解;再将配好的反应原料溶液放到微波反应器中微波辐射进行反应,反应结束后将沉淀过滤、洗涤、烘干,然后放到马弗炉里煅烧,得到(Y,Gd)2O3:Eu发光材料。本发明所制备的(Y,Gd)2O3:Eu发光材料具有大小均一,形貌和大小可调,本发明还具有反应时间短,可小规模生产等优点。

Description

一种微波辐射制备(Y,Gd)2O3:Eu发光材料的方法
技术领域
本发明涉及一种微波辐射(Y,Gd)2O3:Eu发光材料的制备方法,属于无机材料的制备领域。
背景技术
Y2O3是一种重要的陶瓷原料,是荧光粉中应用较多的稀土氧化物之一。Y2O3具有优良的耐热、耐腐蚀和高温稳定性,对还原介质稳定性好,介电常数高,并可制成透明性优良的多晶陶瓷材料,主要用于红外导弹的窗口和整流罩、天线罩、微波基板、绝缘支架、光纤掺杂、红外发生器管壳、红外透镜及其他高温窗等。Y2O3颗粒的超细化,能显著提高产品的性能,其弥散在合金中可得到超耐热合金;用超细Y2O3稳定的氧化锆粉术可烧结成高强度、高韧性的稳定氧化锆陶瓷,用于刀具和机械零件;同时它还能显著提高彩电的图像质量,荧光灯的发光效率以及延长使用寿命等。在添加Nd3+,Eu3+等稀土元素以后,则可作为固体激光器的工作物质。Y2O3掺杂其他物质制备的发光材料、荧光材料、超导材料等广泛应用于诸多领域。
制备Y2O3基体发光材料的制备方法主要分为固相法,液相法。其中固相法的实施办法是,是将水合草酸钇和草酸铕,混入一定体积的氨水按一定比例混合,然后加入适量的玛瑙球放入玛瑙罐中,置于行星磨上,以设定的球磨方式和速度球磨所需的时间得到球磨反应产物,然后真空干燥,最后得到的前驱体在一定的温度下煅烧得到氧化物粉体。这种方法所需灼烧温度在1000℃以上,灼烧后产物粒径较大,需要再球磨粉碎以减小粒径来满足现代工艺需要,而且球磨会使荧光粉的结晶形态破坏,致使发光度大幅度下降,严重影响荧光粉的使用性能。
液相法是选择一种或多种可溶性金属盐类,按所制备的材料的组成计量配制成溶液,使各元素成离子态,再选择一种合适的沉淀剂,采用加热、蒸发、升华、水解等方法合成粉体。
微波水热合成中,微波作用的本质是电磁波对带电粒子的作用,是物质在外加电磁场作用下内部介质极化产生的极化强度矢量滞后于电场变化而导致与电场同相的电流产生,导致了材料的内耗,因此微波作用与其频率和功率密度密切相关,也与介质的介电性能密切相关。微波之所以能在化学合成领域中应用,是因为化学反应所涉及的反应物中带有水、醇类、羧酸类等各种极性分子。在通常情况下,这些分子呈杂乱无章的运动状态,当微波炉磁控管辐射出频率极高的微波时,微波能场以每秒二三十亿次的速度不断地变换下负极性,分子运动发生了巨变,分子排列起来并高速运动,产生相互碰撞、摩擦、挤压,从而使动能-微波能转化为热能。山于此种能量来自反应物溶剂内部,本身不需要传热媒体,不靠对流,样品温度便可以很快上升,从而可以全面、快速、均匀地加热反应物溶剂,达到提高化学反应速率的目的。微波除了有热效应还有非热效应。可以有选择性地加热,从而使化学反应具有一定的选择性。归纳起来,水热条件下水的作用有:(1)有时作为化学组分起化学反应;(2)反应和重排的促进剂;(3)起压力传递媒介的作用;(4)起溶剂作用;(5)起低熔点物质的作用;(6)提高物质的溶解度。
刘桂霞等人(无机化学学报,2006,22(8):1535~1539)用三步水热合成了铕掺杂的氧化钇球形颗粒:首先形成碳酸氢氧化物胶体溶液,然后水热合成碳酸盐前驱体,最后煅烧得到氧化物。该方法具体实施步骤为:第一,把氧化钇(99.99%)和氧化铕(99.99%)溶解到少量硝酸中,然后蒸发干燥,加入一定量的水配制硝酸钇和硝酸铕溶液,形成0.05mol/L的Y(NO3)3和0.01mol/L的Eu(NO3)3再与2mol/L的(NH3)2CO混合,所得的混合溶液在80℃的盖紧烧杯中保温2小时,形成胶体物;第二将胶状物放入50ml的高压釜放入烘箱在120℃保温18小时;第三将所得到的产物过滤,在80℃下烘干,再把所得的前驱体在850℃下煅烧2小时,制得所需的氧化物。这种方法比较复杂,所需时间长,制得的氧化钇(铕)纳米颗粒的尺寸较大,分散性比较差,且大小不均匀团聚现象严重。大量合成时更不容易控制形貌,因此不适合工业化。
发明内容
本发明的目的是为了改进现有合成方法的不足,而提供了一种微波辐射法制备(Y,Gd)2O3:Eu发光材料的方法,该方法制备的材料纯度高,粒度分布均匀并且容易控制粒度形貌的,满足现代工业和科学技术发展对材料的性能的要求。
本发明的技术方案为:微波辐射法制备(Y,Gd)2O3:Eu发光材料的方法,具体步骤如下:
A.在反应容器中配置5~30mM的Re3+的稀土盐溶液,其中Re为Y、Gd和Eu,Y∶Gd∶Eu元素的摩尔比为8~19∶3~12∶1,然后按乙二醇(EG)与稀土盐溶液的体积比为1~10∶1比例加入乙二醇(EG);再加入草酸,并搅拌使草酸溶解;
B.上述配好的反应原料溶液放到微波反应器中微波辐射进行反应,反应结束后将沉淀过滤、洗涤、烘干,然后放到马弗炉里升温到600~1000℃煅烧1~3h,得到(Y,Gd)2O3:Eu发光材料。
优选草酸的加入量为草酸与稀土元素Re3+的摩尔比为3~20∶1。优选所述的稀土盐为稀上硝酸盐。
优选上述的微波反应器的功率为15~50W,反应时间为5~60min。
本发明所制得的(Y,Gd)2O3:Eu发光材料为微米片、微米杆或纳米杆,形貌依赖于EG与稀土盐溶液的体积。
有益效果:
通过该发明所制备的(Y,Gd)2O3:Eu发光材料为微或纳米片,或者为纳米杆,具有大小均一,形貌和大小可调,并且本发明还具有反应时间短,可小规模生产等优点。
附图说明
图1实例1所得(Y,Gd)2O3:Eu粉体的X射线衍射图;
图2实例1所得(Y,Gd)2O3:Eu粉体的扫描电镜二次电子像;
图3实例1所得(Y,Gd)2O3:Eu粉体的发射和激发(插图)光谱图;
图4实例2所得(Y,Gd)2O3:Eu粉体的扫描电镜二次电子像;
图5实例3所得(Y,Gd)2O3:Eu粉体的扫描电镜二次电子像。
具体实施方式
实施例1:
配置10mM的Re(NO3)3(Re=Y,Gd,Eu;元素摩尔比Y∶Gd∶Eu=14.25∶4.75∶1)稀土盐溶液30ml,加入30ml乙二醇,然后再加入的草酸搅拌溶解,最后草酸的浓度为60mM。将上述配好的反应原料放到微波反应腔里面控制微波功率为15W反应30min。得到的沉淀用蒸馏水洗涤5次,放入烘箱在80℃下烘6h,然后再用马弗炉在700℃煅烧2h,得到(Y,Gd)2O3:Eu的粉体。
所得的粉术经X射线衍射分析为立方相结构(见图1),从图中可以看出,所得的产物为与立方相Y2O3(JCPDS No.83-0927)相对应。
取少许(Y,Gd)2O3:Eu粉体置于10ml乙醇中,在超声波清洗机中超声分散2min。滴于铜质样品台上,用扫描电镜观察颗粒形貌及其颗粒大小(见图2),形貌为边长为5~10μm均匀的微米方片。
粉术经过压块后用荧光光谱仪测试其激发和发射光谱(见图3),从图中可以看到,在611nm发射下,激发光谱主峰为238nm;在238nm激发下,发射峰为611nm。
实施例2:
配置20mM的Re(NO3)3(Re=Y,Gd,Eu;元素摩尔比Y∶Gd∶Eu=9∶10∶1)稀土盐溶液20ml,加入60ml乙二醇,然后再加入的草酸搅拌溶解,最后草酸的浓度为75mM。使用的微波功率为30W,其他的步骤与实例1中相同,得到(Y,Gd)2O3:Eu的粉体用扫描电镜观察(图4)为长为15μm,宽度约为100nm的微米杆。
实施例3:
配置30mM的Re(NO3)3(Re=Y,Gd,Eu;元素摩尔比Y∶Gd∶Eu=16∶3∶1)稀土盐溶液10ml,加入50ml乙二醇,然后再加入的草酸搅拌溶解,草酸的浓度为20mM。在温度为1000℃下煅烧1h,其他的步骤与实例1中相同,得到(Y,Gd)2O3:Eu的粉体用扫描电镜观察(图5),形貌为长为2μm,宽度约为20nm的纳米杆。

Claims (2)

1.一种微波辐射法制备(Y,Gd)2O3:Eu发光材料的方法,具体步骤如下:
A.在反应容器中配置5~30 mM的Re3+的稀土盐溶液,其中Re为Y、Gd和Eu,Y:Gd:Eu元素的摩尔比为8~19:3~12:1,然后再按乙二醇与稀土盐溶液的体积比为1~10:1比例加入乙二醇,再加入草酸,并搅拌使草酸溶解;其中草酸的加入量为草酸与稀土元素Re3+的摩尔比为3~20:1;
B.上述配好的反应原料溶液放到功率为15~50 W的微波反应器中微波辐射反应5~60 min,反应结束后将沉淀过滤、洗涤、烘干,然后放到马弗炉里升温到600~1000 ℃煅烧1~3 h,得到(Y,Gd)2O3:Eu发光材料。
2.根据权利要求1所述的方法,其特征在于所述的稀土盐为稀土硝酸盐。
CN201010500528.7A 2010-09-29 2010-09-29 一种微波辐射制备(Y,Gd)2O3:Eu发光材料的方法 Expired - Fee Related CN101984015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010500528.7A CN101984015B (zh) 2010-09-29 2010-09-29 一种微波辐射制备(Y,Gd)2O3:Eu发光材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010500528.7A CN101984015B (zh) 2010-09-29 2010-09-29 一种微波辐射制备(Y,Gd)2O3:Eu发光材料的方法

Publications (2)

Publication Number Publication Date
CN101984015A CN101984015A (zh) 2011-03-09
CN101984015B true CN101984015B (zh) 2013-07-17

Family

ID=43641184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010500528.7A Expired - Fee Related CN101984015B (zh) 2010-09-29 2010-09-29 一种微波辐射制备(Y,Gd)2O3:Eu发光材料的方法

Country Status (1)

Country Link
CN (1) CN101984015B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635005A (zh) * 2016-06-13 2017-05-10 郑甘裕 一种铕掺杂氧化钆发光材料、制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803973A (zh) * 2006-01-20 2006-07-19 哈尔滨工业大学 一种稀土红色纳米荧光粉的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1230490C (zh) * 2003-09-05 2005-12-07 中国科学院上海硅酸盐研究所 稀土氧化物基纳米发光粉体的制备方法
CN1240809C (zh) * 2004-04-19 2006-02-08 北京工业大学 纳米钒酸钇铕荧光粉的制备方法
KR101458026B1 (ko) * 2007-11-29 2014-11-06 삼성디스플레이 주식회사 희토류 나노형광체 및 그 제조 방법
KR20100058299A (ko) * 2008-11-24 2010-06-03 삼성에스디아이 주식회사 옥사이드계 나노 형광체 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803973A (zh) * 2006-01-20 2006-07-19 哈尔滨工业大学 一种稀土红色纳米荧光粉的制备方法

Also Published As

Publication number Publication date
CN101984015A (zh) 2011-03-09

Similar Documents

Publication Publication Date Title
Som et al. Synthesis of strong red emitting Y 2 O 3: Eu 3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd–Ofelt analysis
US9242224B2 (en) Method for the production of multiphase composite materials using microwave plasma process
CA2942322C (en) Method for the production of multiphase composite materials using microwave plasma process
Quan et al. Synthesis and characterization of spherical ZrO2: Eu3+ phosphors by spray pyrolysis process
Boyer et al. Structural and optical characterizations of YAG: Eu3+ elaborated by the sol–gel process
Aytimur et al. Magnesia stabilized zirconia doped with boron, ceria and gadolinia
Wang et al. Multiple irradiation triggered the formation of luminescent LaVO4: Ln 3+ nanorods and in cellulose gels
Elsagh et al. Characterization of SrAl 2 O 4: Eu 2+, Dy 3+ phosphor nano-powders produced by microwave synthesis route
Tan et al. Preparation, characterization and luminescent properties of spherical CaTiO3: Pr3+ phosphors by spray pyrolysis
Paulraj et al. Photoluminescence efficiencies of nanocrystalline versus bulk Y2O3: Eu phosphor—revisited
Li et al. Hydrothermal synthesis of SrMoO 4: Eu 3+, Sm 3+ phosphors and their enhanced luminescent properties through energy transfer
Zalga et al. On the sol–gel preparation of different tungstates and molybdates
Cheng et al. Sol-gel synthesis and photoluminescence characterization of La 2 Ti 2 O 7: Eu 3+ nanocrystals
Lian et al. Synthesis and optical properties of (Gd1− x, Eux) 2O2SO4 nano-phosphors by a novel co-precipitation method
Yan et al. Preparation of YAG: Ce3+ phosphor by sol-gel low temperature combustion method and its luminescent properties
Wang et al. Photoluminescence of (La, Eu) 2 O 2 SO 4 red-emitting phosphors derived from layered hydroxide
CN101984015B (zh) 一种微波辐射制备(Y,Gd)2O3:Eu发光材料的方法
Wu et al. Photoluminescence intensity of YxGd1− xVO4: Eu3+ dependence on hydrothermal synthesis time and variable ratio of Y/Gd
Zhai et al. Hydrothermal synthesis, characterization and luminescence properties of orange–red-emitting phosphors SnO 2: Eu
CN100497518C (zh) 铝酸盐发光材料制备方法
Jiu et al. Preparation and luminescent properties of hollow Y2O3: Tb3+ microspheres
Wu et al. Influence of praseodymium doping concentration on the structural and optical properties of strontium molybdate crystals
Yang et al. Synthesis and luminescence properties of a novel Eu3+-doped γ-LiAlO2 phosphor
Min et al. Preparation and upconversion luminescence of YAG (Y3Al5O12): Yb3+, Ho3+ nanocrystals
Lee et al. Thermal-shock-assisted solid-state process for the production of BaMgAl10O17: Eu phosphor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130717

Termination date: 20200929

CF01 Termination of patent right due to non-payment of annual fee