CN101977934B - 用于靶向k63连接的多聚遍在蛋白的方法和组合物 - Google Patents

用于靶向k63连接的多聚遍在蛋白的方法和组合物 Download PDF

Info

Publication number
CN101977934B
CN101977934B CN200980109579.2A CN200980109579A CN101977934B CN 101977934 B CN101977934 B CN 101977934B CN 200980109579 A CN200980109579 A CN 200980109579A CN 101977934 B CN101977934 B CN 101977934B
Authority
CN
China
Prior art keywords
antibody
antigen
ubiquitin
poly
binding fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980109579.2A
Other languages
English (en)
Other versions
CN101977934A (zh
Inventor
罗伯特·F·凯莉
玛丽萨·L·玛特苏莫托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of CN101977934A publication Critical patent/CN101977934A/zh
Application granted granted Critical
Publication of CN101977934B publication Critical patent/CN101977934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2440/00Post-translational modifications [PTMs] in chemical analysis of biological material
    • G01N2440/36Post-translational modifications [PTMs] in chemical analysis of biological material addition of addition of other proteins or peptides, e.g. SUMOylation, ubiquitination

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Neurology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Neurosurgery (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Pain & Pain Management (AREA)

Abstract

本发明提供抗K63连接的多聚遍在蛋白单克隆抗体,及使用该抗体的方法。

Description

用于靶向K63连接的多聚遍在蛋白的方法和组合物
发明领域
本发明涉及抗多聚遍在蛋白(polyubiquitin)抗体领域,更具体的说就是不特异性结合单遍在蛋白(monoubiquitin)的及能区分具有不同异肽键(isopeptide linkage)的多聚遍在蛋白的抗多聚遍在蛋白抗体。
发明背景
遍在蛋白(ubiquitin)是一种在诸多细胞途径中具有重要调节作用的小蛋白质。这些作用中最为人所共知的是遍在蛋白在蛋白降解中的作用,在此遍在蛋白与靶蛋白共价连接,使得靶蛋白为26S蛋白酶体识别并受之破坏(参见Wilkinson,Semin.Cell Devel.Biol.11(3):141-148(2000))。不同信号传导途径的蛋白激酶调节也与遍在蛋白化作用有关(参见Sun和Chen,Curr.Opin.CellBiol.16:119-126(2004))。例如,经IκB激酶的IκB磷酸化作用使IκB的遍在蛋白化作用得以可能,并随后通过26S蛋白酶体而降解;由于IκB是NFκB的抑制剂,因此IκB的降解激活了NFκB(Ghosh和Karin,Cell 109(Suppl.):S81-S96(2002);Palombella等,Cell 78:773-785(1994))。遍在蛋白化作用还介导DNA修复(参见Sun和Chen,Curr.Opin.Cell Biol.16:119-126(2004))。在DNA损伤后,增殖细胞核抗原的(PCNA)单遍在蛋白化作用激活了不论任何DNA损伤都能合成DNA的耐损伤聚合酶(Stelter和Ulrich,Nature 425:188-191(2003)。其它其中已知涉及遍在蛋白化作用的生理过程包括细胞***、细胞生长、细胞运动和细胞凋亡/细胞死亡(Johnson,Nat.Cell Biol.4:E295-E298(2002);Pickart,Mol.Cell.8:499-504(2001))。
遍在蛋白(一种76个氨基酸的蛋白)与靶蛋白的共价连接是一种三步酶促过程(Pickart,Annu.Rev.Biochem.70:503-533(2001))。首先,在ATP-依赖性反应中遍在蛋白激活酶E1形成遍在蛋白-E1硫酯。在第二步中,遍在蛋白由遍在蛋白-E1硫酯转移至遍在蛋白蛋白偶联酶(E2)家族的的成员。在第三步中,在遍在蛋白蛋白连接酶(E3)的帮助下,在遍在蛋白羧基末端和靶蛋白上赖氨酸残基的ε-氨基之间形成异肽键。称为去遍在蛋白酶的酶类从靶蛋白上将遍在蛋白部分除去(Guterman和Glickman,Curr.Prot.Pep.Sci.5:201-210(2004))。遍在蛋白的突出作用在于作为重要的调节分子,人基因组含有许多涉及遍在蛋白化作用或去遍在蛋白化作用的不同蛋白:迄今为止已鉴定了至少40种不同的E2、500种不同的E3和80种不同的去遍在蛋白酶(Wong等,Drug.Discov.Today 8:746-754(2003))。
遍在蛋白含有7个赖氨酸残基(Lys6、Lys11、Lys27、Lys33、Lys29、Lys48和Lys63),因此遍在蛋白自身可作为靶蛋白用于遍在蛋白化作用(Peng等,Nat.Biotechnol.21:921-926(2003);Pickart和Fushman,Curr.Opin.Chem.Biol.8:610-616(2004))。遍在蛋白蛋白的遍在蛋白化作用后所产生的分子称为多聚遍在蛋白分子,并可包含两个或更多个遍在蛋白部分。理论上,遍在蛋白的遍在蛋白化作用可在7个赖氨酸残基中任何一个上发生(Peng等,Nat.Biotechnol.21:921-926(2003)),以致存在具有异肽键合至遍在蛋白内不同赖氨酸残基的不同种类的多聚遍在蛋白。有可能具有多于两个遍在蛋白部分的单个多聚遍在蛋白分子可具有多于一种的赖氨酸键。已有研究表明E2酶影响一个遍在蛋白分子与另一个遍在蛋白分子之间所形成的赖氨酸键的类型(Tenno等,Genes to Cells 9:865-875(2004);Deng等(2000);Hofmann和Pickart(2001))。多聚遍在蛋白和遍在蛋白都能作为游离分子以及与靶蛋白共价连接的形式存在。
像遍在蛋白一样,已在许多细胞过程中发现涉及多聚遍在蛋白,这些过程包括细胞内运输、细胞内吞作用、基因表达/沉默、蛋白水解、激酶激活作用、翻译和DNA修复(Hoege等,Nature 419:135-141(2002);Spence等,Mol.Cell.Biol.15:1265-1273(1995);Hofmann和Pickart,Cell 96:645-653(1999)。然而,在相同途径中与单遍在蛋白和单遍在蛋白化作用相比,多聚遍在蛋白和多聚遍在蛋白化作用可具有显著不同的生理学作用。例如,当在DNA损伤后PCNA的单遍在蛋白化作用导致易错DNA聚合酶激活时,在与单遍在蛋白化作用相同残基处的PCNA的多聚遍在蛋白化作用则被观察到能导致易错DNA修复的激活(Stelter和Ulrich,Nature 425:188-191(2003);Hoege等,Nature 419:135-141(2002);Spence等,Mol.Cell.Biol.15:1265-1273(1995);以及Hofmann和Pickart,Cell 96:645-653(1999))。
甚至连具有不同赖氨酸键的多聚遍在蛋白都显示具有不同的生理学作用。得到最多研究的两种多聚遍在蛋白是Lys48连接的和Lys63连接的多聚遍在蛋白,对这两种多聚遍在蛋白的结构研究提出不同赖氨酸连接的多聚遍在蛋白可采用明显不同的构象,由此容许与所选择的结合伴侣具有不同的相互作用(Tenno等,Genes to Cells 9:865-875(2004))。虽然通过Lys48连接的多聚遍在蛋白的共价修饰通常标志着靶蛋白能蛋白水解降解,但是存在着一些证据证明Lys48连接的多聚遍在蛋白还可通过非蛋白水解方式调节某些蛋白(Chau等,Science 243:1576-1583(1989);Finley等,Mol.Cell.Biol.14:5501-5509(1994);Flick等,Nat.Cell.Biol.6:634-641(2004))。与此相反,Lys63连接的多聚遍在蛋白已与多种非蛋白水解的细胞内途径相关,包括DNA修复(表达K63R-遍在蛋白的酵母细胞是DNA修复缺陷型的)、激酶激活作用、细胞内运输和翻译(Pickart和Fushman,Curr.Opin.Chem.Biol.8:610-616(2004);Hicke和Dunn,Annu Rev.Cell Dev.Biol.19:141-172(2003);Spece等,Mol.Cell Biol.15:1265-1273(1995);Ulrich,Eukaryot.Cell 1:1-10(2002);Spence等,Cell102:67-76(2000);Seibenhener等,Mol.Cell.Biol.24(18):8055-8068(2004))。在一个特定的例子中,以不依赖于蛋白酶体的方式通过parkin,synphilin-1为K63连接的多聚遍在蛋白所正常地遍在蛋白化,但synphilin-1亦可为K48连接的多聚遍在蛋白的遍在蛋白化作用所靶向破坏(Lim等,J.Neurosci.25(8):2002-9(2005))。一项对患有帕金森氏病的受试者的分析显示synphilin-1的K63-多聚遍在蛋白化作用可能涉及与疾病相关的Lewy包涵小体(Lewy body inclusion)的形成(Lim等,J.Neurosci.25(8):2002-9(2005))。
其它的赖氨酸连接的多聚遍在蛋白还未得到详尽、广泛的研究,原因在于它们之间难以区分。迄今为止,研究依赖于表达其中一个或多个赖氨酸已除去的经过诱变的遍在蛋白的细胞、酶促合成的具有特定键合的多聚遍在蛋白或用于区分一种类型和另一种类型的多聚遍在蛋白的诸如质谱法的技术。对于分析特定赖氨酸连接的多聚遍在蛋白的正常生理学行为来说,上述那些方法中任何一种都不适合或麻烦重重。虽然存在与单遍在蛋白相比特异于多聚遍在蛋白的抗体(Fujimoro等,FEBS Lett.349:173-180(1994)),但至今为止仍然没有能区分具有不同赖氨酸键的多聚遍在蛋白的抗体。
并不令人吃惊的是,由于已知它们在诸多细胞过程中的重要作用,因此遍在蛋白和多聚遍在蛋白还与许多疾病有关(参见Argiles,Ubiquitin andDisease,R.G.Landes(1998))。在肌肉萎缩中观察到遍在蛋白失调(Mitch和Goldberg,New Engl.J.Med.335:1897-905(1996);Bodine等,Science 294:1704-1708(2001))。已将一些遗传性疾病与异常的遍在蛋白活性相关联,包括囊性纤维化(Ward等,Cell 83:121-127(1995))、Angelman’s综合征(Kishino等,Nature Genet.15:70-73(1997))和利德尔综合征(Staub等,EMBO J 16:6325-6336(1997))。在免疫和炎症应答中遍在蛋白还起作用;例如,已发现细胞外遍在蛋白作为一种细胞因子抑制了TNFα对外周血单核细胞中内毒素的应答,并调节内毒素低反应性(Majetschak等,Blood 101:1882-1890(2003);Ciechanover,EMBO J 17:7151-7160(1998))。同样地,已发现在人血清中具有遍在蛋白和多聚遍在蛋白,在具有寄生虫病和变应性疾病的患者血清中观察到这两种分子具有较高的水平(Takada等,Clinical Chem.43:1188-1195(1997))。
一些遍在蛋白介导的途径的失调还涉及癌症(Spataro等,Br.J.Cancer77:448-55(1998);Beckmann等,Hum.Mutat.25:507-12(2005))。例如,异二聚遍在蛋白连接酶BRCA1-BARD1中的突变就与乳腺癌相关(Hashizume等,J.Biol.Chem.276:14537-40(2001)),破坏Myc要被遍在蛋白途径所降解的能力的突变激活了c-Myc的致癌潜力(Salghetti等,EMBO J.18:717-726(1999)),并且转化的v-Jun无法被遍在蛋白化并降解为其非致癌的相关物c-Jun,由此导致不受控制的生长(Ciechanover,EMBO J.17:7151-7160(1998);Trier等,Cell 78:787-798(1994))。
在上下文的神经***疾病中已详尽地研究了遍在蛋白和多聚遍在蛋白(Chung等,TINS 24(11Suppl.)S7-S14(2001))。积聚在亨廷顿病、脊髓小脑性共济失调、朊病毒脑病、皮克病、Lewy小体病、帕金森氏病和阿尔茨海默氏病中的包涵物、小体以及神经原纤维缠结对单遍在蛋白和/或多聚遍在蛋白是免疫染色阳性(Alves-Rodrigues等,Trends Neurosci.21:516-520(1998);Cammarata等,Neurosci Lett.156:96-98(1993);Kalchman等,J.Biol.Chem.271:19385-94(1996);Holmberg等,Human Mol.Genet.7:913-918(1998);Yedidia等,EMBO J.20:5383-91(2001);Mori等,Science 235:1641-44(1987);Leigh等,Acta Neuropathol.(Berl.)79:61-72(1989);和Kuzuhara等,Acta Neuropathologica 75:345-353(1988))。虽然已将一些类型的帕金森氏病与遍在蛋白羧基末端水解酶L1(UCH-L1)基因、去遍在蛋白酶中的突变相关联(Leroy等,Nature 395:451-452(1998)),但是其它类型的帕金森氏病却与Parkin(一种已知与遍在蛋白偶联酶UbcH7相互作用并遍在蛋白化synphilin-1的E2-依赖性遍在蛋白蛋白连接酶)中失活突变相关联(Shimura等,NatureGenet.25:302-305(2000),Zhang等,Proc.Natl.Acad.Sci.97:13354-13359(2000);Lim等,J.Neurosci.25(8):2002-9(2005))。这两种类型的突变都导致异常的蛋白水解加工和不适当的蛋白积聚(参见McNaught等,Nature Rev.Neurosci.2:589-594(2001))。还已发现UCH-L1突变与亨廷顿病是孤立的(Naze等,Neurosci.Lett.328:1:1-4(2002))。已鉴定了阿尔茨海默氏病人脑中的遍在蛋白突变体,其非常有效地掺入多聚遍在蛋白链中,但一旦形成就很难被去遍在蛋白化,潜在地导致正常细胞蛋白水解加工***的突出抑制(Lam等,Proc.Natl.Acad.Sci.97:9902-9906(2000))。
显然不但拥有能区分具有不同赖氨酸键的多聚遍在蛋白的组合物和方法,而且拥有能有效地靶向并调节遍在蛋白和多聚遍在蛋白介导的途径的组合物和方法应当是有益的。在此提供的本发明涉及上述组合物和方法。
所有在此引用的包括专利申请和出版物在内的参考文献以其全文并入作为参考。
发明概述
本发明提供能够结合多聚遍在蛋白和/或调节与多聚遍在蛋白有关的生物学活性的新抗体。
在一个实施方案中,本发明提供一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或其抗原结合片段,其中该抗体不特异性结合K48连接的多聚遍在蛋白或单遍在蛋白。一方面,本发明提供一种分离的抗体或抗原结合片段,其包含至少一个选自SEQ ID NO:59-110和112任一之HVR-H2和SEQID NO:7-58和111任一之HVR-L2的高变(HVR)序列。
在另一个实施方案中,本发明提供一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或抗原结合片段,其中该抗体或抗原结合片段不特异性结合K48连接的多聚遍在蛋白或单遍在蛋白,其中该抗体或抗原结合片段包含至少一个HVR-H2序列,其中HVR-H2包含氨基酸序列a b c d e f g h i j k l m no p(SEQ ID NO:221),且其中氨基酸a选自氨基酸酪氨酸、天冬氨酸和色氨酸;氨基酸b是异亮氨酸;氨基酸c选自氨基酸丝氨酸、苏氨酸、丙氨酸、苯丙氨酸、酪氨酸、和缬氨酸;氨基酸d是脯氨酸;氨基酸e是酪氨酸;氨基酸f选自氨基酸酪氨酸、苯丙氨酸、亮氨酸、和组氨酸;氨基酸g是甘氨酸;氨基酸h选自氨基酸丝氨酸、甘氨酸、丙氨酸、苯丙氨酸、和色氨酸;氨基酸I是苏氨酸;氨基酸j是丝氨酸;氨基酸k是酪氨酸;氨基酸l是丙氨酸;氨基酸m是天冬氨酸;氨基酸n是丝氨酸;氨基酸o是缬氨酸;而氨基酸p是赖氨酸。
在另一个实施方案中,本发明提供一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或抗原结合片段,其中该抗体不特异性结合K48连接的多聚遍在蛋白或单遍在蛋白,且其中该抗体或抗原结合片段包含至少一个选自SEQ ID NO:59-110和112之HVR-H2序列的HVR-H2序列。一方面,该抗体或抗原结合片段包含至少一个选自SEQ ID NO:60、63、和66之HVR-H2序列的HVR-H2序列。
在另一个实施方案中,本发明提供一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或抗原结合片段,其中该抗体或抗原结合片段不特异性结合K48连接的多聚遍在蛋白或单遍在蛋白,且其中该抗体或抗原结合片段包含至少一个HVR-L2序列,其中HVR-L2包含氨基酸序列q r s t u v w x(SEQID NO:222),其中氨基酸q选自氨基酸酪氨酸和苯丙氨酸;氨基酸r选自氨基酸丙氨酸和丝氨酸;氨基酸s是丙氨酸;氨基酸t选自氨基酸丝氨酸、精氨酸、缬氨酸、苏氨酸、丙氨酸、天冬酰胺、和亮氨酸;氨基酸u是丝氨酸;氨基酸v是亮氨酸;氨基酸w是酪氨酸;而氨基酸x是丝氨酸。
在另一个实施方案中,本发明提供一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或抗原结合片段,其中该抗体或抗原结合片段不特异性结合K48连接的多聚遍在蛋白或单遍在蛋白,且其中该抗体或抗原结合片段包含至少一个选自SEQ ID NO:7-58和111之HVR-L2序列的HVR-L2序列。一方面,该抗体或抗原结合片段包含至少一个选自SEQ ID NO:8、11、和14之HVR-L2序列的HVR-L2序列。
在另一个实施方案中,本发明提供一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或抗原结合片段,其中该抗体或抗原结合片段不特异性结合K48连接的多聚遍在蛋白或单遍在蛋白,其中该抗体或抗原结合片段包含至少一个选自HVR-H2和HVR-L2的序列,其中HVR-H2包含氨基酸序列a b cd e fg h i j k l m n o p(SEQ ID NO:221),其中氨基酸a选自氨基酸酪氨酸、天冬氨酸和色氨酸;氨基酸b是异亮氨酸;氨基酸c选自氨基酸丝氨酸、苏氨酸、丙氨酸、苯丙氨酸、酪氨酸、和缬氨酸;氨基酸d是脯氨酸;氨基酸e是酪氨酸;氨基酸f选自氨基酸酪氨酸、苯丙氨酸、亮氨酸、和组氨酸;氨基酸g是甘氨酸;氨基酸h选自氨基酸丝氨酸、甘氨酸、丙氨酸、苯丙氨酸、和色氨酸;氨基酸I是苏氨酸;氨基酸j是丝氨酸;氨基酸k是酪氨酸;氨基酸l是丙氨酸;氨基酸m是天冬氨酸;氨基酸n是丝氨酸;氨基酸o是缬氨酸;而氨基酸p是赖氨酸;且其中HVR-L2包含氨基酸序列q r s t u v w x(SEQ ID NO:222),其中氨基酸q选自氨基酸酪氨酸和苯丙氨酸;氨基酸r选自氨基酸丙氨酸和丝氨酸;氨基酸s是丙氨酸;氨基酸t选自氨基酸丝氨酸、精氨酸、缬氨酸、苏氨酸、丙氨酸、天冬酰胺、和亮氨酸;氨基酸u是丝氨酸;氨基酸v是亮氨酸;氨基酸w是酪氨酸;而氨基酸x是丝氨酸。
在另一个实施方案中,本发明提供一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或抗原结合片段,其中该抗体或抗原结合片段不特异性结合K48连接的多聚遍在蛋白或单遍在蛋白,其中该抗体或抗原结合片段包含至少一个HVR-H2序列和至少一个HVR-L2序列,其中HVR-H2包含氨基酸序列a b c d e f g h i j k l m n o p(SEQ ID NO:221),其中氨基酸a选自氨基酸酪氨酸、天冬氨酸和色氨酸;氨基酸b是异亮氨酸;氨基酸c选自氨基酸丝氨酸、苏氨酸、丙氨酸、苯丙氨酸、酪氨酸、和缬氨酸;氨基酸d是脯氨酸;氨基酸e是酪氨酸;氨基酸f选自氨基酸酪氨酸、苯丙氨酸、亮氨酸、和组氨酸;氨基酸g是甘氨酸;氨基酸h选自氨基酸丝氨酸、甘氨酸、丙氨酸、苯丙氨酸、和色氨酸;氨基酸I是苏氨酸;氨基酸j是丝氨酸;氨基酸k是酪氨酸;氨基酸l是丙氨酸;氨基酸m是天冬氨酸;氨基酸n是丝氨酸;氨基酸o是缬氨酸;而氨基酸p是赖氨酸;且其中HVR-L2包含氨基酸序列q r s t u v w x(SEQ ID NO:222),其中氨基酸q选自氨基酸酪氨酸和苯丙氨酸;氨基酸r选自氨基酸丙氨酸和丝氨酸;氨基酸s是丙氨酸;氨基酸t选自氨基酸丝氨酸、精氨酸、缬氨酸、苏氨酸、丙氨酸、天冬酰胺、和亮氨酸;氨基酸u是丝氨酸;氨基酸v是亮氨酸;氨基酸w是酪氨酸;而氨基酸x是丝氨酸。
在另一个实施方案中,本发明提供一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或抗原结合片段,其中该抗体或抗原结合片段不特异性结合K48连接的多聚遍在蛋白或单遍在蛋白,其中该抗体或抗原结合片段包含至少一个选自SEQ ID NO:59-110和112之HVR-H2序列的HVR-H2序列和至少一个选自SEQ ID NO:7-58和111之HVR-L2序列的HVR-L2序列。
在另一个实施方案中,本发明提供一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或抗原结合片段,其中该抗体或抗原结合片段不特异性结合K48连接的多聚遍在蛋白或单遍在蛋白,其中该抗体或抗原结合片段包含至少一个选自SEQ ID NO:60、63、和66之HVR-H2序列的HVR-H2序列和至少一个选自SEQ ID NO:8、11、和14之HVR-L2序列的HVR-L2序列。
在另一个实施方案中,本发明提供一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或抗原结合片段,其中该抗体或抗原结合片段不特异性结合K48连接的多聚遍在蛋白或单遍在蛋白,其中该抗体或抗原结合片段包含选自表B中Apu3.A8-Apu3.H10任一所列HVR-H2和HVR-L2氨基酸序列的HVR氨基酸序列。一方面,该HVR氨基酸序列选自表B中Apu3.A8、Apu3.A12、和Apu3.B3任一所列HVR-H2和HVR-L2氨基酸序列。
一方面,任何上述抗体或抗原结合片段包含至少一个选自SEQ ID NO:5之HVR-H1序列、SEQ ID NO:6之HVR-H3序列、SEQ ID NO:3之HVR-L1序列和SEQ ID NO:4之HVR-L3序列的HVR序列。另一方面,任何上述抗体或抗原结合片段包含至少两个选自SEQ ID NO:5之HVR-H1序列、SEQ ID NO:6之HVR-H3序列、SEQ ID NO:3之HVR-L 1序列和SEQ ID NO:4之HVR-L3序列的HVR序列。另一方面,任何上述抗体或抗原结合片段包含至少三个选自SEQ ID NO:5之HVR-H1序列、SEQ ID NO:6之HVR-H3序列、SEQ ID NO:3之HVR-L1序列和SEQ ID NO:4之HVR-L3序列的HVR序列。另一方面,任何上述抗体或抗原结合片段包含SEQ ID NO:5之HVR-H1序列、SEQ ID NO:6之HVR-H3序列、SEQ ID NO:3之HVR-L1序列和SEQ ID NO:4之HVR-L3序列。
一方面,任何上述抗体或抗原结合片段具有相对于亲本Fab Apu2.16对K63连接的多聚遍在蛋白的亲和力有改善的对K63连接的多聚遍在蛋白的亲和力。另一方面,任何上述抗体或抗原结合片段具有小于或等于10nM的对K63连接的多聚遍在蛋白的Kd值。
在另一个实施方案中,本发明提供一种与任何上述抗体或抗原结合片段结合多聚遍在蛋白上相同抗原决定簇的分离的抗体或抗原结合片段,其中该抗体或抗原结合片段不特异性结合单遍在蛋白。在另一个实施方案中,本发明提供一种与任何上述抗体或抗原结合片段竞争对多聚遍在蛋白的结合的分离的抗体或抗原结合片段,其中该抗体或抗原结合片段不特异性结合单遍在蛋白。
在另一个实施方案中,本发明提供一种结合K63连接的多聚遍在蛋白中表位的分离的抗体或抗原结合片段。一方面,该表位包括K63连接的多聚遍在蛋白的第一遍在蛋白亚基和第二遍在蛋白亚基二者中的残基。另一方面,该表位包括至少一个选自Glu-18、Pro-19、Ser-20、Asp-21、Thr-55、Leu-56、Ser-57、Asp-58、Asn-60、Ile-61、和Gln-62的第一遍在蛋白亚基中的残基。另一方面,该表位包括至少一个选自Leu-8、Thr-9、Glu-34、Gly-35、Ile-36、Pro-37、Asp-39、Gln-40、Leu-71、Arg-72、Leu-73、Arg-74、和Gly-75的第二遍在蛋白亚基中的残基。另一方面,该表位包括至少一个选自Glu-18、Pro-19、Ser-20、Asp-21、Thr-55、Leu-56、Ser-57、Asp-58、Asn-60、Ile-61、和Gln-62的第一遍在蛋白亚基中的残基,和至少一个选自Leu-8、Thr-9、Glu-34、Gly-35、Ile-36、Pro-37、Asp-39、Gln-40、Leu-71、Arg-72、Leu-73、Arg-74、和Gly-75的第二遍在蛋白亚基中的残基。另一方面,HVRH3的N端部分接触来自供体遍在蛋白的C端残基和Q40。另一方面,HVRH3的远端部分接触K63-受体遍在蛋白的50s环。在另一个这样的方面,HVRH3的N端部分接触来自供体遍在蛋白的C端残基72-74和Q40,而HVRH3的残基R102和Y103接触K63-受体遍在蛋白的50s环。另一方面,供体遍在蛋白的C端残基接触抗体或抗原结合片段。在另一个这样的方面,接触所涉及的供体遍在蛋白残基是L73和R74。
在另一个实施方案中,本发明提供一种分离的抗体或抗原结合片段,其包含其轻链与K63-受体遍在蛋白表面之间改善的静电相容性。一方面,该抗体或抗原结合片段包含HVRL2第52位Arg。另一方面,该抗体或抗原结合片段包含轻链框架区第66位Arg。另一方面,该抗体或抗原结合片段包含HVRL2第52位Arg和轻链框架区第66位Arg。
在另一个实施方案中,任何上述抗体或抗原结合片段特异性结合K63连接的多聚遍在蛋白化的蛋白质。一方面,该抗体或抗原结合片段抑制K63连接的多聚遍在蛋白化的蛋白质降解。另一方面,该抗体或抗原结合片段调控至少一种由多聚遍在蛋白介导的信号传导途径。另一方面,该抗体或抗原结合片段抑制至少一种由多聚遍在蛋白介导的信号传导途径。另一方面,该抗体或抗原结合片段刺激至少一种由多聚遍在蛋白介导的信号传导途径。
在另一个实施方案中,本发明提供一种编码任何上述抗体或抗原结合片段的核酸分子。在另一个实施方案中,本发明提供一种包含此类核酸分子的载体。在另一个实施方案中,本发明提供一种包含此类载体的宿主细胞。在另一个实施方案中,本发明提供一种能够生成任何上述抗体或抗原结合片段的细胞系。在另一个实施方案中,本发明提供一种生成任何上述抗体或抗原结合片段的方法,包括在该抗体或抗原结合片段生成的条件下培养包含编码该抗体或抗原结合片段的核酸分子的宿主细胞。
在另一个实施方案中,本发明提供一种包含有效量的任何上述抗体或抗原结合片段和药学可接受载体的组合物。一方面,该组合物包含两种或更多种上述抗体或抗原结合片段。
在另一个实施方案中,本发明提供一种鉴定样品中K63连接的多聚遍在蛋白或K63连接的多聚遍在蛋白化的蛋白质的存在的方法,包括使该样品与至少一种上述抗体或抗原结合片段接触。
在另一个实施方案中,本发明提供一种用于治疗患者中与多聚遍在蛋白失调有关的疾病或状况的方法,包括对该患者施用有效量的至少一种上述抗体或抗原结合片段。一方面,该患者是哺乳动物患者。另一方面,该患者是人。另一方面,该疾病选自癌症(cancer)、肌肉病症(muscular disorder)、遍在蛋白途径相关遗传病症(ubiquitin-pathway-related genetic disorder)、免疫/炎性病症(immune/inflammatory disorder)、和神经学病症(neurological disorder)。另一方面,该疾病选自癌瘤(carcinoma)、淋巴瘤(lymphoma)、母细胞瘤(blastoma)、肉瘤(sarcoma)、白血病(leukemia)、肌营养不良(musculardystrophy)、多发性硬化(multiple sclerosis)、肌萎缩侧索硬化(amyotrophiclateral sclerosis)、囊性纤维化病(cystic fibrosis)、Angelman氏综合征(Angelman’s syndrome)、利德尔综合征(Liddle syndrome)、阿尔茨海默氏病(Alzheimer’s disease)、帕金森氏病(Parkinson’s disease)、皮克氏病(Pick’sdisease)、和佩吉特氏病(Paget’s disease)。
在另一个实施方案中,本发明提供依照测定怀疑含有K63连接的多聚遍在蛋白或K63连接的多聚遍在蛋白化的蛋白质的样品中K63连接的多聚遍在蛋白或K63连接的多聚遍在蛋白化的蛋白质的存在的方法,包括将该样品暴露于至少一种上述抗体或抗原结合片段并测定该至少一种抗体或抗原结合片段对该样品中K63连接的多聚遍在蛋白或K63连接的多聚遍在蛋白化的蛋白质的结合。
在另一个实施方案中,本发明提供一种将样品中的K63连接的多聚遍在蛋白化的蛋白质与非K63连接的多聚遍在蛋白化的蛋白质分开的方法,包括使该样品与至少一种上述抗体或抗原结合片段接触。
在另一个实施方案中,本发明提供一种测定细胞中K63连接的多聚遍在蛋白的功能和/或活性的方法,包括使该细胞与至少一种上述抗体或抗原结合片段接触并评估所述接触步骤对该细胞的影响。在另一个实施方案中,本发明提供一种测定样品中K63连接的多聚遍在蛋白的功能和/或活性的方法,包括使该样品与至少一种上述抗体或抗原结合片段接触并评估所述接触步骤对该样品的影响。
本发明的抗体可以是任何数目的形式。例如,本发明的抗体可以是嵌合抗体、人源化抗体或人抗体。在一个实施方案中,本发明的抗体不是人抗体,例如它不是在xenomouse(例如WO96/33735中所记载的)中生成的抗体。本发明的抗体可以是全长抗体或其片段(例如包含抗原结合构件的片段)。
在另一个实施方案中,本发明提供任何上述抗体的抗原结合片段。
附图简述
图1显示遍在蛋白的一级结构和某些多聚遍在蛋白异肽键的示意图。图1A显示人遍在蛋白的氨基酸序列(SEQ ID NO:223),其中赖氨酸残基以粗体、带下划线的中文标示。图1B显示在第一遍在蛋白分子的赖氨酸-48或赖氨酸-63与第二遍在蛋白分子的C端甘氨酸残基之间形成的键的示意图。
图2A-E描绘实施例4中讨论的有关分子的晶体结构。图2A描绘K63连接的双遍在蛋白(图的上部)与Apu2.16Fab片段(图的下部,其中轻链在左、重链在右)之间的复合物,并且显示重链CDR3(“H3”)接触异肽键任一侧两条遍在蛋白链。距双遍在蛋白4.2内的H3侧链和距H34.2内的遍在蛋白侧链以棍显示。以粗体标示的残基是遍在蛋白残基,而以其它方式(非粗体)标示的残基是Fab残基。受体遍在蛋白中的K63以球体显示。图2B描绘K63连接的(上部)和K48连接的(下部)双遍在蛋白结构的比较。在这两种情况中,赖氨酸受体遍在蛋白在图的左边,而供体遍在蛋白在右边。与K63二聚体(其中链以更加延长的方式延伸)相比,K48连接的双遍在蛋白形成更加紧凑的形状,链垂直于遍在蛋白二聚体延伸。图2C是图2A中所示Apu2.16晶体结构叠加在Apu3.A8晶体结构上的叠印,显示了用于创建Apu3.A8的亲和力成熟过程期间在L2(S52R)和H3(S52T)中引入的两处变化的位置。图2D显示Apu2.16、Apu3.A8和一种人源化4D5变体(pdb 1FVE)的结构比较。Apu2.16和Apu3.A8的Fv区以管显示并叠加在人源化抗Her2抗体4D5变体的Fv区上。在顶视图中,标记了CDR区;在底视图中,Fv区旋转90度以显示N端。图2E描绘Apu3.A8(下部)和双遍在蛋白(上部)之间的电荷互补性。静电表面是用PyMol计算的。正电位的区域用阴影标示;负电位的区域用阴影标示并用虚线指示。
图3A-D描绘实施例1(E)中描述的Western印迹实验的结果。图3A显示亲本抗K63连接的多聚遍在蛋白Fab Apu2.16对固定化的K63连接的双遍在蛋白的结合及对固定化的K48连接的双遍在蛋白的结合的缺失。图3B显示抗K63连接的多聚遍在蛋白Fab Apu3.A8对固定化的K63连接的双遍在蛋白的结合及对固定化的K48连接的双遍在蛋白的结合的缺失。图3C显示抗K63连接的多聚遍在蛋白Fab Apu3.A12对固定化的K63连接的双遍在蛋白的结合及对固定化的K48连接的双遍在蛋白的结合的缺失。图3D显示抗K63连接的多聚遍在蛋白Fab Apu3.B3对固定化的K63连接的双遍在蛋白的结合及对固定化的K48连接的双遍在蛋白的结合的缺失。
图4描绘实施例2中描述的Western印迹实验的结果。该图显示亲本Apu2.16IgG对固定化的K63连接的双至七遍在蛋白或固定化的K48连接的双至七遍在蛋白的弱结合。该图还显示每种亲和力成熟的抗K63连接的多聚遍在蛋白抗体Apu3.A12、Apu3.B3、和Apu3.A8对固定化的K63连接的双至七遍在蛋白的结合及对固定化的K48连接的双至七遍在蛋白的结合的缺失。
图5描绘实施例2中描述的Western印迹实验的结果。该图显示在Western印迹形式中,虽然亲本抗K63连接的多聚遍在蛋白抗体Apu2.16不能够检测K63连接的遍在蛋白化的Traf6,但是亲和力成熟的抗体Apu3.A12、Apu3.B3、和Apu3.A8能够特异性检测K63连接的遍在蛋白化的Traf6。
图6A-B描绘Western印迹实验的结果,用于评估各种抗K63连接的多聚遍在蛋白抗体自细胞溶胞物免疫沉淀K63连接的Traf6的能力,如实施例2中所描述的。亲和力成熟的抗体Apu3.A8、Apu3.B3、和Apu3.A12比亲本抗体Apu2.16更好地能够免疫沉淀K63连接的多聚遍在蛋白化的Traf6。
图7A-K描绘验证性质谱术实验的结果,如实施例3中所描述的。图7A描绘质谱术实验的结果,用于验证由亲和力成熟的抗体Apu3.A8、Apu3.B3、和Apu3.A12免疫沉淀的蛋白质主要是K63连接的遍在蛋白化的,如实施例2中所描述的。图7B显示使用这种办法不富集K48连接,由此显示K63抗体对K63链连接的特异性。图7C-F显示自使用抗K48连接的多聚遍在蛋白抗体Apu2.07、抗K63连接的多聚遍在蛋白抗体Apu3.A8、或同种型对照抗体(抗Her2)的免疫沉淀实验,接着进行质谱术分析获得的数据的棒图,该质谱术分析用于确定免疫沉淀的遍在蛋白总量(图7C),以及溶胞物中存在的多聚遍在蛋白连接类型(图7D)和抗体特异性免疫沉淀物(图7E中的抗K48连接的多聚遍在蛋白;图7F中的抗K63连接的多聚遍在蛋白)。图7G示意性描绘在体外用WT、K48R或K63R遍在蛋白实施的MuRF1自我遍在蛋白化反应,接着用Apu2.07、Apu3.A8、或同种型匹配的对照抗体免疫沉淀。圆括号中的数字指示图7H-K中有关的道和柱。图7H显示Western印迹,包括图7G中示意性描绘的反应。该印迹是用泛遍在蛋白抗体探查的。水平的虚线指示切出来并提交质谱术分析的凝胶部分。图7I-K显示自实验获得的质谱术数据的棒图,该实验用于确定图7G示意性描绘的自我遍在蛋白化反应和免疫沉淀中的多聚遍在蛋白连接。
图8A示意性描绘在体内受结合至肿瘤坏死因子受体1(TNFR1)的肿瘤坏死因子α(TNFα)刺激的信号传导途径。图8B示意性描绘在体内受结合至IL-1R1的IL-1β刺激的信号传导途径。
图9A显示来自免疫沉淀实验的Western印迹,用于检测RIP的遍在蛋白化状态,如实施例3中所描述的。仅仅为了描述此图的目的,给各印迹指派1到7的连续数字,其中最上面的印迹指派数字1、最下面的印迹指派数字7。印迹6包括用抗K48连接的IgG(用于捕捉K48连接的多聚遍在蛋白化的蛋白质)免疫沉淀的样品。印迹7包括用Apu3.A8和Apu3.B3的1∶1混合物(用于捕捉K63连接的多聚遍在蛋白化的蛋白质)免疫沉淀的样品。两印迹都是用抗RIP抗体染色的。印迹1-3显示对照Western印迹,用于证明RIP和微管蛋白水平在TNFα处理期间保持相对恒定(印迹1和3),而IκBα水平在在TNFα处理后降低(印迹2)。印迹4和5显示对照Western印迹,用于证明RIP在针对TNFR1的免疫沉淀期间共沉淀(印迹4)及TNFR1水平在TNFα处理期间保持恒定(印迹5)。图9B示意性描绘K63连接的多聚遍在蛋白添加至RIP并被A20用K48连接的多聚遍在蛋白替换的细胞途径。
图10显示实施例3(B)中描述的实验结果,评估IL-1β刺激细胞后IRAK1的多聚遍在蛋白化状态。总IRAK1、IκBα和微管蛋白水平显示于图10A和10B。图10C显示Western印迹,评估被K48连接的多聚遍在蛋白(顶部小图)或K63连接的多聚遍在蛋白(下部小图)修饰的IRAK1。图10D显示Western印迹,指示蛋白酶抑制剂MG-132对多聚遍在蛋白化的IRAK1降解的影响。
图11描绘用单独的抗K48连接的多聚遍在蛋白抗体或抗K63连接的多聚遍在蛋白抗体(分别为图11A或图11D)染色或进一步包括识别20S蛋白酶体亚基的多克隆抗体(分别为图11B和11E)的HeLa细胞免疫荧光显微术图像,如实施例5中所描述的。箭指示中体(mid-body)染色。在合并的图像(图11C和11F)中,很亮的染色指示潜在的共定位,而不太亮的染色对应于DAPI标记的核。每幅图中的棒代表50μm。
图12A和12B和图13描绘供实施本发明中使用的例示性受体人共有框架序列,序列标识符如下:
可变重链(VH)共有框架(图12A和12B)
人VH亚组I共有框架减Kabat CDR(SEQ ID NO:113-116)
人VH亚组I共有框架减延长的高变区(SEQ ID NO:117-128)
人VH亚组II共有框架减Kabat CDR(SEQ ID NO:129-132)
人VH亚组II共有框架减延长的高变区(SEQ ID NO:133-144)
人VH亚组III共有框架减Kabat CDR(SEQ ID NO:145-148)
人VH亚组III共有框架减延长的高变区(SEQ ID NO:149-160)
人VH受体框架减Kabat CDR(SEQ ID NO:161-164)
人VH受体框架减延长的高变区(SEQ ID NO:165-172)
人VH受体2框架减KabatCDR(SEQ ID NO:173-176)
人VH受体2框架减延长的高变区(SEQ ID NO:177-188)
可变轻链(VL)共有框架(图13)
人VLκ亚组I共有框架(SEQ ID NO:189-192)
人VLκ亚组II共有框架(SEQ ID NO:193-196)
人VLκ亚组III共有框架(SEQ ID NO:197-200)
人VLκ亚组IV共有框架(SEQ ID NO:201-204)
图14描绘huMAb4D5-8轻链和重链的框架区序列。上标/粗体的数字指示依照Kabat的氨基酸位置。
图15描绘huMAb4D5-8轻链和重链的经修饰/变体框架区序列。上标/粗体的数字指示依照Kabat的氨基酸位置。
发明详述
一般技术
除非另有说明,本发明的实施将采用分子生物学(包括重组技术)、微生物学、细胞生物学、生物化学和免疫学的常规技术,这些都在本领域的技术范围内。文献中充分阐述了这些技术,诸如“Molecular Cloning:ALaboratory Manual”,第三版(Sambrook et a1.,2001);“OligonucleotideSynthesis”(M.J.Gait,ed.,1984);“Animal Cell Culture”(R.I.Freshney编,1987);“Methods in Enzymology”(Academic Press,Inc.);“Current Protocols inMolecular Biology”(F.M.Ausubel et al.编,1987,and periodic updates);“PCR:The Polymerase Chain Reaction”,(Mullis et al.编,1994);PCR 2:A PracticalApproach(M.J.MacPherson,B.D.Hames and G.R.Taylor编(1995));Harlowand Lane编(1988)Antibodies,A Laboratory Manual;“A Practical Guide toMolecular Cloning”(Perbal Bernard V.,1988);及“Phage Display:A LaboratoryManual”(Barbas et al.,2001)。
定义
在用于本文时,术语“遍在蛋白(ubiquitin)”(遍在蛋白)和“单遍在蛋白(monoubiquitin)”可互换使用,定义为所有种类的天然的人的和合成的遍在蛋白,基本上与在第6位、第11位、第27位、第29位、第33位、第48位、和/或第63位氨基酸处具有至少一个赖氨酸残基的76个氨基酸的蛋白质相似。
在用于本文时,术语“多聚遍在蛋白(polyubiquitin)”定义为所有种类的天然的人的和合成的遍在蛋白聚合链,其落入遍在蛋白不同聚合连接方式的人的和合成的类别,包括,但不限于,K6连接的多聚遍在蛋白、K11连接的多聚遍在蛋白、K27连接的多聚遍在蛋白、K29连接的多聚遍在蛋白、K33连接的多聚遍在蛋白、K48连接的多聚遍在蛋白和K63连接的多聚遍在蛋白。多聚遍在蛋白可以是任何长度的,包括至少两个遍在蛋白模块(moity)。多聚遍在蛋白有别于最初作为单一蛋白质表达的遍在蛋白串联重复体。
在用于本文时,术语“K*连接的多聚遍在蛋白”和“Lys*连接的多聚遍在蛋白”可互换使用,指在一个遍在蛋白模块的C-末端与另一个遍在蛋白模块中的第*位赖氨酸之间包含至少一个异肽键的多聚遍在蛋白分子。例如,“K63连接的多聚遍在蛋白”与“Lys63连接的多聚遍在蛋白”可互换使用,这两个术语都指在分子中一个遍在蛋白模块的C-末端与分子中另一个遍在蛋白模块的第63位赖氨酸之间包含异肽键的多聚遍在蛋白分子。
在用于本文时,表述第一赖氨酸连接“不同”于第二赖氨酸连接指一个遍在蛋白模块与另一个遍在蛋白模块之间的该第一赖氨酸连接所牵涉的赖氨酸残基(例如,K6、K11、K27、K29、K33、K48、和/或K63)不同于一个遍在蛋白模块与另一个遍在蛋白模块之间的该第二赖氨酸连接。
在用于本文时,术语“遍在蛋白途径”指细胞中的或在体外重建的、包括遍在蛋白和/或多聚遍在蛋白的生化途径。
“分离的”抗体指已经鉴定且自其天然环境的成分分开和/或回收的抗体。其天然环境的污染性成分指将会干扰该抗体的研究、诊断或治疗用途的物质,可包括酶、激素、和其它蛋白质性质或非蛋白质性质的溶质。在一个实施方案中,将抗体纯化至(1)根据例如Lowry法的测定,抗体重量超过95%,在有些实施方案中重量超过99%,(2)足以通过使用例如转杯式测序仪获得至少15个残基的N-末端或内部氨基酸序列的程度,或(3)根据还原性或非还原性条件下的SDS-PAGE及使用例如考马斯蓝或银染色,达到同质。既然抗体天然环境的至少一种成分不会存在,那么分离的抗体包括重组细胞内的原位抗体。然而,分离的抗体通常将通过至少一个纯化步骤来制备。
在用于本文时,术语“抗遍在蛋白抗体”和“抗单遍在蛋白抗体”可互换使用,指能够特异性结合遍在蛋白分子的抗体。
在用于本文时,术语“抗多聚遍在蛋白抗体”指能够特异性结合多聚遍在蛋白分子的抗体。
在用于本文时,术语“抗K48连接的多聚遍在蛋白抗体”指能够特异性结合K48连接的多聚遍在蛋白的抗体。
在用于本文时,术语“抗K63连接的多聚遍在蛋白抗体”指能够结合K63连接的多聚遍在蛋白的抗体。
短语“基本上相似”“基本上(实质上)相同”、“相当”或“基本上(实质上)相当”在用于本文时表示两个数值(例如,一个与某分子相关,另一个与参照/比较分子相关)之间足够高的相似程度,以致本领域技术人员会认为在用所述数值(如,Kd值、抗病毒效应、等)所测量的生物学特性背景内两个数值之间的差异具有很小的或没有生物学和/或统计学显著性。所述两个数值之间的差异为,例如,小于约50%、小于约40%、小于约30%、小于约20%、和/或小于约10%,作为参照/比较分子的数值的函数。
短语“实质性降低(substantially reduced)”或“实质性不同(substantiallydifferent)”在用于本文时表示两个数值(通常,一个与某分子相关,另一个与参照/比较分子相关)之间足够高的差异程度,以致本领域技术人员会认为在用所述数值(如,Kd值)所测量的生物学特性背景内两个数值之间的差异具有统计学显著性。所述两个数值之间的差异为,例如,大于约10%、大于约20%、大于约30%、大于约40%、大于约50%,作为参照/比较抗体该数值的函数。
“结合亲和力”通常指分子(例如抗体)的单一结合位点与其结合配偶体(例如抗原)之间全部非共价相互作用总和的强度。除非另有说明,在用于本文时,“结合亲和力”指反映结合对的成员(例如抗体与抗原)之间1∶1相互作用的内在结合亲和力。分子X对其配偶体Y的亲和力通常可用解离常数(Kd)来表述。亲和力可通过本领域知道的常用方法来测量,包括本文中所描述的。低亲和力抗体通常缓慢地结合抗原且趋于容易解离,而高亲和力抗体通常更快速地结合抗原且趋于保持更长时间的结合。本领域知道测量结合亲和力的多种方法,其中任一种都可用于本发明的目的。下文描述了具体的示例性实施方案。
在一个实施方案中,依照本发明的“Kd”或“Kd值”是通过如下测定法所述使用Fab型式的目的抗体及其抗原进行的放射性标记抗原结合测定法(RIA)来测量的:通过在存在未标记抗原的滴定系列的条件下,用最小浓度的125I标记抗原平衡,然后用抗Fab抗体包被的平板捕捉结合的抗原来测量Fab对抗原的溶液结合亲和力(Chen,et al.,J Mol Biol 293:865-881(1999))。为了确定测定条件,用50mM碳酸钠(pH 9.6)中的5μg/ml捕捉用抗Fab抗体(Cappel Labs)包被微量滴定板(Dynex)过夜,随后用PBS中的2%(w/v)牛血清清蛋白在室温(约23℃)封闭2-5小时。在非吸附平板(Nunc#269620)中,将100pM或26pM[125I]-抗原与连续稀释的目的Fab混合(例如与Presta et al.,Cancer Res.57:4593-4599(1997)中抗VEGF抗体,Fab-12的评估一致)。然后将目的Fab保温过夜;不过,保温可持续更长时间(例如65个小时)以保证达到平衡。此后,将混合物转移至捕捉板以进行室温保温(例如1小时)。然后除去溶液,并用含0.1%Tween-20的PBS洗板8次。平板干燥后,加入150μl/孔闪烁液(MicroScint-20;Packard),然后在Topcount伽马计数器(Packard)上对平板计数10分钟。选择各Fab给出小于或等于最大结合之20%的浓度用于竞争性结合测定法。依照另一实施方案,Kd或Kd值是通过表面等离振子共振测定法使用BIAcoreTM-2000或BIAcoreTM-3000(BIAcore,Inc.,Piscataway,NJ)在25℃使用固定化抗原CM5芯片在约10个响应单位(RU)测量的。简而言之,依照供应商的说明书用盐酸N-乙基-N’-(3-二甲基氨基丙基)-碳化二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)活化羧甲基化右旋糖苷生物传感器芯片(CM5,BIAcoreInc.)。用10mM乙酸钠pH 4.8将抗原稀释至5μg/ml(约0.2μM),然后以5μl/分钟的流速注入至获得约10个响应单位(RU)的偶联蛋白质。注入抗原后,注入1M乙醇胺以封闭未反应基团。在每项实验中,在不固定化蛋白质的情况中活化并乙醇胺封闭一个斑点,以用于参照扣除。为了进行动力学测量,在25℃以约25μl/分钟的流速注入在含0.05%Tween-20的PBS(PBST)中两倍连续稀释的Fab(0.78nM至500nM)。使用简单一对一朗格缪尔(Langmuir)结合模型(BIAcore Evaluation Software version 3.2)通过同时拟合结合和解离传感图计算结合速率(kon)和解离速率(koff)。平衡解离常数(Kd)以比率koff/kon计算。参见例如Chen,Y.,et al.,J Mol Biol 293:865-881(1999)。如果根据上文表面等离振子共振测定法,结合速率超过106M-1S-1,那么结合速率可使用荧光淬灭技术来测定,即根据分光计诸如配备了断流装置的分光光度计(a stop-flowequipped spectrophometer)(Aviv Instruments)或8000系列SLM-Aminco分光光度计(ThermoSpectronic)中用搅拌比色杯的测量,在存在浓度渐增的抗原的条件下,测量PBS,pH 7.2中的20nM抗抗原抗体(Fab形式)在25℃的荧光发射强度(激发=295nm;发射=340nm,16nm带通)的升高或降低。
依照本发明的“结合速率”(on-rate,rate of association,association rate)或“kon”也可通过上文所述相同的表面等离振子共振技术使用BIAcoreTM-2000或BIAcoreTM-3000(BIAcore,Inc.,Piscataway,NJ)在25℃使用固定化抗原CM5芯片在约10个响应单位(RU)来测定。简而言之,依照供应商的说明书用盐酸N-乙基-N’-(3-二甲基氨基丙基)-碳化二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)活化羧甲基化右旋糖苷生物传感器芯片(CM5,BIAcore Inc.)。用10mM乙酸钠pH 4.8将抗原稀释至5μg/ml(约0.2μM),然后以5μl/分钟的流速注入至获得约10个响应单位(RU)的偶联蛋白质。注入抗原后,注入1M乙醇胺以封闭未反应基团。为了进行动力学测量,在25℃以约25μl/分钟的流速注入在含0.05%Tween-20的PBS(PBST)中两倍连续稀释的Fab(0.78nM至500nM)。使用简单一对一朗格缪尔(Langmuir)结合模型(BIAcore Evaluation Software version 3.2)通过同时拟合结合和解离传感图计算结合速率(kon)和解离速率(koff)。平衡解离常数(Kd)以比率koff/kon计算。参见例如Chen,Y.,et al.,J Mol Biol 293:865-881(1999)。然而,如果根据上文表面等离振子共振测定法,结合速率超过106M-1S-1,那么结合速率可以使用荧光淬灭技术来测定,即根据分光计诸如配备了断流装置的分光光度计(Aviv Instruments)或8000系列SLM-Aminco分光光度计(ThermoSpectronic)中用搅拌比色杯的测量,在存在浓度渐增的抗原的条件下,测量PBS,pH 7.2中的20nM抗抗原抗体(Fab形式)在25℃的荧光发射强度(激发=295nm;发射=340nm,16nm带通)的升高或降低。
术语“载体”在用于本文时意指能够运输与其连接的其它核酸的核酸分子。一类载体是“质粒”,指其中可连接另外的DNA区段的环状双链DNA环。另一类载体是噬菌体载体。另一类载体是病毒载体,其中可将另外的DNA区段连接到病毒基因组中。某些载体能够在其所导入的宿主细胞中自主复制(例如具有细菌复制起点的细菌载体和附加型哺乳动物载体)。其它载体(例如非附加型哺乳动物载体)可在导入宿主细胞后整合到宿主细胞的基因组中,由此随着宿主基因组一起复制。此外,某些载体能够指导与其可操作连接的基因表达。此类载体在本文中称为“重组表达载体”(或简称为“重组载体”)。通常,在重组DNA技术中有用的表达载体常常是质粒形式。在本说明书中,“质粒”和“载体”可互换使用,因为质粒是载体的最常用形式。
“多核苷酸”或“核酸”在本文中可互换使用,指任何长度的核苷酸聚合物,包括DNA和RNA。核苷酸可以是脱氧核糖核苷酸、核糖核苷酸、经过修饰的核苷酸或碱基、和/或其类似物,或者是可通过DNA或RNA聚合酶或者通过合成反应掺入聚合物的任何底物。多核苷酸可包含经过修饰的核苷酸,诸如甲基化核苷酸及其类似物。如果有的话,对核苷酸结构的修饰可以在装配聚合物之前或之后进行。核苷酸序列可以由非核苷酸组分中断。多核苷酸可以在合成后进一步修饰,诸如通过与标记物偶联。其它类型的修饰包括例如“帽”,将一个或多个天然存在的核苷酸用类似物替代,核苷酸间修饰诸如例如具有不带电荷连接(例如膦酸甲酯、磷酸三酯、磷酰胺酯(phosphoamidate)、氨基甲酸酯等)和具有带电荷连接(例如硫代磷酸酯、二硫代磷酸酯等)的修饰,含有悬垂模块(pendant moiety)诸如例如蛋白质(例如核酸酶、毒素、抗体、信号肽、聚L-赖氨酸等)的修饰、具有嵌入剂(例如吖啶、补骨脂素等)的修饰、含有螯合剂(例如金属、放射性金属、硼、氧化性金属等)的修饰、含有烷化剂的修饰、具有经修饰连接(例如α端基异构核酸(anomericnucleic acid)等)的修饰、以及未修饰形式的多核苷酸。另外,通常存在于糖类中的任何羟基可以用例如膦酸(phosphonate)基团、磷酸(phosphate)基团替换,用标准保护基团保护,或活化以制备与别的核苷酸的别的连接,或者可偶联至固体或半固体支持物。5′和3′末端OH可磷酸化或者用胺或1-20个碳原子的有机加帽基团模块取代。其它羟基也可衍生成标准保护基团。多核苷酸还可含有本领域普遍知道的核糖或脱氧核糖糖类的类似物形式,包括例如2′-氧-甲基、2′-氧-烯丙基、2′-氟-或2′-叠氮-核糖,碳环糖类似物,α-端基异构糖,差向异构糖诸如***糖、木糖或来苏糖、吡喃糖、呋喃糖、景天庚酮糖,无环类似物及脱碱基核苷类似物诸如甲基核糖核苷。可用备选连接基团替换一个或多个磷酸二酯连接。这些备选连接基团包括但不限于以下实施方案,其中磷酸酯用P(O)S(“硫代酸酯”(thioate))、P(S)S(“二硫代酸酯”(dithioate))、(O)NR2(“酰胺酯”(amidate))、P(O)R、P(O)OR′、CO或CH2(“甲缩醛”(formacetal))替代,其中R或R′各自独立为H或者取代或未取代的烷基(1-20个C),任选含有醚(-O-)连接、芳基、烯基、环烷基、环烯基或芳烷基(araldyl)。并非多核苷酸中的所有连接都必需是相同的。前述描述适用于本文中提及的所有多核苷酸,包括RNA和DNA。
“寡核苷酸”在用于本文时一般指短的多核苷酸,一般是单链,一般是合成的,长度一般但不是必需小于约200个核苷酸。术语“寡核苷酸”与“多核苷酸”并不互相排斥。上文关于多核苷酸的描述同样且完全适用于寡核苷酸。
“抗体”(Ab)和“免疫球蛋白”(Ig)是具有相同结构特征的糖蛋白。虽然抗体展现出对特定抗原的结合特异性,但是免疫球蛋白包括抗体和一般缺乏抗原特异性的其它抗体样分子二者。后一类多肽例如由淋巴***以低水平生成而由骨髓瘤以升高的水平生成。
术语“抗体”和“免疫球蛋白”以最广义互换使用,包括单克隆抗体(例如全长或完整单克隆抗体)、多克隆抗体、单价、多价抗体、多特异性抗体(例如双特异性抗体,只要它们展现出期望的生物学活性),而且还可以包括某些抗体片段(如本文中更为详细描述的)。抗体可以是嵌合的、人的、人源化的和/或亲和力成熟的。
抗体的“可变区”或“可变域”指抗体重链或轻链的氨基末端结构域。这些结构域一般是抗体的最易变部分且包含抗原结合位点。
术语“可变的”指可变域中的某些部分在抗体序列间差异广泛且用于每种特定抗体对其特定抗原的结合和特异性的实情。然而,变异性并非均匀分布于抗体的整个可变域。它集中于轻链和重链可变域中称作互补决定区(CDR)或高变区的三个区段。可变域中较保守的部分称作框架区(FR)。天然重链和轻链的可变域各自包含四个FR,它们大多采取β-折叠片构象,通过形成环状连接且在有些情况中形成β-折叠片结构一部分的三个CDR连接。每条链中的CDR通过FR非常接近的保持在一起,并与另一条链的CDR一起促成抗体的抗原结合位点的形成(参见Kabat et al.,Sequences of Proteins ofImmunological Interest,第5版,National Institutes of Health,Bethesda,MD.(1991))。恒定域不直接参与抗体与抗原的结合,但展现出多种效应器功能,诸如抗体依赖性细胞的细胞毒性中抗体的参与。
用木瓜蛋白酶消化抗体产生两个相同的抗原结合片段,称为“Fab”片段,各自具有一个抗原结合位点,及剩余的“Fc”片段,其名称反映了它易于结晶的能力。胃蛋白酶处理产生一个F(ab′)2片段,它具有两个抗原结合位点且仍能够交联抗原。
“Fv”是包含完整抗原识别和结合位点的最小抗体片段。在双链Fv种类中,此区由紧密、非共价结合的一个重链可变域和一个轻链可变域的二聚体组成。在单链Fv种类中,一个重链可变域和一个轻链可变域可以通过柔性肽接头共价相连,使得轻链和重链在与双链Fv种类类似的“二聚体”结构中相结合。正是在这种构造中,各可变域的三个CDR相互作用而在VH-VL二聚体表面上确定了抗原结合位点。六个CDR共同赋予抗体以抗原结合特异性。然而,即使是单个可变域(或只包含对抗原特异的三个CDR的半个Fv)也具有识别和结合抗原的能力,只是亲和力低于完整结合位点。
Fab片段还包含轻链的恒定域和重链的第一恒定域(CH1)。Fab′片段与Fab片段的不同之处在于重链CH1结构域的羧基末端增加了少数残基,包括来自抗体铰链区的一个或多个半胱氨酸。Fab′-SH是本文中对其中恒定域半胱氨酸残基携带游离硫醇基的Fab′的称谓。F(ab′)2抗体片段最初是作为在Fab′片段之间有铰链半胱氨酸的成对Fab′片段生成的。还知道抗体片段的其它化学偶联。
根据其恒定域的氨基酸序列,来自任何脊椎动物物种的抗体(免疫球蛋白)的“轻链”可归入两种截然不同的型中的一种,称作卡帕(κ)和拉姆达(λ)。
根据其重链恒定域的氨基酸序列,抗体(免疫球蛋白)可归入不同的类。免疫球蛋白有五大类:IgA、IgD、IgE、IgG和IgM,其中有些可进一步分为亚类(同种型),例如IgG1、IgG2、IgG3、IgG4、IgA1和IgA2。将与不同类的免疫球蛋白对应的重链恒定域分别称作α、δ、ε、γ和μ。不同类的免疫球蛋白的亚基结构和三维构造是众所周知的,一般记载于例如Abbas et al.,Cellular and Mol.Immunology,第4版(2000)。抗体可以是抗体与一种或多种其它蛋白质或肽共价或非共价关联而形成的更大融合分子的一部分。
术语“全长抗体”和“完整抗体”在本文中可互换使用,指基本上完整形式的抗体而非如下文所定义的抗体片段。该术语具体指重链包含Fc区的抗体。
“抗体片段”只包含完整抗体的一部分,其中所述部分保留该部分存在于完整抗体中时通常与之有关的至少一项、多至大多数或所有功能。在一个实施方案中,抗体片段包含完整抗体的抗原结合位点,如此保留结合抗原的能力。在另一个实施方案中,抗体片段,例如包含Fc区的抗体片段,保留通常与Fc区存在于完整抗体中时通常与之有关的至少一项生物学功能,诸如FcRn结合、抗体半衰期调控、ADCC功能和补体结合。在一个实施方案中,抗体片段是体内半衰期与完整抗体基本上相似的单价抗体。例如,这样的抗体片段可包含一个抗原结合臂且其与能够赋予该片段以体内稳定性的Fc序列相连。
术语“单克隆抗体”在用于本文时指从一群基本上同质的抗体获得的抗体,即构成群体的各个抗体相同,除了可能以极小量存在的可能的天然存在变异外。如此,修饰语“单克隆”指明抗体不是不同的抗体的混合物的特征。此类单克隆抗体典型的包括包含结合靶物的多肽序列的抗体,其中靶物结合多肽序列是通过包括从众多多肽序列中选择单一靶物结合多肽序列在内的过程得到的。例如,选择过程可以是从众多克隆诸如杂交瘤克隆、噬菌体克隆或重组DNA克隆的集合中选择独特克隆。应当理解,选定的靶物结合序列可进一步改变,例如为了提高对靶物的亲和力、将靶物结合序列人源化、提高其在细胞培养物中的产量、降低其在体内的免疫原性、创建多特异性抗体等,而且包含改变后的靶物结合序列的抗体也是本发明的单克隆抗体。与典型的包含针对不同决定簇(表位)的不同抗体的多克隆抗体制备物不同,单克隆抗体制备物的每种单克隆抗体针对抗原上的单一决定簇。在它们的特异性之外,单克隆抗体制备物的优势在于它们通常未受到其它免疫球蛋白的污染。修饰语“单克隆”指明抗体从基本上同质的抗体群获得的特征,不应解释为要求通过任何特定方法来生产抗体。例如,将依照本发明使用的单克隆抗体可通过多种技术来生成,包括例如杂交瘤法(例如Kohler et al.,Nature256:495(1975);Harlow et al.,Antibodies:A Laboratory Manual,Cold SpringHarbor Laboratory Press,第2版,1988;Hammerling et al.,于:MonoclonalAntibodies and T-Cell Hybridomas,563-681,Elsevier,N.Y.,1981)、重组DNA法(参见例如美国专利No.4,816,567)、噬菌体展示技术(参见例如Clackson et al.,Nature 352:624-628(1991);Marks et al.,J.Mol.Biol.222:581-597(1992);Sidhu et al.,J.Mol.Biol.338(2):299-310(2004);Lee et al.,J.Mol.Biol.340(5):1073-1093(2004);Fellouse,Proc.Natl.Acad.Sci.USA101(34):12467-12472(2004);Lee et al.,J.Immunol.Methods 284(1-2):119-132(2004))、及用于在具有部分或整个人免疫球蛋白基因座或编码人免疫球蛋白序列的基因的动物中生成人或人样抗体的技术(参见例如WO 98/24893;WO96/34096;WO 96/33735;WO 91/10741;Jakobovits et al.,Proc.Natl.Acad.Sci.USA 90:2551(1993);Jakobovits et al.,Nature 362:255-258(1993);Bruggemannet al.,Year in Immunol.7:33(1993);美国专利No.5,545,807;5,545,806;5,569,825;5,625,126;5,633,425;5,661,016;Marks et al.,Bio/Technology10:779-783(1992);Lonberg et al.,Nature 368:856-859(1994);Morrison,Nature368:812-813(1994);Fishwild et al.,Nature Biotechnol.14:845-851(1996);Neuberger,Nature Biotechnol.14:826(1996);Lonberg and Huszar,Intern.Rev.Immunol.13:65-93(1995))。
单克隆抗体在本文中明确包括“嵌合”抗体,其中重链和/或轻链的一部分与衍生自特定物种或属于特定抗体类别或亚类的抗体中的相应序列相同或同源,而链的剩余部分与衍生自另一物种或属于另一抗体类别或亚类的抗体中的相应序列相同或同源,以及此类抗体的片段,只要它们展现出期望的生物学活性(美国专利No.4,816,567;Morrison et al.,Proc.Natl.Acad.Sci.USA81:6851-6855(1984))。
非人(例如鼠)抗体的“人源化”形式指最低限度包含衍生自非人免疫球蛋白的序列的嵌合抗体。在一个实施方案中,人源化抗体指人免疫球蛋白(受体抗体)中的高变区残基用具有期望特异性、亲和力和/或能力的非人物种(供体抗体)诸如小鼠、大鼠、兔或非人灵长类动物的高变区残基替换的免疫球蛋白。在有些情况中,将人免疫球蛋白的框架区(FR)残基用相应的非人残基替换。此外,人源化抗体可包含在受体抗体中或在供体抗体中没有找到的残基。进行这些修饰是为了进一步改进抗体的性能。一般而言,人源化抗体将包含至少一个、通常两个基本上整个如下的可变域,其中所有或基本上所有高变环对应于非人免疫球蛋白的高变环,且所有或基本上所有FR是人免疫球蛋白序列的FR。人源化抗体任选还将包含至少部分免疫球蛋白恒定区(Fc),通常是人免疫球蛋白的恒定区。更多细节参见Jones et a1.,Nature 321:522-525(1986);Riechmann et al.,Nature 332:323-329(1988);Presta,Curr.Op.Struct.Biol.2:593-596(1992)。还可参见以下综述及其引用的参考文献:Vaswani andHamilton,Ann.Allergy,Asthma & Immunol.1:105-115(1998);Harris,Biochem.Soc.Transactions 23:1035-1038(1995);Hurle and Gross,Curr.Op.Biotech.5:428-433(1994)。
术语“高变区”、“HVR”或“HV”在用于本文时指抗体可变域中序列上高度可变和/或形成结构上定义的环的区域。通常,抗体包含六个高变区:三个在VH中(H1、H2、H3),三个在VL中(L1、L2、L3)。本文中使用且涵盖许多高变区的叙述。Kabat互补决定区(CDR)是以序列变异性为基础的,而且是最常用的(Kabat et al.,Sequences of Proteins of Immunological Interest,5th Ed.Public Health Service,National Institutes of Health,Bethesda,MD.(1991))。Chothia改为指结构环的位置(Chothia and Lesk,J.Mol.Biol.196:901-917(1987))。AbM高变区代表Kabat CDR与Chothia结构环之间的折衷,而且得到Oxford Molecular的AbM抗体建模软件的使用。“接触”高变区是以对可获得的复合物晶体结构的分析为基础的。下文记录了这些高变区中每一个的残基。
高变区可包括如下“延伸的高变区”:VL中的24-36或24-34(L1)、46-56或50-56或49-56(L2)和89-97或89-96(L3)及VH中的26-35(H1)、50-65或49-65(H2)和93-102、94-102或95-102(H3)。对于这些定义中的每一个,可变区残基是依照Kabat等,见上文编号的。
“框架”或“FR”残基指可变域中除本文中所定义的高变区残基外的那些残基。
术语“依照Kabat的可变域残基编号”或“依照Kabat的氨基酸位置编号”及其变体指Kabat et al.,Sequences of Proteins of Immunological Interest,5th Ed.Public Health Service,National Institutes of Health,Bethesda,MD.(1991)中的抗体编辑用于重链可变域或轻链可变域的编号***。使用此编号***,实际的线性氨基酸序列可包含较少或另外的氨基酸,对应于可变域FR或HVR的缩短或***。例如,重链可变域可包含H2残基52后的单一氨基酸***(依照Kabat为残基52a)及重链FR残基82后的***残基(例如依照Kabat为残基82a、82b和82c等)。给定抗体的Kabat残基编号可通过将抗体序列与“标准”Kabat编号序列对比同源区来确定。
“单链Fv”或“scFv”抗体片段包含抗体的VH和VL结构域,其中这些结构域存在于一条多肽链上。一般而言,scFv多肽在VH与VL结构域之间还包含多肽接头,使得scFv能够形成结合抗原的期望结构。关于scFv的综述参见Pluckthun,于:The Pharmacology of Monoclonal Antibodies,vol.113,Rosenburg and Moore编,Springer-Verlag,New York,pp.269-315(1994)。
术语“双抗体(diabody)”指具有两个抗原结合位点的小型抗体片段,该片段在同一条多肽链(VH-VL)中包含相连的重链可变域(VH)和轻链可变域(VL)。通过使用过短的接头使得同一条链上的两个结构域之间不能配对,迫使这些结构域与另一条链的互补结构域配对,从而产生两个抗原结合位点。双抗体更完整的记载于例如EP 404,097;WO 93/1161;Hollinger et al.,Proc.Natl.Acad.Sci.USA 90:6444-6448(1993)。
“人抗体”指拥有与由人生成的抗体的氨基酸序列对应的氨基酸序列和/或使用本文所公开的用于生成人抗体的任何技术生成的抗体。人抗体的这种定义明确排除包含非人抗原结合残基的人源化抗体。
“亲和力成熟的”抗体指在抗体的一个或多个HVR中具有一处或多处改变、导致该抗体对抗原的亲和力与没有这些改变的亲本抗体相比有所改进的抗体。在一个实施方案中,亲和力成熟的抗体具有纳摩尔或甚至皮摩尔量级的对靶抗原的亲和力。亲和力成熟的抗体可通过本领域已知规程来生成。Marks et al.,Bio/Technology 10:779-783(1992)记载了通过VH和VL结构域改组进行的亲和力成熟。以下文献记载了CDR和/或框架残基的随机诱变:Barbas et al.,Proc.Nat.Acad.Sci.USA 91:3809-3813(1994);Schier et al.,Gene169:147-155(1995);Yelton et al.,J.Immunol.155:1994-2004(1995);Jackson etal.,J.Immunol.154(7):3310-9(1995);Hawkins et al.,J.Mol.Biol.226:889-896(1992)。
“阻断性(blocking)”抗体或“拮抗性(antagonist)”抗体指抑制或降低其所结合的抗原的生物学活性的抗体。某些阻断性抗体或拮抗性抗体实质性或完全抑制抗原的生物学活性。
“激动性抗体(agonist antibody)”在用于本文时指模拟目的多肽的至少一项功能性活性的抗体。
“病症”指将会从使用本发明的抗体进行的处理中获益的任何疾患。这包括慢性和急性病症,或者包括那些使哺乳动物趋向于所讨论病症的病理状况的疾病。本文中待治疗病症的非限制性例子包括癌症、肌肉病症、遍在蛋白途径相关遗传病症、免疫/炎性病症、神经学病症、和其它遍在蛋白途径相关病症。
术语“细胞增殖性病症”和“增殖性病症”指与一定程度的异常细胞增殖有关的病症。在一个实施方案中,细胞增殖性病症指癌症。
“肿瘤”在用于本文时指所有肿瘤性细胞生长和增殖,无论是恶性的还是良性的,及所有癌前(pre-cancerous)和癌性细胞和组织。术语“癌症”、“癌性”、“细胞增殖性紊乱”、“增殖性紊乱”和“肿瘤”在本文中提到时并不互相排斥。
术语“癌症”和“癌性”指向或描述哺乳动物中特征通常为细胞生长/增殖不受调控的生理疾患。癌症的例子包括但不限于癌、淋巴瘤(例如何杰金氏(Hodgkin)淋巴瘤和非何杰金氏淋巴瘤)、母细胞瘤、肉瘤和白血病。此类癌症的更具体例子包括鳞状细胞癌、小细胞肺癌、非小细胞肺癌、肺的腺癌、肺的鳞癌、腹膜癌、肝细胞癌、胃肠癌、胰腺癌、成胶质细胞瘤(glioblastoma)、***、卵巢癌、肝癌(liver cancer)、膀胱癌、肝肉瘤(hepatoma)、乳腺癌、结肠癌、结肠直肠癌、子宫内膜癌或子宫癌、唾液腺癌、肾癌、肝癌(liver cancer)***癌、外阴癌、甲状腺癌、肝癌(hepatic carcinoma)、白血病和其它淋巴增殖性病症、及各种类型的头和颈癌。
术语“肌肉病症”指向或描述含肌肉动物中典型特征为骨骼肌和/或平滑肌衰退或弱化使得正常肌肉功能显著降低的生理疾患。肌肉病症的例子包括,但不限于,肌营养不良(muscular dystrophy)、多发性硬化、肌萎缩侧索硬化(amyotrophic lateral sclerosis)、艾萨克氏综合征(Isaac’s syndrome)、僵人综合征(stiff-person syndrome)、家族性周期性麻痹(familiar periodic paralyses)、肌病(myopathy)、肌强直(myotonia)、横纹肌溶解(rhabdomyolyses)、肌肉萎缩、及各种类型的肌无力和肌肉强直。
术语“遍在蛋白途径相关遗传病症”指向或描述典型特征为由遍在蛋白途径异常机能促成或基于遗传的病症。遍在蛋白途径相关遗传病症的例子包括,但不限于,囊性纤维化病(cystic fibrosis)、天使综合征(Angelman’ssyndrome)、和利德尔综合征(Liddle syndrome)。
术语“神经学病症”或“神经学疾病”指向或描述典型特征为神经组织退化或神经组织的细胞间通讯衰退的哺乳动物中枢和/或周围神经***疾病或病症。神经学病症的例子包括,但不限于,神经变性疾病(包括,但不限于,Lewy体疾病、脊髓灰质炎后综合征、Shy-Draeger综合征、橄榄体脑桥小脑萎缩、帕金森氏病、多***萎缩、纹状体黑质变性、τ病(包括,但不限于,阿耳茨海默病和核上性麻痹)、朊病毒病(包括,但不限于,牛海绵样脑病、绵羊瘙痒病、克罗伊茨费尔特-雅各布综合征、库鲁病、Gerstmann-Straussler-Scheinker病、慢性消耗性疾病、和致命性家族性失眠症)、延髓性麻痹、运动神经元疾病、和神经***异型变性疾病(包括,但不限于,卡纳万病、亨庭顿氏病、神经元蜡样脂褐质沉积症、亚历山大氏病、图雷特氏综合征、Menkes卷发综合征、科凯恩综合征、Halervorden-Spatz综合征、拉福拉病、Rett综合征、肝豆状核变性、Lesch-Nyhan综合征、和Unverricht-Lundborg综合征)、痴呆(包括,但不限于,皮克氏病、和脊髓小脑性共济失调。
术语“炎性病症”和“免疫病症”指向或描述由异常免疫学机制和/或异常细胞因子信号传导引起的病症。炎性和免疫病症的例子包括,但不限于,自身免疫病、免疫学缺陷综合征、和超敏反应。“自身免疫病”在本文中指源于且针对个体自身组织的非恶性疾病或病症。自身免疫病在本文中明确排除恶性或癌性疾病或疾患,尤其排除B细胞淋巴瘤、急性成淋巴细胞白血病(ALL)、慢性淋巴细胞白血病(CLL)、毛细胞白血病和慢性成髓细胞白血病。自身免疫性疾病或病症的例子包括但不限于炎性应答,诸如炎性皮肤病,包括银屑病和皮炎(例如特应性皮炎);***性硬皮病和硬化;与炎性肠病有关的应答(诸如克罗恩氏(Crohn)病和溃疡性结肠炎);呼吸窘迫综合征(包括成人呼吸窘迫综合症(ARDS));皮炎;脑膜炎;脑炎;葡萄膜炎;结肠炎;肾小球肾炎;过敏状况,诸如湿疹和哮喘及牵涉T细胞浸润和慢性炎性应答的其它状况;动脉粥样硬化;白细胞粘着缺陷;类风湿性关节炎;***性红斑狼疮(SLE)(包括但不限于狼疮肾炎、皮肤性狼疮);糖尿病(例如I型糖尿病或胰岛素依赖性糖尿病);多发性硬化;雷诺氏(Reynaud)综合征;自身免疫性甲状腺炎;桥本氏(Hashimoto)甲状腺炎;变应性脑脊髓炎;斯耶格伦氏(Sjogren)综合征;幼发型糖尿病;通常在结核病、结节病、多肌炎、肉芽肿病和血管炎中发现的与细胞因子和T-淋巴细胞介导的急性和迟发性超敏感性有关的免疫应答;恶性贫血(阿狄森氏(Addison)病);牵涉白细胞渗出的疾病;中枢神经***(CNS)炎性病症;多器官损伤综合征;溶血性贫血(包括但不限于冷球蛋白血症或库姆斯氏(Coombs)阳性贫血);重症肌无力;抗原-抗体复合物介导的疾病;抗肾小球基膜病;抗磷脂综合症;过敏性神经炎;格雷夫斯氏(Graves)病;朗-伊二氏(Lambert-Eaton)肌无力综合症;大疱性类天疱疮;天疱疮;自身免疫性多种内分泌腺病;莱特氏(Reiter)病;僵人综合症;贝切特氏(Behcet)病;巨细胞动脉炎;免疫复合物肾炎;IgA肾病;IgM多神经病;免疫性血小板减少性紫癜(ITP)或自身免疫性血小板减少症等。
免疫学缺陷综合征的例子包括,但不限于,共济失调性毛细血管扩张症、白血病粘着缺陷综合征、淋巴细胞减少、异常丙种球蛋白血症、HIV或δ逆转录病毒感染、常见变异型免疫缺陷、无丙种球蛋白血症、DiGeorge综合征、和Wiskott-Aldrich综合征。超敏感性的例子包括,但不限于,***反应、哮喘、皮炎、荨麻疹、过敏反应、Wissler氏综合征、和血小板减少性紫癜。
在用于本文时,“治疗”或“处理”指试图改变所治疗个体或细胞的自然进程的临床干预,可以是为了预防或在临床病理学的进程中进行。治疗的期望效果包括预防疾病的发生或复发、缓解症状、削弱疾病的任何直接或间接病理学后果、预防或降低炎症和/或组织/器官损伤转移、减缓疾病进展的速率、改善或减轻疾病状态、及免除或改善预后。在有些实施方案中,将本发明的抗体用于延迟疾病或病症的发生/发展。
“个体”指脊椎动物。在某些实施方案中,脊椎动物指哺乳动物。哺乳动物包括,但不限于,牲畜(诸如牛)、运动用动物、宠物(诸如猫、犬、和马)、灵长类动物、小鼠和大鼠。在某些实施方案中,脊椎动物指人。
为了治疗的目的,“哺乳动物”指归入哺乳类的任何动物,包括人,家畜和牲畜,及动物园、运动或宠物动物,诸如犬、马、猫、牛等。在某些实施方案中,哺乳动物指人。
“有效量”指在必需的剂量和时间上有效实现期望的治疗或预防效果的量。
本发明物质/分子的“治疗有效量”可根据诸如个体的疾病状态、年龄、性别和体重及该物质/分子在个体中引发期望应答的能力等因素而变化。治疗有效量还指该物质/分子的治疗有益效果胜过任何有毒或有害后果的量。“预防有效量”指在必需的剂量和时间上有效实现期望的预防效果的量。通常而非必然,由于预防剂量是在疾病发作之前或在疾病的早期用于受试者的,因此预防有效量将低于治疗有效量。
术语“细胞毒剂”在用于本文时指抑制或防止细胞的功能和/或引起细胞破坏的物质。该术语意图包括:放射性同位素,例如At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、p32、pb212和Lu的放射性同位素;化疗剂,例如甲氨蝶呤(methotrexate)、阿霉素(adriamycin)、长春花生物碱类(vinca alkaloids)(长春新碱(vincristine)、长春碱(vinblastine)、依托泊苷(etoposide))、多柔比星(doxorubicin)、美法仑(melphalan)、丝裂霉素(mitomycin)C、苯丁酸氮芥(chlorambucil)、柔红霉素(daunorubicin)或其它嵌入剂;酶及其片段,诸如溶核酶;抗生素;和毒素,诸如小分子毒素或者细菌、真菌、植物或动物起源的酶活毒素,包括其片段和/或变体;及下文披露的各种抗肿瘤药或抗癌药。下文记载了其它细胞毒剂。杀肿瘤药引起肿瘤细胞的破坏。
“化疗剂”指可用于治疗癌症的化学化合物。化疗剂的例子包括烷化剂类(alkylating agents),诸如塞替派(thiotepa)和环磷酰胺(cyclophosphamide);磺酸烷基酯类(alkyl sulfonates),诸如白消安(busulfan)、英丙舒凡(improsulfan)和哌泊舒凡(piposulfan);氮丙啶类(aziridines),诸如苯佐替派(benzodepa)、卡波醌(carboquone)、美妥替派(meturedepa)和乌瑞替派(uredepa);乙撑亚胺类(ethylenimines)和甲基蜜胺类(methylamelamines),包括六甲蜜胺(altretamine)、三乙撑蜜胺(triethylenemelamine)、三乙撑磷酰胺(triethylenephosphoramide)、三乙撑硫代磷酰胺(triethylenethiophosphoramide)和三羟甲蜜胺(trimethylolomelamine);番荔枝内酯类(acetogenin)(尤其是布拉他辛(bullatacin)和布拉他辛酮(bullatacinone));δ-9-四氢***酚(tetrahydrocannabinol)(屈***酚(dronabinol),);β-拉帕醌(lapachone);拉帕醇(lapachol);秋水仙素类(colchicines);白桦脂酸(betulinicacid);喜树碱(camptothecin)(包括合成类似物托泊替康(topotecan)CPT-11(伊立替康(irinotecan),)、乙酰喜树碱、东莨菪亭(scopoletin)和9-氨基喜树碱);苔藓抑素(bryostatin);callystatin;CC-1065(包括其阿多来新(adozelesin)、卡折来新(carzelesin)和比折来新(bizelesin)合成类似物);鬼臼毒素(podophyllotoxin);鬼臼酸(podophyllinic acid);替尼泊苷(teniposide);隐藻素类(cryptophycins)(特别是隐藻素1和隐藻素8);多拉司他汀(dolastatin);duocarmycin(包括合成类似物,KW-2189和CB 1-TM1);艾榴塞洛素(eleutherobin);pancratistatin;sarcodictyin;海绵抑素(spongistatin);氮芥类(nitrogen mustards),诸如苯丁酸氮芥(chlorambucil)、萘氮芥(chlornaphazine)、胆磷酰胺(cholophosphamide)、雌莫司汀(estramustine)、异环磷酰胺(ifosfamide)、双氯乙基甲胺(mechlorethamine)、盐酸氧氮芥(mechlorethamine oxide hydrochloride)、美法仑(melphalan)、新氮芥(novembichin)、苯芥胆甾醇(phenesterine)、泼尼莫司汀(prednimustine)、曲磷胺(trofosfamide)、尿嘧啶氮芥(uracil mustard);亚硝脲类(nitrosoureas),诸如卡莫司汀(carmustine)、氯脲菌素(chlorozotocin)、福莫司汀(fotemustine)、洛莫司汀(lomustine)、尼莫司汀(nimustine)和雷莫司汀(ranimustine);抗生素类,诸如烯二炔类抗生素(enediyne)(如加利车霉素(calicheamicin),尤其是加利车霉素γ1I和加利车霉素ωI1(参见例如Agnew,Chem.Intl.Ed.Engl.33:183-186(1994));蒽环类抗生素(dynemicin),包括dynemicin A;埃斯波霉素(esperamicin);以及新制癌素(neocarzinostatin)发色团和相关色蛋白烯二炔类抗生素发色团)、阿克拉霉素(aclacinomycin)、放线菌素(actinomycin)、氨茴霉素(anthramycin)、偶氮丝氨酸(azaserine)、博来霉素(bleomycin)、放线菌素C(cactinomycin)、carabicin、洋红霉素(carminomycin)、嗜癌霉素(carzinophilin)、色霉素(chromomycin)、放线菌素D(dactinomycin)、柔红霉素(daunorubicin)、地托比星(detorubicin)、6-二氮-5-氧-L-正亮氨酸、多柔比星(doxorubicin)(包括吗啉代多柔比星、氰基吗啉代多柔比星、2-吡咯代多柔比星和脱氧多柔比星)、表柔比星(epirubicin)、依索比星(esorubicin)、伊达比星(idarubicin)、麻西罗霉素(marcellomycin)、丝裂霉素类(mitomycins)诸如丝裂霉素C、霉酚酸(mycophenolic acid)、诺拉霉素(nogalamycin)、橄榄霉素(olivomycin)、培洛霉素(peplomycin)、potfiromycin、嘌呤霉素(puromycin)、三铁阿霉素(quelamycin)、罗多比星(rodorubicin)、链黑菌素(streptonigrin)、链佐星(streptozocin)、杀结核菌素(tubercidin)、乌苯美司(ubenimex)、净司他丁(zinostatin)、佐柔比星(zorubicin);抗代谢物类,诸如甲氨蝶呤和5-氟尿嘧啶(5-FU);叶酸类似物,诸如二甲叶酸(denopterin)、甲氨蝶呤、蝶酰三谷氨酸(pteropterin)、三甲曲沙(trimetrexate);嘌呤类似物,诸如氟达拉滨(fludarabine)、6-巯基嘌呤(mercaptopurine)、硫咪嘌呤(thiamiprine)、硫鸟嘌呤(thioguanine);嘧啶类似物,诸如安西他滨(ancitabine)、阿扎胞苷(azacitidine)、6-氮尿苷、卡莫氟(carmofur)、阿糖胞苷(cytarabine)、双脱氧尿苷(dideoxyuridine)、去氧氟尿苷(doxifluridine)、依诺他滨(enocitabine)、氟尿苷(floxuridine);雄激素类,诸如卡鲁睾酮(calusterone)、丙酸屈他雄酮(dromostanolone propionate)、表硫雄醇(epitiostanol)、美雄烷(mepitiostane)、睾内酯(testolactone);抗肾上腺类,诸如氨鲁米特(aminoglutethimide)、米托坦(mitotane)、曲洛司坦(trilostane);叶酸补充剂,诸如亚叶酸(folinic acid);醋葡醛内酯(aceglatone);醛磷酰胺糖苷(aldophosphamide glycoside);氨基乙酰丙酸(aminolevulinic acid);恩尿嘧啶(eniluracil);安吖啶(amsacrine);bestrabucil;比生群(bisantrene);依达曲沙(edatraxate);地磷酰胺(defosfamide);地美可辛(demecolcine);地吖醌(diaziquone);elfornithine;依利醋铵(elliptinium acetate);埃坡霉素(epothilone);依托格鲁(etoglucid);硝酸镓;羟脲(hydroxyurea);香菇多糖(lentinan);氯尼达明(lonidamine);美登木素生物碱类(maytansinoids),诸如美登素(maytansine)和美登醇(maytansinol);安丝菌素(ansamitocin);米托胍腙(mitoguazone);米托蒽醌(mitoxantrone);莫哌达醇(mopidamol);二胺硝吖啶(nitracrine);喷司他丁(pentostatin);蛋氨氮芥(phenamet);吡柔比星(pirarubicin);洛索蒽醌多糖复合物(JHS Natural Products,Eugene,OR);雷佐生(razoxane};根霉素(rhizoxin);西索菲兰(sizofiran);螺旋锗(spirogermanium);细交链孢菌酮酸(tenuazonic acid);三亚胺醌(triaziquone);2,2′,2″-三氯三乙胺;单端孢菌素类(trichothecenes)(尤其是T-2毒素、疣孢菌素(vermcarin)A、杆孢菌素(roridin)(losoxantrone);2-乙基酰肼(ethylhydrazide);丙卡巴肼(procarbazine);A和蛇行菌素(anguidin));乌拉坦(urethan);长春地辛(vindesine)( );达卡巴嗪(dacarbazine);甘露醇氮芥(mannomustine);二溴甘露醇(mitobronitol);二溴卫矛醇(mitolactol);哌泊溴烷(pipobroman);gacytosine;阿糖胞苷(arabinoside)(“Ara-C”);塞替派(thiotepa);类紫杉醇(taxoids),例如紫杉醇(paclitaxel)(Bristol-Myers Squibb Oncology,Princeton,N.J.)、ABRAXANETM不含克列莫佛(Cremophor),清蛋白改造的纳米颗粒剂型紫杉醇(American Pharmaceutical Partners,Schaumberg,Illinois)和多西他塞(doxetaxel)(-Poulenc Rorer,Antony,France);苯丁酸氮芥(chlorambucil);吉西他滨(gemcitabine)6-硫鸟嘌呤(thioguanine);巯基嘌呤(mercaptopurine);甲氨蝶呤(methotrexate);铂类似物,诸如顺铂(cisplatin)和卡铂(carboplatin);长春碱(vinblastine)铂;依托泊苷(etoposide)(VP-16);异环磷酰胺(ifosfamide);米托蒽醌(mitoxantrone);长春新碱(Vincristine)奥沙利铂(oxaliplatin);亚叶酸(leucovorin);长春瑞滨(vinorelbine)能灭瘤(novantrone);依达曲沙(edatrexate);道诺霉素(daunomycin);氨基蝶呤(aminopterin);伊本膦酸盐(ibandronate);拓扑异构酶抑制剂RFS 2000;二氟甲基鸟氨酸(DMFO);类维A酸(retinoids),诸如维A酸(retinoic acid);卡培他滨(capecitabine)任何上述物质的药学可接受盐、酸或衍生物;以及两种或多种上述物质的组合,诸如CHOP(环磷酰胺、多柔比星、长春新碱和***龙联合疗法的缩写)和FOLFOX(奥沙利铂(ELOXATINTM)联合5-FU和亚叶酸的治疗方案的缩写)。
该定义还包括作用为调节、降低、阻断、或抑制可促进癌生长的激素效果的抗激素剂,且常常是***或全身治疗的形式。它们自身可以是激素。实例包括抗***类和选择性***受体调节剂类(SERM),包括例如他莫昔芬(tamoxifen)(包括他莫昔芬)、雷洛昔芬(raloxifene)、屈洛昔芬(droloxifene)、4-羟基他莫昔芬、曲沃昔芬(trioxifene)、那洛昔芬(keoxifene)、LY117018、奥那司酮(onapristone)和托瑞米芬(toremifene);抗孕酮类;***受体下调剂类(ERD);功能为抑制或关闭卵巢的药剂,例如促黄体生成激素释放激素(LHRH)激动剂,诸如醋酸亮丙瑞林(leuprolide acetate)、醋酸戈舍瑞林(goserelinacetate)、醋酸布舍瑞林(buserelin acetate)和曲普瑞林(triptorelin);其它抗雄激素类,诸如氟他米特(flutamide)、尼鲁米特(nilutamide)和比卡米特(bicalutamide);及抑制在肾上腺中调节***生成的芳香酶的芳香酶抑制剂,诸如例如4(5)-咪唑、氨鲁米特(aminoglutethimide)、醋酸甲地孕酮(megestrol acetate)、依西美坦(exemestane)、福美坦(formestane)、法倔唑(fadrozole)、伏罗唑(vorozole)、来曲唑(letrozole)和阿那曲唑(anastrozole)。另外,化疗剂的这种定义包括二膦酸盐类(bisphosphonates),诸如氯膦酸盐(clodronate)(例如)、依替膦酸钠(etidronate)、NE-58095、唑来膦酸/唑来膦酸盐(zoledronic acid/zoledronate)、阿伦膦酸盐(alendronate)、帕米膦酸盐(pamidronate)、替鲁膦酸盐(tiludronate)或利塞膦酸盐(risedronate);以及曲沙他滨(troxacitabine)(1,3-二氧戊环核苷胞嘧啶类似物);反义寡核苷酸,特别是抑制牵涉异常细胞增殖的信号途经中的基因表达的反义寡核苷酸,诸如例如PKC-α、Raf、H-Ras和表皮生长因子受体(EGF-R);疫苗,诸如疫苗和基因疗法疫苗,例如疫苗、疫苗和疫苗;拓扑异构酶1抑制剂;rmRH;lapatinib ditosylate(ErbB-2和EGFR双重酪氨酸激酶小分子抑制剂,也称为GW572016);及任何上述物质的药学可接受盐、酸或衍生物。
组合物及其制备方法
本发明提供了与多聚遍在蛋白而非单遍在蛋白特异性结合的抗体。更具体的说,提供了能与包含K63键的多聚遍在蛋白特异性结合而不与包含第二种不同的赖氨酸键的多聚遍在蛋白特异性结合的抗体。本发明的抗体提供相对于先前已知的抗体令人惊讶地改善的对K63连接的多聚遍在蛋白的亲和力。这种改善的亲和力使得它们能够广泛用于其中抗体对K63连接的多聚遍在蛋白化蛋白质的紧密结合是先决条件的多种测定法,诸如免疫沉淀反应。本发明的抗体还比先前鉴定的抗K63连接的多聚遍在蛋白特异性抗体更适合于用作治疗剂,因为它们可潜在地以比对相同K63连接的多聚遍在蛋白的亲和力较低的抗体更低的剂量或更低的频率施用。
一方面,本发明提供一种包含HVR-H2区的抗体,该HVR-H2区包含SEQID NO:60-110中至少一个的序列。一方面,本发明提供一种包含HVR-H2区共有序列SEQ ID NO:112的抗体。
一方面,本发明提供一种包含HVR-L2区的抗体,该HVR-L2区包含SEQID NO:8-58中至少一个的序列。一方面,本发明提供一种包含HVR-L3区共有序列SEQ ID NO:111的抗体。
一方面,本发明提供一种包含下列至少一项或至少两项的抗体:
(i)HVR-H2序列,包含SEQ ID NO:60-110中至少一个序列;
(ii)HVR-L2序列,包含SEQ ID NO:8-58中至少一个序列。
一方面,本发明提供一种包含下列至少一项或至少两项、以高亲和力特异性结合K63连接的多聚遍在蛋白但以实质性降低的亲和力结合K48连接的多聚遍在蛋白的抗体:
(i)HVR-H2序列,包含SEQ ID NO:60-110中至少一个序列;
(ii)HVR-L2序列,包含SEQ ID NO:8-58中至少一个序列。
如表B中所示,SEQ ID NO:8-112的氨基酸序列是相对于各HVR(即H2、L2)进行编号的,该编号与下述Kabat编号***相一致。在一个实施方案中,本发明的抗体包含一项或两项上述(i)-(ii)的HVR序列,及SEQ ID NO:3的HVR-L1、SEQ ID NO:4的HVR-L3、SEQ ID NO:5的HVR-H1、和SEQ ID NO:6的HVR-H3中至少一个。
一方面,本发明提供包含如表B中所列重链HVR H2序列的抗体。在一个实施方案中,该抗体进一步包含如表B中所列轻链HVR-L2序列。
本发明的抗体的某些实施方案包含如以下SEQ ID NO:224中所示的人源化的4D5抗体(huMAb4D5-8)(Genentech,Inc.,South SanFrancisco,CA,USA)(也参见美国专利No.6,407,213和Lee等,J.Mol.Biol.(2004),340(5):1073-93)的轻链可变域。
Asp1Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala Val Ala
Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala
Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly
Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr
Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro Thr Phe Gly Gln Gly
Thr Lys Val Glu Ile Lys107(SEQ ID NO:224)(HVR残基是加下划线的)
在一个实施方案中,huMAb4D5-8轻链可变域序列在第28、30、31、42、53、66、和91-96位(分别如以上粗体/斜体中所示的Asp、Asn、Thr、Lys、Phe、Arg、His、Tyr、Thr、Thr、Pro、和Pro)的一个或多个位置处被修饰。在一个实施方案中,修饰的huMAb4D5-8序列在第28位包含Ser,在第30位包含Ser,在第31位包含Ser,在第42位包含Glu,在第53位包含Ser,在第66位包含Gly,在第91位包含Tyr,在第92位包含Ser,在第93位包含Ser,在第94位包含Tyr,在第95位包含Ser,在第96位包含Ser,和/或在第96位Ser和第97位Thr之间包含Leu和Phe***。在另一个实施方案中,修饰的huMAb4D5-8序列刚好在第1位之前(即在蛋白质的N端)包含***的Ser,在第28位包含Ser,在第30位包含Ser,在第31位包含Ser,在第42位包含Glu,在第53位包含Ser,在第66位包含Gly,在第91位包含Tyr,在第92位包含Ser,在第93位包含Ser,在第94位包含Tyr,在第95位包含Ser,在第96位包含Ser,和/或在第96位Ser和第97位Thr之间包含Leu和Phe***。因此,在一个实施方案中,本发明的抗体包含含有以下SEQ ID NO:225所示序列的轻链可变域:
Ser-1  Asp1 Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val
Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Val Ser Ser Ala
Val Ala Trp Tyr Gln Gln Lys Pro Gly Glu Ala Pro Lys Leu Leu Ile Tyr
Ser Ala Ser Ser Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly
Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe
Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Ser Tyr Ser Ser Leu Phe Thr Phe
Gly Gln Gly Thr Lys Val Glu Ile Lys(SEQ ID NO:784)(HVR残基是加下划线的)
相对于huMAb4D5-8,替代的残基用如上的粗斜体标明。
本发明抗体的某些实施案包含具有如下序列的重链可变域:
Glu Ile Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Val Lys Thr
Gly Leu Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
Ala Tyr Ile Ser Pro Tyr Tyr Gly Ser Thr Ser Tyr Ala Asp Ser Val Lys
Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln
Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu
Tyr Tyr Arg Trp Tyr Thr Ala Ile Asp Tyr Trp Gly Gln Gly Thr Leu Val
Thr Val Ser Ser(SEQ ID NO:226)(HVR残基是加下划线的)
在一个实施方案中,重链可变域序列在粗斜体的位置处被修饰。在另一个实施方案中,粗斜体的Ser被修饰成Thr。在另一个实施方案中,SEQ ID NO:226中所列重链可变域序列的头三个残基不存在。
在另一个实施方案中,本发明的抗体包含具有如下序列的重链可变域:
Glu Ile Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro
Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Val Lys Thr
Gly Leu Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
Ala Tyr Ile Thr Pro Tyr Tyr Gly Ser Thr Ser Tyr Ala Asp Ser Val Lys
Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln
Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu
Tyr Tyr Arg Trp Tyr Thr Ala Ile Asp Tyr Trp Gly Gln Gly Thr Leu Val
Thr Val Ser Ser(SEQ ID NO:227)(HVR残基是加下划线的)
在另一个实施方案中,本发明的抗体包含具有如下序列的重链可变域:
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser
Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Val Lys Thr Gly Leu Ile
His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Tyr Ile
Thr Pro Tyr Tyr Gly Ser Thr Ser Tyr Ala Asp Ser Val Lys Gly Arg Phe
Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser
Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Glu Tyr Tyr Arg
Trp Tyr Thr Ala Ile Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser
Ser(SEQ ID NO:228)(HVR残基是加下划线的)
本发明的抗体可包含任何合适的框架可变区序列,前提条件是基本上保留了与包括特定赖氨酸键的多聚遍在蛋白的结合活性。例如,在某些实施方案中,本发明的抗体包含人亚组III重链框架区共有序列。在这些抗体的一个实施方案中,框架区共有序列包含在第71、73和/或78位的替代。在这些抗体的某些实施方案中,第71位是A、第73位是T和/或第78位是A。在一个实施方案中,这些抗体包含huMAb4D5-8(Genentech,Inc.,SouthSan Francisco,CA,USA)(也参见美国专利号6,407,213和5,821,337,和Lee等,J.Mol.Biol.(2004),340(5):1073-93)的重链可变域框架序列。在一个实施方案中,这些抗体进一步包含人κI轻链框架共有序列。在一个实施方案中,这些抗体包含至少一条、两条或更多条SEQ ID NO:3、4、8-58和111的轻链HVR序列。在一个实施方案中,这些抗体包含如美国专利号6,407,213&5,821,337中所描述的huMAb4D5-8的轻链HVR序列。在一个实施方案中,这些抗体包含huMAb4D5-8(Genentech,Inc.,South San Francisco,CA,USA)的轻链可变域序列(也参见美国专利号6,407,213 & 5,821,337,和Lee等,J.Mol.Biol.(2004),340(5):1073-93)。
在一个实施方案中,本发明的抗体包含重链可变域,其中框架序列包含至少一条SEQ ID NO:113-188、209-212、和217-220中的序列,并且HVR H1序列为SEQ ID NO:5,HVR H2序列为选自SEQ ID NO:59-110和112中至少一条;而HVR H3序列为SEQ ID NO:6。在一个实施方案中,本发明的抗体包含轻链可变域,其中框架序列包含至少一条SEQ ID NO:189-204、205-208、和213-216中的序列,HVR-L1序列为SEQ ID NO:3,HVR-L2序列为选自SEQID NO:8-58和110中至少一条;而HVR-L3序列为SEQ ID NO:4。
在一个实施方案中,本发明的抗体包含重链可变域,其中框架序列包含至少一条SEQ ID NO:113-188的序列,以及HVR H1、H2和H3序列分别为SEQID NO:5、60和6(克隆Apu3.A8)。类似地,在其它实施方案中,本文表B中所列每一个克隆Apu3.A9-H10的抗体均包含重链可变域,其中框架序列包含至少一条SEQ ID NO:113-188中的序列,以及HVR-H1为SEQ ID NO:5,HVR-H2序列为对于表B中每一个克隆所明确列举的那些序列,而HVR-H3为SEQ ID NO:6。在一个实施方案中,本发明的抗体包含轻链可变域,其中框架序列包含至少一条SEQ ID NO:189-204中的序列,以及HVR L1、L2和L3序列分别为SEQ ID NO:3、8和4(Apu3.A8)。类似地,在其它实施方案中,表B中所列克隆Apu3.A9-H10中每一个的抗体均包含轻链可变域,其中框架序列包含至少一条SEQ ID NO:189-204中的序列,以及HVR-L1为SEQ ID NO:3,HVR-L2序列为对于表B中每一个克隆所明确列举的那些序列,而HVR-L3序列为SEQ ID NO:4。
在一个实施方案中,本发明的抗体包含重链可变域,其中框架序列包含至少一条SEQ ID NO:209-212中的序列,以及HVR H1、H2和H3序列分别为SEQ ID NO:5、60和6(克隆Apu3.A8)。类似地,在其它实施方案中,克隆Apu3.A9-H10中每一个的抗体均包含重链可变域,其中框架序列包含SEQ IDNO:209-212的至少一条序列,以及HVR-H1为SEQ ID NO:5,HVR-H2为对于表B中每一个克隆所明确列举的那些序列,而HVR-H3为SEQ ID NO:6。在一个实施方案中,本发明的抗体包含轻链可变域,其中框架序列包含至少一条SEQ ID NO:205-208中的序列,以及HVR L1、L2和L3序列分别为SEQ IDNO:3、8和4(Apu3.A8)。类似地,在其它实施方案中,表B中所示克隆Apu3.A9-H10中每一个的抗体均包含轻链可变域,其中框架序列包含SEQ IDNO:205-208中的至少一条序列,以及HVR-L1为SEQ ID NO:3,HVR-L2为序列为对于表B中每一个克隆所明确列举的那些序列,而HVR-L3为SEQ IDNO:4。
在一个实施方案中,本发明的抗体包含重链可变域,其中框架序列包含至少一条SEQ ID NO:217-220中的序列,HVR H1、H2和H3序列分别为SEQID NO:5、60和6(Apu3.A8)。类似地,在其它实施方案中,每一个克隆Apu3.A9-H10中的抗体均包含重链可变域,其中框架序列包含至少一条SEQID NO:217-220中的序列,以及HVR-H1为SEQ ID NO:5,HVR-H2序列为对于表B中每一个克隆所明确列举的那些序列,而HVR-H3为SEQ ID NO:6。在一个实施方案中,本发明的抗体包含轻链可变域,其中框架序列包含至少一条SEQ ID NO:213-216中的序列,以及HVR L1、L2和L3序列分别为SEQ IDNO:3、8和4(Apu3.A8)。类似地,在其它实施方案中,表B中所示克隆Apu3.A9-H10中每一个的抗体均包含轻链可变域,其中框架序列包含至少一条SEQ ID NO:213-216中的序列,以及HVR-L1为SEQ ID NO:3,HVR-L2序列为对于表B中每一个克隆所明确列举的那些序列,而HVR-L3为SEQ ID NO:4。
在另一个例子中,以高亲和力特异性结合K63连接的多聚遍在蛋白但以实质性降低的亲和力结合K48连接的多聚遍在蛋白的本发明亲和力成熟的抗体包含在HVR-H2第50、52、53、54和56位氨基酸处的替代。在另一个例子中,以高亲和力特异性结合K63连接的多聚遍在蛋白但以实质性降低的亲和力结合K48连接的多聚遍在蛋白的本发明亲和力成熟的抗体包含在HVR-L2第49、50、52、和53位氨基酸处的替代。
在一个实施方案中,本发明的抗体包含含有SEQ ID NO:5、8和6的序列的重链可变域。在一个实施方案中,本发明的抗体包含含有SEQ ID NO:3、60和4的序列的轻链可变域。在一个实施方案中,本发明的抗体包含含有SEQID NO:5、8和6的序列的重链可变域,以及还包含含有SEQ ID NO:3、60和4的序列的轻链可变域。在另一个实施方案中,本发明的抗体包含含有SEQ IDNO:5、63和6的序列的重链可变域。在一个实施方案中,本发明的抗体包含含有SEQ ID NO:3、11和4的序列的轻链可变域。在一个实施方案中,本发明的抗体包含含有SEQ ID NO:5、63和6的序列的重链可变域,以及还包含含有SEQ ID NO:3、11和4的序列的轻链可变域。在另一个实施方案中,本发明的抗体包含含有SEQ ID NO:5、66和6的序列的重链可变域。在一个实施方案中,本发明的抗体包含含有SEQ ID NO:3、14和4的序列的轻链可变域。在一个实施方案中,本发明的抗体包含含有SEQ ID NO:5、66和6的序列的重链可变域,以及还包含含有SEQ ID NO:3、14和4的序列的轻链可变域。
一方面,本发明提供一种与任一前述抗体竞争与多聚遍在蛋白结合的抗体。一方面,本发明提供一种与任一前述抗体结合相同的多聚遍在蛋白上抗原决定簇的抗体。
如本文中所示,本发明的抗体与具有特定赖氨酸键的分离的多聚遍在蛋白特异性结合。如本文中所示,本发明的抗体还与当该多聚遍在蛋白与异源蛋白连接时具有K63赖氨酸键的多聚遍在蛋白特异性结合(参见如实施例2和3)。
提供了包含至少一种抗多聚遍在蛋白抗体或包含至少一种编码抗多聚遍在蛋白抗体的序列的多核苷酸的组合物。在某些实施方案中,该组合物可以是药物组合物。如本文中所使用的,所述组合物包含一种或多种与一种或多种多聚遍在蛋白结合的抗体和/或一种或多种包含编码一种或多种与一种或多种多聚遍在蛋白结合的抗体的序列的多核苷酸。这些组合物可进一步包含合适的载体,例如本领域众所周知的包括缓冲剂在内的药学上可接受的赋形剂。
还提供了分离的抗体和多核苷酸。在某些实施方案中,分离的抗体和多核苷酸是基本上纯的。
在一个实施方案中,抗多聚遍在蛋白抗体是单克隆抗体。在另一个实施方案中,提供了抗多聚遍在蛋白抗体的片段(例如Fab、Fab’-SH和F(ab’)2片段)。可通过传统的方法例如酶消化或通过重组技术产生这些抗体片段。上述抗体片段可以是嵌合的、人源化的或人的。这些片段具有下列诊断和治疗用途。
使用噬菌体展示文库产生抗多聚遍在蛋白抗体
多种用于产生可获得目的抗体的噬菌体展示文库的方法是本领域已知的。一种产生目的抗体的方法是通过使用如Lee等,J.Mol.Biol.(2004),340(5):1073-93中所描述的噬菌体抗体文库。
可通过使用组合文库来筛选具有期望活性的合成的抗体克隆从而制备本发明的抗多聚遍在蛋白抗体。原则上,通过筛选含有展示融合至噬菌体外壳蛋白的抗体可变区(Fv)的不同片段的噬菌体的噬菌体文库选择合成的抗体克隆。通过针对期望抗原的亲和层析淘选上述噬菌体文库。表达能结合期望抗原的Fv片段的克隆为该抗原所吸附,并因此与文库中非结合克隆相分离。然后将结合的克隆从抗原上洗脱下,并通过额外的抗原吸附/洗脱循环进一步富集。可通过设计合适的抗原筛选方法来选择目的噬菌体克隆,然后使用来自目的噬菌体克隆的Fv序列和Kabat等,Sequences of Proteins ofImmunological Interest,第5版,NIH出版物91-3242,Bethesda MD(1991),vols.1-3中描述的合适的恒定区(Fc)序列构建全长抗多聚遍在蛋白抗体克隆,从而获得任何一种本发明的抗多聚遍在蛋白抗体。
抗体的抗原结合区由来自于两个可变(V)区(分别来自轻链(VL)和重链(VH))的约110个氨基酸所组成,所述两个可变区都存在3个高变环或互补决定区(CDRs)。如Winter等,Ann.Rev.Immunol.,12:433-455(1994)中所描述的,可变区可作为其中VH和VL通过短的、柔性肽共价连接的单链Fv(scFv)片段或作为其中VH和VL各自融合至恒定区并非共价相互作用的Fab片段在噬菌体上被功能性地展示。如本文中所使用的,scFv编码噬菌体克隆和Fab编码噬菌体克隆共同地被称为“Fv噬菌体克隆”或“Fv克隆”。
可通过聚合酶链反应(PCR)分别克隆VH和VL基因库并在噬菌体文库中随机重组,然后可如Winter等,Ann.Rev.Immunol.,12:433-455(1994)中所描述的搜寻抗原结合克隆。免疫来源的文库提供了针对免疫原的高亲和力抗体,无需构建杂交瘤。可选地,可克隆天然库以提供针对各种非自身以及自身抗原的单一来源的人抗体,而无需任何如Griffiths等,EMBO J,12:725-734(1993)中所描述的免疫接种。最后,还可通过从干细胞中克隆未重排的V-基因区段并使用含有随机序列的PCR引物来编码高变CDR3区并如Hoogenboom和Winter,J.Mol.Biol.,227:381-388(1992)所描述的完成体外重排,从而合成天然文库。
丝状噬菌体通过与小外壳蛋白pIII融合用于展示抗体片段。如Marks等,J.Mol.Biol.,222:581-597(1991)所描述的,抗体片段可展示为单链Fv片段,其中VH和VL区在同一多肽链上通过柔性间隔多肽连接,或如Hoogenboom等,Nucl.Acids Res.,19:4133-4137(1991)中所描述的,抗体可展示为Fab片段,其中一条链融合至pIII,另一条链则分泌到细菌宿主细胞周质中,在此通过取代某些野生型外壳蛋白,该Fab-外壳蛋白结构装配体展示在噬菌体表面上。
一般而言,编码抗体基因片段的核酸是从收获自人或动物的免疫细胞处获得的。如果期望文库偏向抗多聚遍在蛋白克隆,则用多聚遍在蛋白免疫接种受试者以产生抗体应答,并回收脾细胞和/或循环的B细胞或其它外周血淋巴细胞(PBL)用于文库构建。在一个实施方案中,通过在携带有功能性人免疫球蛋白基因阵列(并缺少功能性内源抗体产生***)的转基因小鼠中产生抗人多聚遍在蛋白抗体应答,使得多聚遍在蛋白免疫接种引起了产生针对多聚遍在蛋白的人抗体的B细胞,从而获得偏向抗人多聚遍在蛋白克隆的人抗体基因片段文库。产生人抗体的转基因小鼠的产生描述于如下的第(III)(b)节中。
可通过使用合适的筛选方法来分离表达多聚遍在蛋白特异性膜结合抗体的B细胞,如通过使用多聚遍在蛋白亲和层析来分离细胞或用荧光染料标记多聚遍在蛋白接着通过荧光激活细胞分选(FACS)来吸附细胞,从而获得额外的抗多聚遍在蛋白反应性细胞群体的富集。
可选地,来自未经免疫的供体的脾细胞和/或B细胞或其它PBL的使用提供了较佳的可能的抗体库,并且还容许使用任何其中多聚遍在蛋白为非抗原性的动物物种(人或非人)构建抗体文库。对于在体外整合抗体基因的文库构建,从受试者中收获干细胞以提供编码未重排抗体基因区段的核酸。目的免疫细胞可获得自多种动物物种,如人、小鼠、大鼠、兔、luprine、犬、猫、猪、牛、马和鸟类物种等。
从目的细胞回收编码抗体可变区基因区段(包括VH和VL区段)的核酸并扩增。在重排VH和VL基因文库的情况下,可通过如Orlandi等,Proc.Natl.Acad.Sci.(USA),86:3833-3837(1989)中所描述的,通过从淋巴细胞中分离基因组DNA或mRNA,接着使用与重组VH和VL基因的5′和3′末端相匹配的引物进行聚合酶链反应(PCR)获得期望的DNA,由此使不同的V基因库得以表达。如Orlandi等(1989)以及Ward等,Nature,341:544-546(1989)中所描述的,可使用处于编码成熟的V-区的外显子5′末端的反向引物和基于J-区中的正向引物从cDNA和基因组DNA扩增V基因。然而,对于从cDNA扩增,反向引物还可基于如Jones等,Biotechnol.,9:88-89(1991)中所描述的先导外显子,以及正向引物是如Sastry 等,Proc.Natl.Acad.Sci.(USA),86:5728-5732(1989)中所描述的处于恒定区中。为了使互补性最大化,可如Orlandi等(1989)或Sastry等(1989)中所描述的将简并性并入引物中。在某些实施方案中,如Marks等,J.Mol.Biol.,222:581-597(1991)的方法或Orum等,NucleicAcids Res.,21:4491-4498(1993)的方法中所描述的,通过使用靶向每一V-基因家族的PCR引物使文库多样性得以最大化,以便扩增所有可得到的存在于免疫细胞核酸样品中的VH和VL排列。为了将扩增的DNA克隆入表达载体中,如Orlandi等(1989)中所描述的,可将罕见的限制酶切位点导入PCR引物中作为在一末端的标签,或如Clackson等,Nature,352:624-628(1991)中所描述的,通过使用标记的引物进行进一步的PCR扩增。
合成重排的V基因库可体外来源于V基因区段。大部分的人VH-基因区段已被克隆和测序(报道于Tomlinson等,J.Mol.Biol.,227:776-798(1992)中),并被作图(报道于Matsuda等,Nature Genet.,3:88-94(1993)中);如Hoogenboom和Winter,J.Mol.Biol.,227:381-388(1992)中所描述的,使用编码不同序列和长度的H3环的PCR引物,这些克隆的区段(包括H1和H2环的所有主要构象)可用于产生不同的VH基因库。如Barbas等,Proc.Natl.Acad.Sci.USA,89:4457-4461(1992)中所描述的,也可使用所有的序列多样性都集中于单一长度的长H3环制备VH库。人Vκ和Vλ区段已被克隆和测序(报道于Williams和Winter,Eur.J.Immunol.,23:1456-1461(1993)中)并可用于制备合成的轻链库。基于不同的VH和VL折叠(fold)以及L3和H3长度的合成的V基因库会编码具相当大的结构多样性的抗体。在V-基因编码DNA扩增后,可根据Hoogenboom和Winter,J.Mol.Biol.,227:381-388(1992)的方法在体外重排种系V-基因区段。
可以几种方式通过将VH和VL基因库组合在一起构建抗体片段库。可在不同的载体中创建每个库,并且如Hogrefe等,Gene,128:119-126(1993)中所描述的在体外重组载体,或如Waterhouse等,Nucl.Acids Res.,21:2265-2266(1993)中所描述的loxP***在体内通过组合感染重组载体。该体内重组方法利用了Fab片段的两条链的特性来克服大肠杆菌转化效率所造成的对文库大小的限制。分别克隆天然VH和VL库,一个库克隆入噬菌粒中,另一个库克隆入噬菌体载体中。然后通过噬菌体感染含噬菌粒细菌组合这两个文库,使得每个细胞都含有不同的组合并且文库大小仅受限于所存在细胞的数目(约1012个克隆)。这两个载体都含有体内重组信号,使得VH和VL基因在单个复制子上重组并共包装进噬菌体颗粒。这些巨大的文库提供了大量具有良好亲和力(约10-8M的Kd -1)的不同抗体。
可选地,如Barbas等,Proc.Natl.Acad.Sci.USA,88:7978-7982(1991)中所描述的,可将库顺序克隆入同一载体中,或如Clackson等,Nature,352:624-628(1991)中所描述的,通过PCR装配在一起并接着克隆。PCR装配还可用于将VH和VL DNA与编码柔性间隔肽的DNA连接以形成单链Fv(scFv)库。在又一种技术中,如Embleton等,Nucl.Acids Res.,20:3831-3837(1992)中所描述的,“细胞中PCR装配”用于通过PCR组合淋巴细胞中的VH和VL基因,并接着克隆所连接的基因的库。
可通过任何本领域已知的技术完成文库的筛选。例如,多聚遍在蛋白可用于包被吸附平板上的孔,在附着于吸附平板的宿主细胞上表达或在细胞分选中使用,或偶联至生物素供链霉抗生物素蛋白包被的珠子捕捉,或用于任何其它本领域已知的淘选噬菌体展示文库的方法中。
在适于噬菌体颗粒的至少一部分与吸附剂结合条件下,将噬菌体文库样品与固定化的多聚遍在蛋白接触。一般地,选择包括pH、离子强度、温度等的条件来模拟生理状态。洗涤与固相结合噬菌体,然后如Barbas等,Proc.Natl.Acad.Sci USA,88:7978-7982(1991)中所描述的通过酸或如Marks等,J.Mol.Biol.,222:581-597(1991)中所描述的通过碱,或如在类似于Clackson等,Nature,352:624-628(1991)的抗原竞争方法的方法中通过多聚遍在蛋白抗原竞争来洗脱。在单轮选择中噬菌体可富集20-1,000倍。此外,富集的噬菌体可在细菌培养物中生长并接受更多轮的选择。
选择的有效性依赖于许多因素,包括洗涤过程中的解离动力学和处于单个噬菌体上的多个抗体片段是否能同时与抗原结合。通过利用短洗涤、多价噬菌体展示和固相中高的抗原包被密度,从而具有快解离动力学(以及弱结合亲和力)的抗体能被保留。高密度并不仅仅通过多价相互作用稳定噬菌体,还有利于重新结合已解离的噬菌体。可通过利用长洗涤以及如Bass等,Proteins,8:309-314(1990)和WO 92/09690中所描述的单价噬菌体、和如Marks等,Biotechnol.,10:779-783(1992)中所描述的低的抗原包被密度展示促进选择具有慢解离动力学(以及良好的结合亲和力)的抗体。
即使对多聚遍在蛋白的亲和力稍有差异,也是有可能选择不同亲和力的噬菌体抗体。然而,经选择抗体的随机突变(如在上述某些亲和力成熟技术中所进行的)可能会产生许多突变体,大多数结合抗体,而少部分具有更高亲和力。由于多聚遍在蛋白有限,因此稀少的高亲和力噬菌体能够脱颖而出。为保留所有更高亲和力的突变体,可将噬菌体与过量的生物素化多聚遍在蛋白温育,但生物素化多聚遍在蛋白则处于比多聚遍在蛋白的靶摩尔亲和常数更低的摩尔浓度的浓度。接着可通过链霉抗生物素蛋白包被的顺磁性珠子捕捉高亲和力结合的噬菌体。上述“平衡捕捉”使得抗体能根据它们的结合亲和力被选择,具有容许仅具有2倍更高的亲和力的突变体克隆与大量具有更低亲和力的噬菌体相分离的灵敏度。还可控制用于洗涤结合在固相上的噬菌体的条件以基于解离动力学进行区分。
可基于活性选择抗多聚遍在蛋白克隆。在一个实施方案中,本发明提供了阻断多聚遍在蛋白配体与多聚遍在蛋白结合,但不阻断多聚遍在蛋白配体与第二种蛋白结合的抗多聚遍在蛋白抗体。相应于上述抗多聚遍在蛋白抗体的Fv克隆可通过以下步骤选择:(1)由如上述B(I)(2)节所述的噬菌体文库分离抗多聚遍在蛋白克隆,并任选地通过在合适的细菌宿主中培养所分离的噬菌体克隆群体从而扩增该群体;(2)分别相对于所期望的阻断和非阻断活性选择多聚遍在蛋白和第二种蛋白;(3)将抗多聚遍在蛋白噬菌体克隆吸附到固定化的多聚遍在蛋白上;(4)使用过量的所述第二种蛋白来洗脱任何非期望的识别与第二种蛋白的结合决定区相重叠或共享有该结合决定区的多聚遍在蛋白结合决定区的克隆;和(5)洗脱步骤(4)之后仍然吸附的克隆。任选地,具有期望阻断/非阻断特性的克隆可进一步通过重复一次或多次本文所描述的选择步骤得到富集。
使用常规技术易于分离并测序编码本发明的Fv克隆的DNA(如通过利用设计用来由杂交瘤或噬菌体DNA模板特异性扩增目的重链和轻链编码区的寡核苷酸引物)。一旦分离,就可将DNA置于表达载体中,然后将表达载体转染入不另外产生免疫球蛋白的宿主细胞如大肠杆菌细胞、猿COS细胞、中国仓鼠卵巢(CHO)细胞或骨髓瘤细胞中,以在重组的宿主细胞中获得期望单克隆抗体的合成。用于在细菌中重组表达抗体编码DNA的综述文献包括Skerra等,Curr.Opinion in Immunol.,5:256(1993)和Pluckthun,Immunol.Revs,130:151(1992)。
可将编码本发明Fv克隆的DNA与已知的编码重链和/或轻链恒定区(如可获得自Kabat等,同上的适当的DNA序列)的DNA序列组合以形成编码全长或部分长度的重链和/或轻链的克隆。应当理解的是任何同种型的恒定区都可用于该目的,包括IgG、IgM、IgA、IgD和IgE恒定区,并且上述恒定区可获得自任何人或动物物种。一种Fv克隆来源于一种动物(如人)物种的可变区DNA,并接着被融合至另一种动物物种的恒定区DNA以形成“杂合”抗体的编码序列,全长重链和/或轻链包括在如本文中所使用的“嵌合”和“杂合(hybrid)”抗体的定义中。在一个实施方案中,将来源于人可变区DNA的Fv克隆融合至人恒定区DNA以形成全人全长或部分长度的重链和/或轻链的编码序列。
产生自天然(naive)文库(天然或合成的)的抗体可具有适中的亲和力(约106-107M-1的Kd -1),但还可如Winter等(1994),同上所描述的在体外通过构建并重选择第二文库模拟亲和力成熟。例如,在Hawkins等,J.Mol.Biol.,226:889-896(1992)的方法中或在Gram等,Proc.Natl.Acad.Sci USA,89:3576-3580(1992)的方法中,通过使用易错聚合酶(报道于Leung等,Technique,1:11-15(1989)中)可在体外随机导入突变。此外,如在经选择的单个Fv克隆及筛选更高亲和力的克隆中,利用具有携带跨越目的CDR的随机序列的引物的PCR,可通过随机突变一个或多个CDR进行亲和力成熟。WO 9607754(公开于1996年3月14日)描述了一种用于在免疫球蛋白轻链的互补决定区中诱导突变以创建轻链基因文库的方法。另一种有效的方法是如Marks等,Biotechnol.,10:779-783(1992)中所描述的,重组通过使用获得自未经免疫的供体的天然存在的V区变体库经噬菌体展示,并在几轮链改组中筛选根据更高亲和力所选择的VH或VL区。该技术使具有10-9M范围内的亲和力的抗体和抗体片段能得以产生。
产生抗多聚遍在蛋白抗体的其它方法
产生抗体和评估抗体亲和力的其它方法是本领域众所周知的,并描述于如Kohler等,Nature 256:495(1975);美国专利号4,816,567;Goding,Monoclonal Antibodies:Principles and Practice,pp.59-103(Academic Press,1986;Kozbor,J.Immunol.,133:3001(1984);Brodeur等,Monoclonal AntibodyProduction Techniques and Applications,pp.51-63(Marcel Dekker,Inc.,NewYork,1987;Munson等,Anal.Biochem.,107:220(1980);Engels等,Agnew.Chem.Int.Ed.Engl.,28:716-734(1989);Abrahmsen等,EMBO J.,4:3901(1985);Methods in Enzymology,vol.44(1976);Morrison等,Proc.Natl.Acad.Sci.USA,81:6851-6855(1984)中。
一般方法
一般而言,本发明提供了亲和力成熟的抗K63连接的多聚遍在蛋白抗体。这些抗体具有相对于美国专利公开号US2007-0218069(通过述及完整收入本文)中记载的抗体升高的对K63连接的多聚遍在蛋白的亲和力和特异性。在该公开文本鉴定的最好的抗K63连接的Fab(Apu2.16)具有大约100nM的Kd和对K48连接的多聚遍在蛋白的小量人为结合(artifactual binding)。本文中提供的改良的Fab和抗体是Apu2.16的亲和力成熟形式,而且最好的结合物(见例如Fab Apu3.A8、Apu3.A12、和Apu3.B3及其抗体型式)具有相对于Apu2.16在对K63连接的多聚遍在蛋白的亲和力方面大于10倍的升高及可忽略的对K48连接的多聚遍在蛋白的结合。这种亲和力和灵敏度升高容许本发明的分子用于受益于下列各项的应用和方法:相对于亲本分子Apu2.16,(a)本发明分子升高的灵敏度和/或(b)本发明分子对K63连接的多聚遍在蛋白的紧密结合和/或(c)本发明分子对K63连接的多聚遍在蛋白相对于K48连接的多聚遍在蛋白升高的特异性。
在一个实施方案中,本发明提供了具有治疗K63连接的多聚遍在蛋白介导的疾病用途的抗K63连接的多聚遍在蛋白抗体,在所述K63连接的多聚遍在蛋白介导的疾病中期望部分或全部阻断K63连接的多聚遍在蛋白的一种或多种活性。在一个实施方案中,本发明的抗K63连接的多聚遍在蛋白抗体用于治疗癌症。在另一个实施方案中,在此提供的抗K63连接的多聚遍在蛋白抗体用于治疗肌肉病症,例如上述的那些病症。在另一个实施方案中,在此提供的抗K63连接的多聚遍在蛋白抗体用于治疗神经***疾病,例如上述的那些疾病。在另一个实施方案中,在此提供的抗K63连接的多聚遍在蛋白抗体用于治疗遗传性疾病。在另一个实施方案中,在此提供的抗K63连接的多聚遍在蛋白抗体用于治疗免疫/炎性病症。
本发明抗K63连接的多聚遍在蛋白抗体的独特特性使得其尤其能用于在细胞***中区分多聚遍在蛋白的不同赖氨酸连接形式,而无需借助于麻烦且昂贵的遗传操作或生物物理方法如质谱法。本发明的抗K63连接的多聚遍在蛋白抗体可用于在体外以及在体内表征K63连接的多聚遍在蛋白的功能和活性。例如,如本文中所显示的,分别由于TNFα或IL-1β刺激,RIP和IRAK1在功能和活性方面受到附带K48连接的或K63连接的多聚遍在蛋白而得到调控。本发明的抗K63连接的多聚遍在蛋白抗体容许在直接且例行的生物分子测定法诸如免疫沉淀、ELISA、或免疫显微术中灵敏且特异性地检测K63-遍在蛋白化形式的例如RIP和/或IRAK,无需质谱术或遗传操作。继而,这在观察和阐述这些途径的正常功能及检测何时这些途径异常发挥功能中提供重大优势。
本发明的抗K63连接的多聚遍在蛋白抗体还可用于确定特定赖氨酸连接的多聚遍在蛋白在疾病发展和发病机理中的作用。例如,如上所述,本发明的抗K63连接的多聚遍在蛋白抗体可用于确定RIP或IRAK1是否是异常K63-多聚遍在蛋白化的,其继而提供关于TNFα或IL-1β信号传导正常或异常功能的信息,这可以与一种或多种疾病状态关联起来。
本发明的抗K63连接的多聚遍在蛋白抗体可进一步用于治疗其中一种或多种K63连接的多聚遍在蛋白异常调节或异常功能的疾病,而不干扰对该本发明抗多聚遍在蛋白抗体而言非特异的多聚遍在蛋白的正常活性。
在另一方面中,本发明的抗K63连接的多聚遍在蛋白抗体具有作为用于检测和分离K63连接的多聚遍在蛋白的效用,例如检测不同的细胞类型和组织中的K63连接的多聚遍在蛋白,包括测定K63连接的多聚遍在蛋白密度和在细胞群体和给定细胞中的分布,以及基于K63连接的多聚遍在蛋白存在或数量的细胞分选。本发明的抗体不仅能够特异性结合各种链长度的分离的K63连接的多聚遍在蛋白,而且还能够特异性结合经K63连接的多聚遍在蛋白多聚遍在蛋白化的蛋白质,如此本文涵盖对游离的(即未偶联异源蛋白质的)或K63连接的多聚遍在蛋白化的蛋白质(即偶联有异源蛋白质的)和/或二者的检测和结合。
在又一方面中,本发明的抗K63连接的多聚遍在蛋白抗体用于开发具有类似于本发明受试抗体的阻断活性模式的多聚遍在蛋白拮抗剂。例如,本发明的抗K63连接的多聚遍在蛋白抗体可用于测定并鉴定其它具有相同的K63连接的多聚遍在蛋白结合特性和/或阻断K63连接的多聚遍在蛋白介导的途径能力的抗体。
作为更进一步的例子,本发明的抗K63连接的多聚遍在蛋白抗体可用于鉴定与本文所举例说明的抗体基本上结合相同的K63连接的多聚遍在蛋白抗原决定簇的其它抗多聚遍在蛋白抗体,所述抗原决定簇包括线性和构象表位。
本发明的抗多聚遍在蛋白抗体可用于基于生理学途径的测定法,其中K63连接的多聚遍在蛋白涉及筛选K63连接的多聚遍在蛋白的小分子拮抗剂,所述小分子拮抗剂在阻断一种或多种结合伴侣与K63连接的多聚遍在蛋白结合中将展现与该抗体类似的药理学效应。例如,已知K63连接的多聚遍在蛋白涉及DNA修复(参见如Pickart和Fushman,Curr.Opin.Chem.Biol.8:610-616(2004)),因此可将抗K63连接的多聚遍在蛋白抗体拮抗DNA修复途径的活性与在相同的DNA修复途径中K63连接的多聚遍在蛋白的一种或多种可能的小分子拮抗剂的活性相比较。类似地,在另一个例子中,已知K63连接的多聚遍在蛋白涉及帕金森氏病中Lewy小体的形成(参见如Lim等,J.Neurosci.25(8):2002-9(2005)),因此可将抗K63连接的多聚遍在蛋白抗体拮抗Lewy小体形成的活性与在拮抗Lewy小体形成中K63连接的多聚遍在蛋白的一种或多种可能的小分子拮抗剂的活性相比较。
可使用本领域常规技术来实现候选抗体的生成,包括那些在本文中所描述的技术如杂交瘤技术和使用结合分子(binder molecules)筛选噬菌体展示文库。这些方法是本领域众所周知的。
简言之,可通过利用组合文库来筛选具有期望活性的合成的抗体克隆,制备本发明的抗多聚遍在蛋白抗体。原则上,通过筛选含有展示融合至噬菌体外壳蛋白的不同的抗体可变区(Fv)片段的噬菌体的噬菌体文库,选择合成的抗体克隆。通过针对期望抗原的亲和层析淘选上述噬菌体文库。能与期望抗原结合的表达Fv片段的克隆吸附在抗原上,并因此与文库中非结合克隆相分离。然后从抗原上洗脱结合的克隆,并可通过额外的抗原吸附/洗脱循环进一步富集。可通过设计合适的抗原筛选方法来筛选目的噬菌体克隆,接着使用来自目的噬菌体克隆的Fv序列和Kabat等,Sequences of Proteins ofImmunological Interest,第5版,NIH出版物91-3242,Bethesda MD(1991),vols.1-3中所描述的合适的恒定区(Fc)序列构建全长抗多聚遍在蛋白抗体克隆,从而获得任何一种本发明的抗多聚遍在蛋白抗体。还参见PCT公开号WO03/102157及其中引用的文献。
在一个实施方案中,本发明的抗多聚遍在蛋白抗体是单克隆抗体。还包括在本发明范围中的是本文所提供的抗多聚遍在蛋白抗体的抗体片段如Fab、Fab′、Fab′-SH和F(ab′)2片段及其变体。可通过传统方法如酶消化或可通过重组技术产生这些抗体片段。上述抗体片段可以是嵌合的、人的或人源化的。这些片段具有本文所列的实验、诊断以及治疗用途。
单克隆抗体可获得自一群基本上均质的抗体,即除有可能天然存在的少量突变之外,这一群体所包含的个体抗体是相同的。因此,修饰语“单克隆”指该抗体不是不同抗体混合物的抗体特性。
可使用多种本领域已知方法制备本发明的抗多聚遍在蛋白单克隆抗体,包括为Kohler等,Nature,256:495(1975)所首先描述的杂交瘤法,或可选地可通过重组DNA法(如美国专利号4,816,567)制备它们。
载体、宿主细胞和重组方法
为了重组生产本发明的抗体,分离编码它的核酸,并将其***可复制载体,用于进一步克隆(DNA扩增)或表达。可使用常规流程容易的分离编码抗体的DNA并测序(如使用能够与编码抗体重链和轻链的基因特异结合的寡核苷酸探针)。可利用许多载体。载体的选择部分取决于将要使用的宿主细胞。宿主细胞包括但不限于原核或真核(通常是哺乳动物)起源的。应当领会,任何同种型的恒定区可用于此目的,包括IgG、IgM、IgA、IgD和IgE恒定区,而且此类恒定区可以从任何人或动物物种获得。
使用原核宿主细胞生成抗体:
载体构建
可使用标准重组技术来获得编码本发明抗体多肽构件的多核苷酸序列。可从抗体生成细胞诸如杂交瘤细胞分离期望的多核苷酸序列并测序。或者,可使用核苷酸合成仪或PCR技术合成多核苷酸。一旦得到,将编码多肽的序列***能够在原核宿主中复制并表达异源多核苷酸的重组载体。为了本发明,可使用本领域可获得的且知道的许多载体。适宜载体的选择将主要取决于将要***载体的核酸的大小和将要用载体转化的具体宿主细胞。根据其功能(扩增或表达异源多核苷酸,或二者兼之)及其与它在其中驻留的具体宿主细胞的相容性,每种载体含有多种构件。载体构件通常包括但不限于复制起点、选择标志基因、启动子、核糖体结合位点(RBS)、信号序列、异源核酸***片段、和转录终止序列。
一般而言,与宿主细胞一起使用的质粒载体包含衍生自与这些宿主相容物种的复制子和控制序列。载体通常携带复制位点,以及能够在转化细胞中提供表型选择的标志序列。例如,通常用衍生自大肠杆菌物种的质粒pBR322转化大肠杆菌。pBR322包含编码氨苄青霉素(Amp)和四环素(Tet)抗性的基因,由此提供轻松鉴定转化细胞的手段。pBR322、其衍生物、或其它微生物质粒或噬菌体还可包含或经修饰而包含可被微生物生物体用于表达内源蛋白质的启动子。Carter等人,美国专利5,648,237中详细记载了用于表达特定抗体的pBR322衍生物的实例。
另外,可将包含与宿主微生物相容的复制子和控制序列的噬菌体载体用作这些宿主的转化载体。例如,可使用噬菌体诸如λGEM.TM.-11来构建可用于转化易感宿主细胞诸如大肠杆菌LE392的重组载体。
本发明的表达载体可包含两种或多种启动子-顺反子对,它们编码每一种多肽构件。启动子是位于顺反子上游(5′)的非翻译调控序列,它调控顺反子的表达。原核启动子通常分成两类,诱导型的和组成性的。诱导型启动子指响应培养条件的变化(如营养物的存在与否或温度变化)而启动受其控制的顺反子的升高水平转录的启动子。
众所周知受到多种潜在宿主细胞识别的大量启动子。通过限制酶消化切下源DNA中的启动子并将分离的启动子序列***本发明的载体,由此可将选择的启动子与编码轻链或重链的顺反子DNA可操作连接。天然启动子序列和许多异源启动子都可用于指导靶基因的扩增和/或表达。在有些实施方案中,使用异源启动子,因为与天然靶多肽启动子相比,它们通常容许所表达靶基因的更高转录和更高产量。
适用于原核宿主的启动子包括PhoA启动子、β-半乳糖苷酶和乳糖启动子***、色氨酸(trp)启动子***、和杂合启动子诸如tac或trc启动子。然而,在细菌中有功能的其它启动子(诸如其它已知的细菌或噬菌体启动子)也是合适的。它们的核苷酸序列已经发表,由此熟练工作人员能够使用提供任何所需限制位点的接头或衔接头将它们与编码靶轻链和重链的顺反子可操作连接(Siebenlist et al.,Cell 20:269(1980))。
在本发明的一个方面,重组载体内的每个顺反子都包含指导所表达多肽穿膜转运的分泌信号序列构件。一般而言,信号序列可以是载体的构件,或者它可以是***载体的靶多肽DNA的一部分。为了本发明而选择的信号序列应当是受到宿主细胞识别并加工(即被信号肽酶切除)的信号序列。对于不识别并加工异源多肽的天然信号序列的原核宿主细胞,将信号序列用选自例如下组的原核信号序列替代:碱性磷酸酶、青霉素酶、Ipp、或热稳定的肠毒素II(STII)前导序列、Lamb、PhoE、PelB、OmpA和MBP。在本发明的一个实施方案中,表达***的两个顺反子中都使用的信号序列是STII信号序列或其变体。
在另一方面,依照本发明的免疫球蛋白的生成可在宿主细胞的细胞质中发生,因此不需要在每个顺反子内存在分泌信号序列。在那点上,免疫球蛋白轻链和重链在细胞质内表达、折叠和装配而形成功能性免疫球蛋白。某些宿主菌株(如大肠杆菌trxB-菌株)提供有利于二硫键形成的细胞质条件,从而容许所表达蛋白质亚基的正确折叠和装配。Proba and Pluckthun,Gene 159:203(1995))。
本发明的抗体可使用如下表达***来生成,其中所表达多肽构件的数量比率可以受到调控,从而将分泌且正确装配的本发明抗体的产量最大化。这种调控是至少部分通过同时调控多肽构件的翻译强度而实现的。
Simmons等人,美国专利5,840,523中公开了用于调控翻译强度的一种技术。它在顺反子内利用翻译起始区(TIR)的变体。对于指定TIR,可创建具有一定范围翻译强度的一系列氨基酸或核苷酸序列变体,由此提供针对特定链的期望表达水平调节此因素的方便手段。可通过常规诱变技术导致能改变氨基酸序列的密码子变化来生成TIR变体。在某些实施方案中,核苷酸序列中的变化是沉默的。TIR中的改变可包括例如Shine-Dalgarno序列的数目或间距的改变,及信号序列中的改变。用于生成突变型信号序列的一种方法是在编码序列的开端生成不改变信号序列氨基酸序列的“密码子库”(即变化是沉默的)。这可通过改变每个密码子的第三个核苷酸位置来实现;另外,有些氨基酸,诸如亮氨酸、丝氨酸、和精氨酸,具有多种第一个和第二个位置,这可在建库中增加复杂性。Yansura et al.,METHODS:A Companion to Methodsin Enzymol.4:151-158(1992)中详细记载了这种诱变方法。
在一个实施方案中,对于载体中的每个顺反子,生成具有一定范围TIR强度的一组载体。这个有限集合提供了每条链的表达水平以及期望抗体产物的产量在各种TIR强度组合下的比较。可通过量化报道基因的表达水平来测定TIR强度,Simmons等人,美国专利5,840,523中有详细描述。根据翻译强度的比较,选择期望的个别TIR在本发明的表达载体构建物中进行组合。
适于表达本发明抗体的原核宿主细胞包括古细菌(Archaebacteria)和真细菌(Eubacteria),诸如革兰氏阴性或革兰氏阳性生物体。有用细菌的实例包括埃希氏菌属(Escherichia)(如大肠埃希氏菌E.coli)、芽孢杆菌属(Bacillus)(如枯草芽孢杆菌B.subtilis)、肠杆菌属(Enterobacteria)、假单胞菌属(Pseudomonas)(如铜绿假单胞菌P.aeruginosa)物种、鼠伤寒沙门氏菌(Salmonella typhimurium)、粘质沙雷氏菌(Serratia marcescans)、克雷伯氏菌属(Klebsiella)、变形菌属(Proteus)、志贺氏菌属(Shigella)、根瘤菌属(Rhizobium)、透明颤菌属(Vitreoscilla)、或副球菌属(Paracoccus)。在一个实施方案中,使用革兰氏阴性细胞。在一个实施方案中,使用大肠杆菌细胞作为本发明的宿主。大肠杆菌菌株的实例包括菌株W3110(Bachmann,Cellular and Molecular Biology,第2卷,Washington,D.C.,美国微生物学学会,1987,第1190-1219页;ATCC保藏号27,325)及其衍生物,包括具有基因型W3110ΔfhuA(ΔtonA)ptr3lac Iq lacL8ΔompTΔ(nmpc-fepE)degP41 kanR的菌株33D3(美国专利号5,639,635)。其它菌株及其衍生物,诸如大肠杆菌294(ATCC 31,446)、大肠杆菌B、大肠杆菌λ1776(ATCC 31,537)和大肠杆菌RV308(ATCC 31,608)也是合适的。这些实例只是例示而非限制。本领域知道用于构建具有指定基因型的任何上述细菌衍生物的方法,参见例如Bass et al.,Proteins 8:309-314(1990)。通常必需考虑复制子在细菌细胞中的可复制性来选择适宜的细菌。例如,在使用众所周知的质粒诸如pBR322、pBR325、pACYC177或pKN410来提供复制子时,大肠杆菌、沙雷氏菌属、或沙门氏菌属物种可能适于用作宿主。通常,宿主细胞应当分泌最小量的蛋白水解酶,而且可能希望在细胞培养中掺入额外的蛋白酶抑制剂。
抗体生成
用上述表达载体转化宿主细胞,并在为了诱导启动子、选择转化子或扩增编码期望序列的基因而适当改动的常规营养培养基中进行培养。
转化即将DNA导入原核宿主,使得DNA能够进行复制,或是作为染色体外元件或是通过染色体成分。根据所用宿主细胞,使用适于这些细胞的标准技术进行转化。采用氯化钙的钙处理通常用于具有坚固细胞壁屏障的细菌细胞。另一种转化方法采用聚乙二醇/DMSO。使用的还有一种技术是电穿孔。
在本领域知道的且适于培养选定宿主细胞的培养基中培养用于生成本发明多肽的原核细胞。合适培养基的实例包括添加了必需营养补充物的LB培养基(Luria broth)。在有些实施方案中,培养基还含有根据表达载体的构建而选择的选择剂,以选择性容许包含表达载体的原核细胞生长。例如,向用于培养表达氨苄青霉素抗性基因的细胞的培养基中添加氨苄青霉素。
除了碳、氮、和无机磷酸盐来源以外,还可含有适当浓度的任何必需补充物,或是单独加入或是作为与另一种补充物或培养基的混合物,诸如复合氮源。任选的是,培养基可含有一种或多种选自下组的还原剂:谷胱甘肽、半胱氨酸、胱胺、巯基乙酸盐/酯、二硫赤藓糖醇和二硫苏糖醇。
在合适的温度培养原核宿主细胞。例如,对于培养大肠杆菌,进行培养的温度范围包括但不限于约20℃至约39℃、约25℃至约37℃、和约30℃。主要取决于宿主生物体,培养基的pH可以是范围为约5至约9的任何pH。对于大肠杆菌,pH可以是约6.8至约7.4、或约7.0。
如果本发明的表达载体中使用诱导型启动子,那么在适于激活启动子的条件下诱导蛋白质表达。在本发明的一个方面,使用PhoA启动子来控制多肽的转录。因此,为了诱导,在磷酸盐限制培养基中培养经过转化的宿主细胞。在一个实施方案中,磷酸盐限制培养基是C.R.A.P培养基(参见例如Simmonset al.,J.Immunol.Methods 263:133-147(2002))。根据所采用的载体构建物,可采用多种其它诱导物,正如本领域所知道的。
在一个实施方案中,所表达的本发明多肽分泌到宿主细胞的周质中并从中回收。蛋白质回收通常牵涉破坏微生物,通常通过诸如渗压震扰(osmoticshock)、超声处理或裂解等手段。一旦细胞遭到破坏,可通过离心或过滤清除细胞碎片或整个细胞。可以通过例如亲和树脂层析进一步纯化蛋白质。或者,蛋白质可能转运到培养液中并从中分离。可从培养液清除细胞,并将培养物上清液过滤和浓缩,用于进一步纯化所生成蛋白质。可使用普遍知道的方法诸如聚丙烯酰胺凝胶电泳(PAGE)和Western印迹分析进一步分离和鉴定所表达蛋白质。
在本发明的一个方面,通过发酵过程大量进行抗体生产。多种大规模补料-分批发酵流程可用于生产重组蛋白。大规模发酵具有至少1000升的容量,例如约1,000至100,000升的容量。这些发酵罐使用搅拌器叶轮来分配氧和养分,尤其是葡萄糖(常用的碳源/能源)。小规模发酵通常指在体积容量不超过约100升的发酵罐中进行的发酵,范围可以是约1升至约100升。在发酵过程中,通常在将细胞在合适条件下培养至期望密度(如OD550约180-220,在此阶段细胞处于早期稳定期)后启动蛋白质表达的诱导。根据所采用的载体构建物,可使用多种诱导物,正如本领域知道的和上文描述的。可在诱导前将细胞培养更短的时间。通常将细胞诱导约12-50小时,但是可使用更长或更短的诱导时间。
为了提高本发明多肽的产量和质量,可修改多项发酵条件。例如,为了改善所分泌抗体多肽的正确装配和折叠,可使用过度表达伴侣蛋白诸如Dsb蛋白(DsbA、DsbB、DsbC、DsbD和/或DsbG)或FkpA(具有伴侣活性的一种肽基脯氨酰-顺式,反式-异构酶)的额外载体来共转化宿主原核细胞。已经证明伴侣蛋白促进在细菌宿主细胞中生成的异源蛋白质的正确折叠和溶解度。Chen et al.,J.Biol.Chem.274:19601-19605(1999);Georgiou等人,美国专利6,083,715;Georgiou等人,美国专利6,027,888;Bothmann and Pluckthun,J.Biol.Chem.275:17100-17105(2000);Ramm and Pluckthun,J.Biol.Chem.275:17106-17113(2000);Arie et al.,Mol.Microbiol.39:199-210(2001))。
为了将所表达异源蛋白质(尤其是对蛋白水解敏感的异源蛋白质)的蛋白水解降至最低,可将蛋白水解酶缺陷的某些宿主菌株用于本发明。例如,可修饰宿主细胞菌株,在编码已知细菌蛋白酶的基因中进行遗传突变,诸如蛋白酶III、OmpT、DegP、Tsp、蛋白酶I、蛋白酶Mi、蛋白酶V、蛋白酶VI及其组合。可以获得有些大肠杆菌蛋白酶缺陷菌株,参见例如Joly et al.,(1998)见上文;Georgiou等人,美国专利5,264,365;Georgiou等人,美国专利5,508,192;Hara et al.,Microbial Drug Resistance 2:63-72(1996)。
在一个实施方案中,在本发明的表达***中使用蛋白水解酶缺陷且经过过度表达一种或多种伴侣蛋白的质粒转化的大肠杆菌菌株作为宿主细胞。
抗体纯化
在一个实施方案中,进一步纯化本文中生成的抗体蛋白质以获得基本上同质的制品,用于进一步的测定和使用。可采用本领域知道的标准蛋白质纯化方法。下面的流程是合适纯化流程的例示:免疫亲和或离子交换柱上的分馏、乙醇沉淀、反相HPLC、硅土或阳离子交换树脂诸如DEAE上的层析、层析聚焦、SDS-PAGE、硫酸铵沉淀、和使用例如Sephadex G-75的凝胶过滤。
在一个方面,将固定在固相上的蛋白A用于本发明抗体产物的免疫亲和纯化。蛋白A是来自金黄色葡萄球菌(Staphylococcus aureas)的41kD细胞壁蛋白质,它以高亲和力结合抗体Fc区。Lindmark et al.,J.Immunol.Meth.62:1-13(1983))。蛋白A固定其上的固相可以是具有玻璃或石英表面的柱子,或者可控孔径玻璃柱或硅酸柱。在有些应用中,柱子以诸如甘油等试剂包被,用以有可能防止污染物的非特异粘附。
作为纯化的第一步,可以将衍生自如上所述细胞培养物的制备物施加到蛋白A固定化固相上,使得目的抗体特异结合蛋白A。然后清洗固相以清除与固相非特异结合的污染物。最后通过洗脱从固相回收目的抗体。
使用真核宿主细胞生成抗体:
载体构件通常包括但不限于如下一种或多种:信号序列、复制起点、一种或多种标志基因、增强子元件、启动子、和转录终止序列。
(i)信号序列构件
在真核宿主细胞中使用的载体还可在目的成熟蛋白质或多肽的N端包含信号序列或具有特异切割位点的其它多肽。一般选择受到宿主细胞识别并加工(即被信号肽酶切除)的异源信号序列。在哺乳动物细胞表达中,可利用哺乳动物信号序列以及病毒分泌前导,例如单纯疱疹病毒gD信号。
将这些前体区的DNA连接到编码抗体的DNA的读码框中。
(ii)复制起点
通常,哺乳动物表达载体不需要复制起点构件。例如,SV40起点通常可能只因包含早期启动子才使用。
(iii)选择基因构件
表达和克隆载体可包含选择基因,也称为选择标志。典型的选择基因编码如下蛋白质:(a)赋予对抗生素或其它毒素的抗性,如氨苄青霉素、新霉素、甲氨蝶呤或四环素;(b)补足相应的营养缺陷;或(c)提供不能从复合培养基获得的关键营养物。
选择方案的一个实例利用药物来阻滞宿主细胞的生长。经异源基因成功转化的那些细胞生成赋予药物抗性的蛋白质,因而幸免于选择方案。此类显性选择的实例使用药物新霉素、霉酚酸和潮霉素。
适于哺乳动物细胞的选择标志的另一个实例是能够鉴定有能力摄取抗体核酸的细胞的选择标志,诸如DHFR、胸苷激酶、金属硫蛋白I和II(例如灵长类金属硫蛋白基因)、腺苷脱氨酶、鸟氨酸脱羧酶等。
例如,可以首先通过将所有转化子在含有甲氨蝶呤(Mtx,DHFR的一种竞争性拮抗剂)的培养基中进行培养来鉴定经DHFR选择基因转化的细胞。在采用野生型DHFR时,适宜的宿主细胞包括例如DHFR活性缺陷的中国仓鼠卵巢(CHO)细胞系(如ATCC CRL-9096)。
或者,可通过在含有针对选择标志的选择剂诸如氨基糖苷抗生素如卡那霉素、新霉素或G418的培养基中培养细胞来选择经编码抗体、野生型DHFR蛋白、和另一种选择标志诸如氨基糖苷3′-磷酸转移酶(APH)的DNA序列转化或共转化的宿主细胞(特别是包含内源DHFR的野生型宿主)。参见美国专利4,965,199。
(iv)启动子构件
表达和克隆载体通常包含受到宿主生物体识别的启动子,且与编码感兴趣多肽(例如抗体)的核酸可操作连接。已知真核细胞的启动子序列。事实上,所有真核基因都具有富含AT区,它位于起始转录的位点上游约25至30个碱基处。在许多基因的转录起点上游70至80个碱基处发现的另一种序列是CNCAAT区,其中N可以是任何核苷酸。在大多数真核基因的3′端是AATAAA序列,它可能是向编码序列的3′端添加聚腺苷酸(polyA)尾的信号。所有这些序列合适的***真核表达载体中。
在哺乳动物宿主细胞中由载体转录抗体多肽可以受到例如从病毒(诸如多瘤病毒、禽痘病毒、腺病毒(诸如2型腺病毒)、牛***瘤病毒、禽类肉瘤病毒、巨细胞病毒、逆转录病毒、乙肝病毒、和猿猴病毒40(SV40))基因组获得的、来自异源哺乳动物启动子(如肌动蛋白启动子或免疫球蛋白启动子)的、或来自热休克启动子的启动子的控制,倘若这些启动子与宿主细胞***相容的话。
方便地以SV40限制性片段的形式获得SV40病毒的早期和晚期启动子,该片段还包含SV40病毒复制起点。方便地以HindIII E限制性片段的形式获得人巨细胞病毒的立即早期启动子。美国专利4,419,446中公开了使用牛***瘤病毒作为载体在哺乳动物宿主中表达DNA的***。美国专利4,601,978中记载了该***的一种修改。关于在小鼠细胞中在来自单纯疱疹病毒的胸苷激酶启动子的控制下表达人β-干扰素cDNA还可参见Reyes et al.,Nature 297:598-601(1982)。或者,可使用劳氏肉瘤病毒长末端重复序列作为启动子。
(v)增强子元件构件
常常可以通过在载体中***增强子序列来提高高等真核细胞对编码本发明抗体多肽的DNA的转录。现在知道来自哺乳动物基因(球蛋白、弹性蛋白酶、清蛋白、α-胎蛋白和胰岛素)的许多增强子序列。然而,通常使用来自真核细胞病毒的增强子。实例包括SV40复制起点晚期侧的增强子(bp100-270)、巨细胞病毒早期启动子增强子、多瘤病毒复制起点晚期侧的增强子、和腺病毒增强子。关于激活真核启动子的增强元件还可参见Yaniv,Nature297:17-18(1982)。增强子可剪接到载体中,位于抗体多肽编码序列的5′或3′位置,但是一般位于启动子的5′位点。
(vi)转录终止构件
在真核宿主细胞中使用的表达载体通常还包含终止转录和稳定mRNA所必需的序列。此类序列通常可从真核或病毒DNA或cDNA非翻译区的5′端和偶尔的3′端获得。这些区域包含在编码抗体的mRNA的非翻译区中转录成聚腺苷酸化片段的核苷酸区段。一种有用的转录终止构件是牛生长激素聚腺苷酸化区。参见WO94/11026及其中公开的表达载体。
(vii)宿主细胞的选择和转化
适于克隆或表达本文载体中的DNA的宿主细胞包括本文描述的高等真核细胞,包括脊椎动物宿主细胞。脊椎动物细胞在培养(组织培养)中的繁殖已经成为常规流程。有用哺乳动物宿主细胞系的实例有经SV40转化的猴肾CV1系(COS-7,ATCC CRL 1651)、人胚肾系(293细胞或为悬浮培养而亚克隆的293细胞,Graham et al.,J.Gen.Virol.36:59(1977))、幼仓鼠肾细胞(BHK,ATCC CCL 10)、中国仓鼠卵巢细胞/-DHFR(CHO,Urlaub et al.,Proc.Natl.Acad.Sci.USA 77:4216(1980))、小鼠塞托利(Sertoli)细胞(TM4,Mather,Biol.Reprod.23:243-251(1980))、猴肾细胞(CV1,ATCC CCL 70)、非洲绿猴肾细胞(VERO-76,ATCC CRL 1587)、人***细胞(HELA,ATCC CCL
2)、犬肾细胞(MDCK,ATCC CCL 34)、牛鼠(buffalo rat)肝细胞(BRL 3A,ATCC CRL 1442)、人肺细胞(W138,ATCC CCL 75)、人肝细胞(Hep G2,HB 8065)、小鼠乳瘤(MMT 060562,ATCC CCL 51)、TRI细胞(Mather et al.,Annals N.Y.Acad.Sci.383:44-68(1982))、MRC 5细胞、FS4细胞和人肝细胞瘤(hepatoma)系(Hep G2)。
为了生成抗体,用上文所述表达或克隆载体转化宿主细胞,并在为了诱导启动子、选择转化子或扩增编码期望序列的基因而适当改动的常规营养培养基中进行培养。
(viii)宿主细胞的培养
可在多种培养基中培养用于生成本发明抗体的宿主细胞。商品化培养基诸如Ham氏F10(Sigma)、极限必需培养基(MEM,Sigma)、RPMI-1640(Sigma)、和Dulbecco氏修改Eagle氏培养基(DMEM,Sigma)适于培养宿主细胞。另外,可使用下列文献中记载的任何培养基作为宿主细胞的培养基:Ham et al.,Meth.Enz.58:44(1979);Barnes et al.,Anal.Biochem.102:255(1980);美国专利4,767,704;4,657,866;4,927,762;4,560,655;5,122,469;WO90/03430;WO 87/00195;或美国专利复审30,985。任何这些培养基可根据需要补充激素和/或其它生长因子(诸如胰岛素、运铁蛋白或表皮生长因子)、盐(诸如氯化钠、钙、镁和磷酸盐)、缓冲剂(诸如HEPES)、核苷酸(诸如腺苷和胸苷)、抗生素(诸如GENTAMYCINTM药物)、痕量元素(定义为通常以微摩尔范围的终浓度存在的无机化合物)、和葡萄糖或等效能源。还可以适宜浓度含有本领域技术人员知道的任何其它必需补充物。培养条件诸如温度、pH等即为表达而选择的宿主细胞先前所用的,这对于普通技术人员是显然的。
(ix)抗体的纯化
在使用重组技术时,可在细胞内生成抗体,或者直接分泌到培养基中。如果在细胞内生成抗体,那么首先一般通过例如离心或超滤清除微粒碎片,或是宿主细胞或是裂解片段。如果抗体分泌到培养基中,那么通常首先使用商品化蛋白质浓缩滤器(例如Amicon或Millipore Pellicon超滤单元)浓缩来自这些表达***的上清液。可在任何上述步骤中包括蛋白酶抑制剂诸如PMSF以抑制蛋白水解,而且可包括抗生素以防止外来污染物的生长。
可使用例如羟磷灰石层析、凝胶电泳、透析和亲和层析(一般可接受的纯化技术是亲和层析)来纯化从细胞制备的抗体组合物。亲和试剂诸如蛋白A作为亲和配体的适宜性取决于抗体中存在的任何免疫球蛋白Fc结构域的种类和同种型。蛋白A可用于纯化基于人γ1、γ2、或γ4重链的抗体(Lindmark etal.,J.Immunol.Meth.62:1-13(1983))。蛋白G推荐用于所有小鼠同种型和人γ3(Guss et al.,EMBO J.5:1567-1575(1986))。亲和配体所附着的基质最常用的是琼脂糖,但是可使用其它基质。物理稳定的基质诸如可控孔径玻璃或聚(苯乙烯二乙烯)苯能获得比琼脂糖更快的流速和更短的加工时间。若抗体包含CH3结构域,则可使用Bakerbond ABXTM树脂(J.T.Baker,Phillipsburg,NJ)进行纯化。根据待回收的抗体,也可使用其它蛋白质纯化技术诸如离子交换柱上的分馏、乙醇沉淀、反相HPLC、硅土上的层析、肝素SEPHAROSETM上的层析、阴离子或阳离子交换树脂(诸如聚天冬氨酸柱)上的层析、层析聚焦、SDS-PAGE和硫酸铵沉淀。
在任何初步纯化步骤之后,可将含有目的抗体和污染物的混合物在必要时进行进一步的纯化步骤,例如低pH疏水相互作用层析,使用pH约2.5-4.5的洗脱缓冲液,一般在低盐浓度(如约0-0.25M盐)进行。
应当注意,一般而言,用于制备供研究、测试和临床使用的抗体的技术和方法是本领域已完善建立的,与上文是一致的和/或本领域技术人员认为对于特定的感兴趣抗体是适宜的。
活性测定法
可通过本领域知道的多种测定法对本发明的抗体鉴定它们的物理/化学特性和生物学功能。
可通过一系列测定法进一步表征纯化的抗体,包括但不限于N端测序、氨基酸分析、非变性大小排阻高压液相层析(HPLC)、质谱、离子交换层析和木瓜蛋白酶消化。
在必要时,对抗体分析它们的生物学活性。在有些实施方案中,对本发明的抗体测试它们的抗原结合活性。本领域知道的且可用于本文的抗原结合测定法包括但不限于使用诸如Western印迹、放射免疫测定法、ELISA(酶联免疫吸附测定法)、“三明治”免疫测定法、免疫沉淀测定法、荧光免疫测定法和蛋白A免疫测定法等技术的任何直接或竞争性结合测定法。
在一个实施方案中,本发明设想了具有一些但非所有效应器功能的改良抗体,这使得它在抗体体内半衰期是重要的但某些效应物功能(诸如补体和ADCC)是不必要的或有害的许多应用中成为期望的候选物。在某些实施方案中,测量抗体的Fc活性以确保只保留了期望的特性。可进行体外和/或体内细胞毒性测定法以确认CDC和/或ADCC活性的降低/消减。例如,可进行Fc受体(FcR)结合测定法以确认抗体缺乏FcγR结合(因此有可能缺乏ADCC活性)但保留FcRn结合能力。介导ADCC的主要细胞,NK细胞,只表达FcγRIII,而单核细胞表达FcγRI、FcγRII和FcγRIII。Ravetch and Kinet,Annu.Rev.Immunol.9:457-92(1991)第464页表3总结了造血细胞上的FcR表达。美国专利5,500,362或5,821,337中记载了用于评估目的分子的ADCC活性的体外测定法的实例。可用于此类测定法的效应细胞包括外周血单个核细胞(PBMC)和天然杀伤(NK)细胞。或者/另外,可在体内评估目的分子的ADCC活性,如在动物模型中,诸如Clynes et al.,PNAS(USA)95:652-656(1998)中所公开的。还可进行C1q结合测定法以确认抗体不能结合C1q且因此缺乏CDC活性。为了评估补体激活,可进行CDC测定法,例如如Gazzano-Santoro et al.,J.Immunol.Methods 202:163(1996)中所述。还可使用本领域知道的方法进行FcRn结合和体内清除/半衰期测定。
抗体片段
本发明涵盖抗体片段。在某些情况中,使用抗体片段有优势,而不是完整抗体。片段的较小尺寸容许快速清除,而且可导致更易于接近实体瘤。
已经开发了用于生成抗体片段的多种技术。传统上,通过蛋白水解消化完整抗体来衍生这些片段(参见例如Morimoto et al.,Journal of Biochemicaland Biophysical Methods 24:107-117(1992);Brennan et al.,Science 229:81(1985))。然而,现在可直接由重组宿主细胞生成这些片段。Fab、Fv和scFv抗体片段都可在大肠杆菌中表达及由大肠杆菌分泌,如此容许容易的生成大量的这些片段。可从上文讨论的噬菌体抗体库中分离抗体片段。或者,可直接从大肠杆菌回收Fab′-SH片段并化学偶联以形成F(ab′)2片段(Carter et al.,Bio/Technology 10:163-167(1992))。依照另一种方法,可直接从重组宿主细胞培养物分离F(ab′)2片段。包含补救受体结合表位残基、具有延长的体内半衰期的Fab和F(ab′)2片段记载于美国专利No.5,869,046。用于生成抗体片段的其它技术对于熟练从业人员将是显而易见的。在其它实施方案中,选择的抗体是单链Fv片段(scFv)。参见WO 93/16185;美国专利No.5,571,894;及5,587,458。Fv和sFv是具有完整结合位点、缺少恒定区的唯一类型;如此,它们适于在体内使用时降低非特异性结合。可构建sFv融合蛋白以生成效应器蛋白质在sFv的氨基或羧基末端的融合。参见Antibody Engineering,Borrebaeck编,supra。抗体片段还可以是“线性抗体”,例如如美国专利No.5,641,870中所记载的。此类线性抗体片段可以是单特异性的或双特异性的。
人源化抗体
本发明涵盖人源化抗体。本领域知道用于人源化非人抗体的多种方法。例如,人源化抗体可具有一个或多个从非人来源引入的氨基酸残基。这些非人氨基酸残基常常称为“输入”残基,它们通常取自“输入”可变区。基本上可遵循Winter及其同事的方法进行人源化(Jones et al.,Naure 321:522-525(1986);Riechmann et al.,Nature 332:323-327(1988);Verhoeyen et al.,Science239:1534-1536(1988)),即用非人高变区序列替代人抗体的对应序列。因此,此类“人源化”抗体是嵌合抗体(美国专利4,816,567),其中显著少于完整的人可变区用非人物种的相应序列替代。在实践中,人源化抗体通常是如下人抗体,其中有些高变区残基和可能的有些FR残基用啮齿类抗体类似位点的残基替代。
用于制备人源化抗体的人轻链和重链可变区的选择对于降低抗原性可能是非常重要的。依照所谓的“最适(best-fit)”方法,用啮齿类抗体的可变区序列对已知人可变区序列的整个文库进行筛选。然后选择与啮齿类最接近的人序列作为人源化抗体的人框架(Sims et al.,J.Immunol.151:2296(1993);Chothia et al.,J.Mol.Biol.196:901(1987))。另一种方法使用由特定轻链或重链亚类(subgroup)的所有人抗体的共有序列衍生的特定框架。相同框架可用于几种不同的人源化抗体(Carter et al.,Proc.Natl.Acad.Sci.USA 89:4285(1992);Presta et al.,J.Immunol.151:2623(1993))。
一般进一步希望抗体在人源化后保留对抗原的高亲和力和其它有利的生物学特性。为了达到此目的,依照一种方法,通过使用亲本序列和人源化序列的三维模型分析亲本序列和各种概念性人源化产物的过程来制备人源化抗体。通常可获得免疫球蛋白三维模型,这是本领域技术人员所熟悉的。还可获得图解和显示所选候选免疫球蛋白序列的可能三维构象结构的计算机程序。通过检查这些显示图像能分析残基在候选免疫球蛋白序列发挥功能中的可能作用,即分析影响候选免疫球蛋白结合其抗原的能力的残基。这样,可以从受体序列和输入序列中选出FR残基并组合,从而得到期望的抗体特征,诸如对靶抗原的亲和力升高。一般而言,高变区残基直接且最实质的牵涉对抗原结合的影响。
人抗体
本发明的人抗多聚遍在蛋白抗体可以通过如上所述联合选自人衍生噬菌体展示库的Fv克隆可变域序列与已知的人恒定域序列来构建。或者,可以通过杂交瘤方法来生成本发明的人单克隆抗多聚遍在蛋白抗体。用于生成人单克隆抗体的人骨髓瘤和小鼠-人异源骨髓瘤细胞系已有记载,例如Kozbor J.Immunol.,133:3001(1984);Brodeur et al.,Monoclonal Antibody ProductionTechniques and Applications,pp.51-63(Marcel Dekker,nc,New York,(1987);及Boerner et al.,J.Immunol.,147:86(1991).
例如,现在有可能生成在缺乏内源免疫球蛋白生成的情况下能够在免疫后生成人抗体完整全集的转基因动物(例如小鼠)。例如,已经记载了嵌合和种系突变小鼠中抗体重链连接区(JH)基因的纯合删除导致内源抗体生成的完全抑制。在此类种系突变小鼠中转移大量人种系免疫球蛋白基因将导致在抗原攻击后生成人抗体。参见例如Jakobovits et al.,Proc.Natl.Acad.Sci.USA90:2551(1993);Jakobovits et al.,Nature 362:255-258(1993);Bruggermann etal.,Year in Immunol.7:33(1993)。
基因改组也可用于在体外自非人(例如啮齿类)抗体衍生人抗体,其中人抗体具有与起始非人抗体相似的亲和力和特异性。依照此方法,它也称为“表位印记”(epitope imprinting),如上所述通过噬菌体展示技术得到的非人抗体片段的重链或轻链可变区用人V结构域基因全集替换,产生非人链-人链scFv或Fab嵌合物群。用抗原进行的选择导致非人链/人链嵌合scFv或Fab的分离,其中人链在一级噬菌体展示克隆中消除相应的非人链后恢复了抗原结合位点,即表位决定(印记,imprint)人链配偶体的选择。在重复该过程以替换剩余非人链时,得到人抗体(参见PCT WO 93/06213,公开于1993年4月1日)。与传统的通过CDR移植进行的非人抗体的人源化不同,此技术提供完全人的抗体,它们不含非人起源的FR或CDR残基。
双特异性抗体
双特异性抗体指对至少两种不同抗原具有结合特异性的单克隆抗体。在某些实施方案中,双特异性抗体是人抗体或人源化抗体。在某些实施方案中,结合特异性之一针对包含特定赖氨酸连接的多聚遍在蛋白,结合特异性之另一针对任何其它抗原。在某些实施方案中,双特异性抗体可结合具有不同赖氨酸连接的两种不同多聚遍在蛋白。可将双特异性抗体制备成全长抗体或抗体片段(例如F(ab′)2双特异性抗体)。
用于构建双特异性抗体的方法是本领域已知的。传统的是,双特异性抗体的重组生产基于两对免疫球蛋白重链-轻链的共表达,其中两种重链具有不同的特异性(Millstein and Cuello,Nature 305:537(1983))。由于免疫球蛋白重链和轻链的随机分配,这些杂交瘤(四源杂交瘤(quadroma))生成10种不同抗体分子的潜在混合物,其中只有一种具有正确的双特异性结构。通常通过亲和层析步骤进行的正确分子的纯化相当麻烦且产物产量低。类似的规程披露于1993年5月13日公开的WO 93/08829及Traunecker et al.,EMBO J.10:3655(1991)。
依照一种不同的实施方案,将具有期望结合特异性(抗体-抗原结合位点)的抗体可变域与免疫球蛋白恒定域序列融合。例如,与包含至少部分铰链、CH2和CH3区的免疫球蛋白重链恒定域进行融合。在某些实施方案中,在至少一种融合物中存在包含轻链结合所必需的位点的第一重链恒定区(CH1)。将编码免疫球蛋白重链融合物和,在需要时,免疫球蛋白轻链的DNA***分开的表达载体,并共转染到合适的宿主生物体中。在用于构建的三种多肽链比例不等时提供最佳产量的实施方案中,这为调整三种多肽片段的相互比例提供了极大的灵活性。然而,在至少两种多肽链以相同比例表达导致高产量时或在该比例没有特别意义时,有可能将两种或所有三种多肽链的编码序列***一个表达载体。
在该方法的一个实施方案中,双特异性抗体由一个臂上具有第一结合特异性的杂合免疫球蛋白重链,和另一个臂上的杂合免疫球蛋白重链-轻链对(提供第二结合特异性)构成。由于免疫球蛋白轻链仅在半个双特异性分子中的存在提供了便利的分离途径,因此发现这种不对称结构便于将期望的双特异性复合物与不想要的免疫球蛋白链组合分开。该方法披露于WO94/04690。关于生成双特异性抗体的进一步详情参见例如Suresh et al.,Methods in Enzymology 121:210(1986)。
依照另一种方法,可改造一对抗体分子间的界面,以将从重组细胞培养物回收的异二聚体的百分比最大化。界面包含至少部分抗体恒定域CH3结构域。在该方法中,将第一抗体分子界面的一个或多个小氨基酸侧链用较大侧链(例如酪氨酸或色氨酸)替换。通过将大氨基酸侧链用较小氨基酸侧链(例如丙氨酸或苏氨酸)替换,在第二抗体分子的界面上产生与大侧链相同或相似大小的补偿性“空腔”。这提供了较之其它不想要的终产物诸如同二聚体提高异二聚体产量的机制。
双特异性抗体包括交联或“异源偶联”抗体。例如,异源偶联物中的一种抗体可与亲合素偶联,另一种抗体与生物素偶联。例如,此类抗体已经建议用于将免疫***细胞靶向不想要的细胞(美国专利No.4,676,980),及用于治疗HIV感染(WO 9I/00360,WO 92/00373和EP 03089)。可使用任何便利的交联方法来制备异源偶联抗体。合适的交联剂是本领域众所周知的,连同许多交联技术一起披露于美国专利No.4,676,980。
文献中还记载了由抗体片段生成双特异性抗体的技术。例如,可使用化学连接来制备双特异性抗体。Brennan et al.,Science 229:81(1985)记载了通过蛋白水解切割完整抗体以生成F(ab′)2片段的规程。将这些片段在存在二硫醇络合剂***的情况下还原,以稳定邻近的二硫醇并防止分子间二硫键的形成。然后将产生的Fab’片段转变为硫代硝基苯甲酸酯(TNB)衍生物。然后将Fab′-TNB衍生物之一通过巯基乙胺的还原重新恢复成Fab′-硫醇,并与等摩尔量的另一种Fab′-TNB衍生物混合,以形成双特异性抗体。产生的双特异性抗体可用作酶的选择性固定化试剂。
最新的进展便于从大肠杆菌直接回收Fab′-SH片段,这些片段可化学偶联以形成双特异性抗体。Shalaby et al.,J.Exp.Med.175:217-225(1992)记载了完全人源化的双特异性抗体F(ab′)2分子的生成。由大肠杆菌分开分泌每种Fab′片段,并在体外进行定向化学偶联以形成双特异性抗体。如此形成的双特异性抗体能够结合过表达HER2受体的细胞和正常人T细胞,以及触发人细胞毒性淋巴细胞针对人乳瘤靶物的溶解活性。
还记载了从重组细胞培养物直接生成和分离双特异性抗体片段的多种技术。例如,已使用亮氨酸拉链生成双特异性抗体。Kostelny et al.,J.Immunol.148(5):1547-1553(1992)。将来自Fos和Jun蛋白的亮氨酸拉链肽通过基因融合与两种不同抗体的Fab′部分连接。抗体同二聚体在铰链区还原以形成单体,然后重新氧化以形成抗体异二聚体。这种方法也可用于生成抗体同二聚体。Hollinger et al.,Proc.Natl.Acad.Sci.USA 90:6444-6448(1993)记载的“双抗体”技术提供了构建双特异性抗体片段的替代机制。该片段包含通过接头相连的重链可变域(VH)和轻链可变域(VL),所述接头太短使得同一条链上的两个结构域之间不能配对。因此,迫使一个片段上的VH和VL结构域与另一个片段上的互补VL和VH结构域配对,由此形成两个抗原结合位点。还报道了通过使用单链Fv(sFv)二聚体构建双特异性抗体片段的另一种策略。参见Gruber et al.,J.Immunol.152:5368(1994)。
本发明也涉及具有超过两价的抗体。例如,可制备三特异性抗体。Tutt etal.,J.Immunol.147:60(1991)。
多价抗体
多价抗体可以比二价抗体更快的受到表达该抗体所结合抗原的细胞的内在化(和/或异化)。本发明的抗体可以是可容易地通过编码抗体多肽链的核酸的重组表达而生成的、具有三个或更多抗原结合位点(例如四价抗体)的多价抗体(IgM类别以外的)。多价抗体可包含二聚化结构域和三个或更多抗原结合位点。二聚化结构域包含(或由其组成)例如Fc区或铰链区。在这种情况中,抗体将包含Fc区及Fc区氨基末端的三个或更多抗原结合位点。在一个实施方案中,多价抗体包含(或由其组成)例如三个至约八个,或者四个抗原结合位点。多价抗体包含至少一条多肽链(例如两条多肽链),其中所述多肽链包含两个或多个可变域。例如,多肽链可包含VD1-(X1)n-VD2-(X2)n-Fc,其中VD1是第一可变域,VD2是第二可变域,Fc是Fc区的一条多肽链,X1和X2代表氨基酸或多肽,而n是0或1。例如,多肽链可包含:VH-CH1-柔性接头-VH-CH1-Fc区链;或VH-CH1-VH-CH1-Fc区链。本文中的多价抗体可进一步包含至少两条(例如四条)轻链可变域多肽。本文中的多价抗体可包含例如约两条至约八条轻链可变域多肽。本文设想的轻链可变域多肽包含轻链可变域,且任选进一步包含CL结构域。
抗体变体
在有些实施方案中,设想了本文所述抗体的氨基酸序列修饰。例如,可能希望改进抗体的结合亲和力和/或其它生物学特性。抗体的氨基酸序列变体是通过将适宜的核苷酸变化引入抗体核酸或通过肽合成制备的。此类修饰包括例如抗体氨基酸序列内的残基删除和/或***和/或替代。可进行任何删除、***和替代组合以获得最终的构建物,倘若最终的构建物具有期望的特征。可在制备序列时将氨基酸改变引入主题抗体氨基酸序列。
可用于鉴定抗体中作为优选诱变位置的某些残基或区域的方法有“丙氨酸扫描诱变”,如Cunningham and Wells,Science 244:1081-1085(1989)中所述。这里,鉴定一个残基或一组靶残基(如带电荷的残基,诸如精氨酸、天冬氨酸、组氨酸、赖氨酸和谷氨酸)并用中性或带负电荷的氨基酸(例如丙氨酸或多聚丙氨酸)替代,以影响氨基酸与抗原的相互作用。然后通过在或对替代位点引入更多或其它变体,推敲对替代展示功能敏感性的氨基酸位置。由此,尽管用于引入氨基酸序列变异的位点是预先决定的,然而突变本身的本质不必预先决定。例如,为了分析指定位点处突变的后果,在靶密码子或区域进行丙氨酸扫描或随机诱变,并对所表达免疫球蛋白筛选期望的活性。
氨基酸序列***包括氨基和/或羧基末端的融合,长度范围由一个残基至包含上百或更多残基的多肽,以及单个或多个氨基酸残基的序列内***。末端***的例子包括具有N端甲硫氨酰残基的抗体或与细胞毒性多肽融合的抗体。抗体分子的其它***变体包括将抗体的N或C端与酶(如用于ADEPT)或延长抗体血清半衰期的多肽融合。
另一类变体是氨基酸替代变体。这些变体在抗体分子中有至少一个氨基酸残基用不同残基替代。最有兴趣进行替代诱变的位点包括高变区,但是也设想了FR改变。表A中“优选替代”栏显示了保守替代。如果此类替代导致生物学活性变化,那么可导入表A中称为“例示替代”的更实质变化,或如下文参照氨基酸分类进一步所述,并筛选产物。
表A
对抗体生物学特性的实质性修饰可通过选择对维持以下方面的效果差异显著的替代来实现:(a)替代区域中多肽主链的结构,例如(折叠)片或螺旋构象,(b)靶位点处分子的电荷或疏水性,或(c)侧链的体积。根据其侧链特性的相似性,氨基酸可如下分组(A.L.Lehninger,《Biochemistry》,第2版,第73-75页,Worth Publishers,NewYork,1975):
(1)非极性的:Ala(A)、Val(V)、Leu(L)、Ile(I)、Pro(P)、Phe(F)、Trp(W)、Met(M)
(2)不带电荷、极性的:Gly(G)、Ser(S)、Thr(T)、Cys(C)、Tyr(Y)、Asn(N)、Gln(Q)
(3)酸性的:Asp(D)、Glu(E)
(4)碱性的:Lys(K)、Arg(R)、His(H)
或者,根据共同的侧链特性,天然发生残基可如下分组:
(1)疏水性的:正亮氨酸、Met、Ala、Val、Leu、Ile;
(2)中性、亲水性的:Cys、Ser、Thr、Asn、Gln;
(3)酸性的:Asp、Glu;
(4)碱性的:His、Lys、Arg;
(5)影响链取向的残基:Gly、Pro;
(6)芳香族的:Trp、Tyr、Phe。
非保守替代需要用这些类别之一的成员替换另一个类别的。还可将此类替代残基引入保守替代位点,或者引入剩余(非保守)位点。
一类替代变体牵涉替代亲本抗体(例如人源化或人抗体)的一个或多个高变区残基。通常,选择用于进一步开发的所得变体相对于产生它们的亲本抗体将具有改变(例如改进)的生物学特性。用于生成此类替代变体的一种便利方法牵涉使用噬菌体展示的亲和力成熟。简而言之,将数个高变区位点(例如6-7个位点)突变,在各个位点产生所有可能的氨基酸替代。如此生成的抗体展示在丝状噬菌体颗粒上,作为与各个颗粒内包装的至少部分噬菌体外壳蛋白(例如M13基因III产物)的融合物。然后如本文所公开的对噬菌体展示的变体筛选其生物学活性(例如结合亲和力)。为了鉴定用于修饰的候选高变区位点,可进行扫描(例如丙氨酸扫描)诱变以鉴定对抗原结合具有重要贡献的高变区残基。或者/另外,分析抗原-抗体复合物的晶体结构以鉴定抗体和抗原之间的接触点可能是有益的。所述接触残基及邻近残基是依照本领域已知的技术(包括本文详述的技术)进行替代的候选位点。一旦产生这样的变体,使用本领域已知的技术(包括本文所述的技术)对该组变体进行筛选,可选择在一种或多种相关测定法中具有优良特性的抗体用于进一步的开发。
编码抗体氨基酸序列变体的核酸分子可通过本领域知道的多种方法来制备。这些方法包括但不限于从天然来源分离(在天然发生氨基酸序列变体的情况中),或者通过对较早制备的变体或非变异型式的抗体进行寡核苷酸介导的(或定点)诱变、PCR诱变和盒式诱变来制备。
可能希望在本发明抗体的Fc区中引入一处或多处氨基酸修饰,由此生成Fc区变体。Fc区变体可包括在一个或多个氨基酸位置(包括铰链半胱氨酸)包含氨基酸修饰(如替代)的人Fc区序列(如人IgG1、IgG2、IgG3或IgG4Fc区)。
依照此描述和本领域的教导,设想了在有些实施方案中,本发明的抗体与野生型对应抗体相比可在例如Fc区中包含一处或多处改变。与它们的野生型对应物相比,这些抗体仍将基本上保留治疗功效所需要的相同特性。例如,认为可在Fc区中进行将会导致C1q结合和/或补体依赖性细胞毒性(CDC)改变(即或是增强或是削弱)的某些改变,例如WO99/51642中所述。还可参见关注Fc区变体其它实例的Duncan and Winter,Nature 322:738-40(1988);美国专利5,648,260;美国专利5,624,821;及WO94/29351。
一方面,本发明提供了在构成Fc区的Fc多肽的界面中包含修饰的抗体,其中所述修饰便于和/或促进异型二聚化。这些修饰包括在第一Fc多肽中引入***(protuberance),在第二Fc多肽中引入空穴(cavity),其中所述***可位于所述空穴中,从而促进第一和第二Fc多肽的复合。用于生成具有这些修饰的抗体的方法是本领域已知的,例如美国专利No.5,731,168中所记载的。
免疫偶联物
一方面,本发明提供了包含偶联有细胞毒剂的抗体的免疫偶联物或抗体-药物偶联物(ADC),所述细胞毒剂诸如化疗剂、药物、生长抑制剂、毒素(如细菌、真菌、植物或动物起源的酶活性毒素或其片段)或放射性同位素(即放射偶联物)。
抗体-药物偶联物在癌症治疗中用于局部投递毒害细胞剂或抑制细胞试剂(即用于杀死或抑制肿瘤细胞的药物)的用途(Syrigos and Epenetos,Anticancer Research 19:605-614(1999);Niculescu-Duvaz and Springer,Adv.Drg.Del.Rev.26:151-172(1997);美国专利4,975,278)容许将药物部分靶向投递至肿瘤,并在那儿进行细胞内积累,而***施用这些未经偶联的药物试剂可能在试图消除的肿瘤细胞以外导致不可接受的对正常细胞的毒性水平(Baldwin et al.,Lancet 603-05(1986年5月15日);Thorpe,“Antibody CarriersOf Cytotoxic Agents In Cancer Therapy:A Review”,在《Monoclonal Antibodies′84:Biological And Clinical Applications》中,A.Pinchera等人编,第475-506页,1985)。由此试图获得最大功效及最小毒性。多克隆抗体和单克隆抗体皆有报道可用于这些策略(Rowland et al.,Cancer Immunol.Immunother.21:183-87(1986))。这些方法中所使用的药物包括道诺霉素(daunomycin)、多柔比星(doxorubicin)、甲氨蝶呤(methotrexate)和长春地辛(vindesine)(Rowland etal.,1986,见上文)。抗体-毒素偶联物中所使用的毒素包括细菌毒素诸如白喉毒素、植物毒素诸如蓖麻毒蛋白、小分子毒素诸如格尔德霉素(geldanamycin)(Mandler et al.,Jour.of the Nat.Cancer Inst.92(19):1573-1581(2000);Mandler et al.,Bioorganic&Med.Chem.Letters 10:1025-1028(2000);Mandleret al.,Bioconjugate Chem.13:786-791(2002))、美登木素生物碱类(EP1391213;Liu et al.,Proc.Natl.Acad.Sci.USA 93:8618-8623(1996))、和加利车霉素(Lode et al.,Cancer Res.58:2928(1998);Hinman et al.,Cancer Res.53:3336-3342(1993))。毒素可通过包括微管蛋白结合、DNA结合或拓扑异构酶抑制在内的机制发挥其毒害细胞和抑制细胞的效果。有些细胞毒药物在与大的抗体或蛋白质受体配体偶联时趋于失活或活性降低。
(ibritumomab tiuxetan,Biogen/Idec)是由针对在正常和恶性B淋巴细胞表面上发现的CD20抗原的鼠IgG1κ单克隆抗体与通过硫脲接头-螯合剂所结合的111In或90Y放射性同位素构成的抗体-放射性同位素偶联物(Wiseman et al.,Eur.Jour.Nucl.Med.27(7):766-77(2000);Wiseman et al.,Blood 99(12):4336-42(2002);Witzig et al.,J.Clin.Oncol.20(10):2453-63(2002);Witzig et al.,J.Clin.Oncol.20(15):3262-69(2002))。尽管ZEVALIN具有针对B细胞非何杰金氏(Hodgkin)淋巴瘤(NHL)的活性,然而施药在大多数患者中导致严重且长时间的血细胞减少。MYLOTARGTM(gemtuzumabozogamicin,Wyeth Pharmaceuticals),即由人CD33抗体与加利车霉素连接而构成的抗体-药物偶联物,在2000年批准用于经注射治疗急性骨髓性白血病(Drugs ofthe Future 25(7):686(2000);美国专利4970198;5079233;5585089;5606040;5693762;5739116;5767285;5773001)。Cantuzumab mertansine(Immunogen Inc.),即由huC242抗体经二硫化物接头SPP与美登木素生物碱药物部分DM1连接而构成的抗体-药物偶联物,在测试用于治疗表达CanAg的癌症诸如结肠癌、胰腺癌、胃癌和其它癌。MLN-2704(Millennium Pharm.,BZL Biologics,Immunogen Inc.),即由抗***特异膜抗原(PSMA)单克隆抗体与美登木素生物碱药物部分DM1连接而构成的抗体-药物偶联物,在测试用于***肿瘤潜在治疗。将多拉司他汀(dolastatin)的合成类似物auristatin肽、auristatin E(AE)和单甲基auristatin(MMAE)与嵌合单克隆抗体cBR96(对癌上的Lewis Y特异)和cAC10(对恶性血液肿瘤上的CD30特异)偶联(Doronina et al.,Nature Biotechnology 21(7):778-784(2003)),且正在进行治疗性开发。
本文中(上文)描述了可用于生成免疫偶联物的化疗剂。可使用的酶活性毒素及其片段包括白喉毒素A链、白喉毒素的非结合活性片段、外毒素A链(来自铜绿假单胞菌Pseudomonas aeruginosa)、蓖麻毒蛋白(ricin)A链、相思豆毒蛋白(abrin)A链、蒴莲根毒蛋白(modeccin)A链、α-帚曲霉素(sarcin)、油桐(Aleutites fordii)毒蛋白、香石竹(dianthin)毒蛋白、美洲商陆(Phytolacaamericana)毒蛋白(PAPI、PAPII和PAP-S)、苦瓜(Momordica charantia)抑制物、麻疯树毒蛋白(curcin)、巴豆毒蛋白(crotin)、肥皂草(sapaonaria officinalis)抑制物、白树毒蛋白(gelonin)、丝林霉素(mitogellin)、局限曲菌素(restrictocin)、酚霉素(phenomycin)、依诺霉素(enomycin)和单端孢菌素(trichothecenes)。参见例如1993年10月28日公开的WO 93/21232。多种放射性核素可用于生成放射偶联抗体。实例包括212Bi、131I、131In、90Y和186Re。抗体和细胞毒剂的偶联物可使用多种双功能蛋白质偶联剂来制备,诸如N-琥珀酰亚氨基-3-(2-吡啶基二硫代)丙酸酯(SPDP)、亚氨基硫烷(IT)、亚氨酸酯(诸如盐酸己二酰亚氨酸二甲酯)、活性酯类(诸如辛二酸二琥珀酰亚氨基酯)、醛类(诸如戊二醛)、双叠氮化合物(诸如双(对-叠氮苯甲酰基)己二胺)、双重氮衍生物(诸如双(对-重氮苯甲酰基)己二胺)、二异氰酸酯(诸如甲苯2,6-二异氰酸酯)、和双活性氟化合物(诸如1,5-二氟-2,4-二硝基苯)的双功能衍生物。例如,可如Vitetta et al.,Science 238:1098(1987)中所述制备蓖麻毒蛋白免疫毒素。碳-14标记的1-异硫氰酸苯甲基-3-甲基二亚乙基三胺五乙酸(MX-DTPA)是用于将放射性核苷酸与抗体偶联的例示性螯合剂。参见WO 94/11026。
本文还设想了抗体与一种或多种小分子毒素诸如加利车霉素(calicheamicin)、美登木素生物碱类(maytansinoids)、多拉司他汀类(dolostatins)、aurostatins、单端孢霉素(trichothecene)和CC1065及这些毒素具有毒素活性的片段的偶联物。
美登素和美登木素生物碱类
在有些实施方案中,免疫偶联物包含偶联有一个或多个美登木素生物碱分子的本发明抗体。
美登木素生物碱类是通过抑制微管蛋白多聚化来发挥作用的有丝***抑制剂。美登素最初从东非灌木齿叶美登木(Maytenus serrata)分离得到(美国专利3,896,111)。随后发现某些微生物也生成美登木素生物碱类,诸如美登醇和C-3美登醇酯(美国专利4,151,042)。例如下列美国专利公开了合成美登醇及其衍生物和类似物:4,137,230;4,248,870;4,256,746;4,260,608;4,265,814;4,294,757;4,307,016;4,308,268;4,308,269;4,309,428;4,313,946;4,315,929;4,317,821;4,322,348;4,331,598;4,361,650;4,364,866;4,424,219;4,450,254;4,362,663;及4,371,533。
美登木素生物碱类药物模块在抗体药物偶联物中是有吸引力的药物模块,因为它们:(i)相对易于通过发酵或发酵产物的化学修饰、衍生化来制备;(ii)易于用适于通过非二硫化物接头的偶联的官能基衍生化;(iii)在血浆中稳定;且(iv)有效针对多种肿瘤细胞系。
美登木素生物碱类药物模块的例示性实施方案包括DM1、DM3和DM4。例如下列专利公开了包含美登木素生物碱类的免疫偶联物及其制备方法和治疗用途:美国专利5,208,020;5,416,064;及欧洲专利EP 0 425 235 B1,明确将其公开内容收入本文作为参考。Liu et al.,Proc.Natl.Acad.Sci.USA 93:8618-8623(1996)记载了包含与针对人结肠直肠癌的单克隆抗体C242连接的称为DM1的美登木素生物碱的免疫偶联物。发现该偶联物具有针对培养的结肠癌细胞的高度细胞毒性,而且在体内肿瘤生长测定法中显示抗肿瘤活性。Chari et al.,Cancer Research 52:127-131(1992)记载了其中美登木素生物碱经二硫化物接头与结合人结肠癌细胞系上抗原的鼠抗体A7或结合HER-2/neu癌基因的另一种鼠单克隆抗体TA.1偶联的免疫偶联物。在体外在人乳癌细胞系SK-BR-3上测试了TA.1-美登木素生物碱偶联物的细胞毒性,该细胞系每个细胞表达3x105个HER-2表面抗原。药物偶联物达到了与游离美登木素生物碱药物相似的一定程度的细胞毒性,这可通过增加每个抗体分子偶联的美登木素生物碱分子数目来提高。A7-美登木素生物碱偶联物在小鼠中显示低***性细胞毒性。
抗体-美登木素生物碱偶联物可通过将抗体与美登木素生物碱分子化学连接且不显著削弱抗体或美登木素生物碱分子的生物学活性来制备。参见例如美国专利No.5,208,020,明确将其公开内容收入本文作为参考。每个抗体分子偶联平均3-4个美登木素生物碱分子在增强针对靶细胞的细胞毒性中显示功效,且对抗体的功能或溶解度没有负面影响,尽管预计甚至一个分子的毒素/抗体也将较之裸抗体的使用增强细胞毒性。美登木素生物碱类在本领域是众所周知的,而且可通过已知技术合成或从天然来源分离。例如美国专利5,208,020和上文提及的其它专利及非专利发表物中公开了合适的美登木素生物碱类。美登木素生物碱类包括但不限于美登醇和美登醇分子的芳香环或其它位置经过修饰的美登醇类似物,诸如各种美登醇酯。
本领域知道许多连接基团可用于制备抗体-美登木素生物碱偶联物,包括例如美国专利5,208,020或欧洲专利0425235B1;Chari et al.,CancerResearch 52:127-131(1992);2004年10月9日提交的美国专利申请No.10/960,602中所公开的,明确将其公开内容收入本文作为参考。包含接头构件SMCC的抗体-美登木素生物碱类偶联物可以如2004年10月8日提交的美国专利申请No.10/960,602中所披露的来制备。连接基团包括二硫化物基团、硫醚基团、酸不稳定基团、光不稳定基团、肽酶不稳定基团、或酯酶不稳定基团,正如上文所述专利中所公开的。本文中描述和例示了别的连接基团。
可使用多种双功能蛋白质偶联剂来制备抗体和美登木素生物碱的偶联物,诸如N-琥珀酰亚氨基-3-(2-吡啶基二硫代)丙酸酯(SPDP)、琥珀酰亚氨基-4-(N-马来酰亚氨基甲基)环己烷-1-羧酸酯(SMCC)、亚氨基硫烷(IT)、亚氨酸酯(诸如盐酸己二酰亚氨酸二甲酯)、活性酯类(诸如辛二酸二琥珀酰亚氨基酯)、醛类(诸如戊二醛)、双叠氮化合物(诸如双(对-叠氮苯甲酰基)己二胺)、双重氮衍生物(诸如双(对-重氮苯甲酰基)-乙二胺)、二异氰酸酯(诸如甲苯2,6-二异氰酸酯)、和双活性氟化合物(诸如1,5-二氟-2,4-二硝基苯)的双功能衍生物。偶联剂包括但不限于N-琥珀酰亚氨基-3-(2-吡啶基二硫代)丙酸酯(SPDP)(Carlsson et al.,Biochem.J.173:723-737(1978))和N-琥珀酰亚氨基-4-(2-吡啶基硫代)戊酸酯(SPP),由此提供二硫键连接。
根据连接的类型,可将接头附着于美登木素生物碱分子的多个位置。例如,可使用常规偶联技术通过与羟基的反应来形成酯键。反应可发生在具有羟基的C-3位置、经羟甲基修饰的C-14位置、经羟基修饰的C-15位置、和具有羟基的C-20位置。在一个实施方案中,在美登醇或美登醇类似物的C-3位置形成键连接。
Auristatin和多拉司他汀
在有些实施方案中,免疫偶联物包含与多拉司他汀类(dolastatins)或多拉司他汀肽类似物及衍生物、auristatin类偶联的本发明抗体(美国专利No.5,635,483;5,780,588)。多拉司他汀类和auristatin类已经显示出干扰微管动力学、GTP水解、及核和细胞***(Woyke et al(2001)Antimicrob.Agents andChemother.45(12):3580-3584)且具有抗癌(US 5,663,149)和抗真菌活性(Pettitet al(1998)Antimicrob.Agents Chemother.42:2961-2965)。多拉司他汀或auristatin药物模块可经由肽药物模块的N(氨基)末端或C(羧基)末端附着于抗体(WO 02/088172)。
例示性的auristatin实施方案包括N-末端连接的单甲基auristatin药物模块DE和DF,披露于“Monomethylvaline Compounds Capable of Conjugation toLigands”,U.S.Ser.No.10/983,340,filed Nov.5,2004,明确将其公开内容完整收入本文作为参考。
例示性的auristatin实施方案包括MMAE和MMAF。包含MMAE或MMAF和各种接头构件(本文中进一步描述的)的别的例示性的实施方案包括Ab-MC-vc-PAB-MMAF、Ab-MC-vc-PAB-MMAE、Ab-MC-MMAE和Ab-MC-MMAF。
典型的是,基于肽的药物模块可通过在两个或多个氨基酸和/或肽片段之间形成肽键来制备。此类肽键可依照例如肽化学领域众所周知的液相合成法来制备(参见E.and K.Lübke,The Peptides,volume 1,pp 76-136,1965,Academic Press)。auristatin/多拉司他汀药物模块可依照以下文献中的方法来制备:US 5,635,483;US 5,780,588;Pettit et al(1989)J.Am.Chem.Soc.111:5463-5465;Pettit et al(1998)Anti-Cancer Drug Design 13:243-277;Pettit,G.R.,et al.Synthesis,1996,719-725;Pettit et al(1996)J.Chem.Soc.PerkinTrans.15:859-863;及Doronina(2003)Nat Biotechnol 21(7):778-784;“Monomethylvaline Compounds Capable of Conjugation to Ligands”,美国流水号No.10/983,340,2004年11月5日提交,将其完整收入本文作为参考(披露了例如制备诸如MMAE和MMAF偶联至接头的单甲基缬氨酸化合物的接头和方法)。
加利车霉素
在其它实施方案中,免疫偶联物包含偶联有一个或多个加利车霉素分子的本发明抗体。加利车霉素抗生素家族能够在亚皮摩尔浓度生成双链DNA断裂。关于加利车霉素家族偶联物的制备参见美国专利5,712,374;5,714,586;5,739,116;5,767,285;5,770,701;5,770,710;5,773,001;和5,877,296(都授予美国Cyanamid公司)。可用的加利车霉素结构类似物包括但不限于γ1I、α2I、α3I、N-乙酰基-γ1I、PSAG和θI1(Hinman et al.,Cancer Research 53:3336-3342(1993);Lode et al.,Cancer Research 58:2925-2928(1998);及上述授予美国Cyanamid公司的美国专利)。可与抗体偶联的另一种抗肿瘤药物是QFA,它是一种抗叶酸药物。加利车霉素和QFA都具有胞内作用位点,且不易穿过质膜。因此,这些试剂经由抗体介导的内在化的细胞摄取大大增强了它们的细胞毒效果。
其它细胞毒剂
可与本发明抗体偶联的其它抗肿瘤剂包括BCNU、链佐星(streptozoicin)、长春新碱(vincristine)、5-氟尿嘧啶、美国专利5,053,394、5,770,710中记载的统称为LL-E33288复合物的试剂家族、及埃斯波霉素类(esperamicins)(美国专利5,877,296)。
可用的酶活性毒素及其片段包括白喉毒素A链、白喉毒素的非结合活性片段、外毒素A链(来自铜绿假单胞菌Pseudomonas aeruginosa)、蓖麻毒蛋白(ricin)A链、相思豆毒蛋白(abrin)A链、蒴莲根毒蛋白(modeccin)A链、α-帚曲霉素(sarcin)、油桐(Aleutites fordii)毒蛋白、香石竹(dianthin)毒蛋白、美洲商陆(Phytolaca americana)毒蛋白(PAPI、PAPII和PAP-S)、苦瓜(Momordicacharantia)抑制物、麻疯树毒蛋白(curcin)、巴豆毒蛋白(crotin)、肥皂草(sapaonaria officinalis)抑制物、白树毒蛋白(gelonin)、丝林霉素(mitogellin)、局限曲菌素(restrictocin)、酚霉素(phenomycin)、依诺霉素(enomycin)和单端孢菌素(trichothecenes)。参见例如1993年10月28日公布的WO 93/21232。
本发明还设想了抗体和具有核酸降解活性的化合物(如核糖核酸酶或DNA内切核酸酶,诸如脱氧核糖核酸酶;DNA酶)之间形成的免疫偶联物。
为了选择性破坏肿瘤,抗体可包含高度放射性原子。多种放射性同位素可用于生成放射偶联抗体。实例包括At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、P32、Pb212和Lu的放射性同位素。在将偶联物用于检测时,可包含放射性原子用于闪烁照相研究,例如Tc99m或I123,或是包含自旋标记物用于核磁共振(NMR)成像(也称为磁共振成像,MRI),诸如碘-123、碘-131、铟-111、氟-19、碳-13、氮-15、氧-17、钆、锰或铁。
可以已知方式将放射性或其它标记物掺入偶联物。例如,可生物合成肽,或是通过化学氨基酸合成法合成肽,其中使用牵涉例如氟-19代替氢的合适氨基酸前体。可经肽中的半胱氨酸残基来附着标记物,诸如Tc99m或I123、Re186、Re188和In111。可以经赖氨酸残基来附着钇-90。IODOGEN法(Fraker et al.(1978)Biochem.Biophys.Res.Commun.80:49-57)可用于掺入碘-123。《MonoclonalAntibodies in Immunoscintigraphy》(Chatal,CRC Press,1989)详细记载了其它方法。
可使用多种双功能蛋白质偶联剂来制备抗体和细胞毒剂的偶联物,诸如N-琥珀酰亚氨基-3-(2-吡啶基二硫代)丙酸酯(SPDP)、琥珀酰亚氨基-4-(N-马来酰亚氨基甲基)环己烷-1-羧酸酯(SMCC)、亚氨基硫烷(IT)、亚氨酸酯(诸如盐酸己二酰亚氨酸二甲酯)、活性酯类(诸如辛二酸二琥珀酰亚氨基酯)、醛类(诸如戊二醛)、双叠氮化合物(诸如双(对-叠氮苯甲酰基)己二胺)、双重氮衍生物(诸如双(对-重氮苯甲酰基)-乙二胺)、二异硫氰酸酯(诸如甲苯2,6-二异氰酸酯)、和双活性氟化合物(诸如1,5-二氟-2,4-二硝基苯)的双功能衍生物。例如,可如Vitetta et al.,Science 238:1098(1987)中所述制备蓖麻毒蛋白免疫毒素。碳-14标记的1-异硫氰酸苯甲基-3-甲基二亚乙基三胺五乙酸(MX-DTPA)是用于将放射性核苷酸与抗体偶联的例示性螯合剂。参见WO94/11026。接头可以是便于在细胞中释放细胞毒药物的“可切割接头”。例如,可使用酸不稳定接头、肽酶敏感接头、光不稳定接头、二甲基接头、或含二硫化物接头(Chari et al.,Cancer Research 52:127-131(1992);美国专利5,208,020)。
本发明的化合物明确涵盖但不限于用下列交联剂制备的ADC:商品化
(如购自Pierce Biotechnology Inc.,Rockford,IL,U.S.A.)的BMPS、EMCS、GMBS、HBVS、LC-SMCC、MBS、MPBH、SBAP、SIA、SIAB、SMCC、SMPB、SMPH、sulfo-EMCS、sulfo-GMB S、sulfo-KMUS、sulfo-MB S、sulfo-SIAB、sulfo-SMCC和sulfo-SMPB、和SVSB(琥珀酰亚胺基-(4-乙烯基砜)苯甲酸酯)。见2003-2004年度应用手册和产品目录(Applications Handbookand Catalog)第467-498页。
抗体-药物偶联物的制备
在本发明的抗体-药物偶联物(ADC)中,将抗体(Ab)经接头(L)与一个或多个药物部分(D)偶联,例如每个抗体偶联约1个至约20个药物部分。可采用本领域技术人员知道的有机化学反应、条件和试剂通过数种路径来制备通式I的ADC,包括:(1)抗体的亲核基团经共价键与二价接头试剂反应,形成Ab-L,随后与药物部分D反应;和(2)药物部分的亲核基团经共价键与二价接头试剂反应,形成D-L,随后与抗体的亲核基团反应。本文中描述了用于制备ADC的别的方法。
Ab-(L-D)p    I
接头可以由一种或多种接头构件构成。例示性的接头构件包括6-马来酰亚胺己酰基(″MC″)、马来酰亚胺丙酰基(″MP″)、缬氨酸-瓜氨酸(″val-cit″)、丙氨酸-苯丙氨酸(″ala-phe″)、对氨基苄氧羰基(″PAB″)、4-(2-吡啶基硫代)戊酸N-琥珀酰亚氨基酯(″SPP″)、4-(N-马来酰亚胺甲基)环己烷-1羧酸N-琥珀酰亚氨基酯(″SMCC′)、和(4-碘-乙酰基)氨基苯甲酸N-琥珀酰亚氨基酯(″SIAB″)。本领域知道别的接头构件,本文也描述了一些。还可参见“Monomethylvaline Compounds Capable of Conjugation to Ligands”,美国流水号No.10/983,340,2004年11月5日提交,将其完整内容收入本文作为参考。
在有些实施方案中,接头可包含氨基酸残基。例示性的氨基酸接头构件包括二肽、三肽、四肽或五肽。例示性的二肽包括:缬氨酸-瓜氨酸(vc或val-cit)、丙氨酸-苯丙氨酸(af或ala-phe)。例示性三肽包括:甘氨酸-缬氨酸-瓜氨酸(gly-val-cit)和甘氨酸-甘氨酸-甘氨酸(gly-gly-gly)。构成氨基酸接头构件的氨基酸残基包括那些天然存在的氨基酸,以及次要的氨基酸和非天然存在的氨基酸类似物,诸如瓜氨酸。氨基酸接头构件可以在它们的特定酶(例如肿瘤相关蛋白酶,组织蛋白酶B、C和D,或纤溶酶蛋白酶)的酶促切割的选择性方面进行设计和优化。
例示性的接头构件结构显示如下(其中波浪线指示共价附着至ADC其它组分的位点):
别的例示性的接头构件和缩写包括(其中描绘了抗体(Ab)和接头,而且p为1到约8):
抗体的亲核基团包括但不限于:(i)N末端氨基;(ii)侧链氨基,如赖氨酸;(iii)侧链巯基,如半胱氨酸;和(iv)糖基化抗体中糖的羟基或氨基。氨基、巯基、和羟基是亲核的,能够与接头部分上的亲电子基团反应而形成共价键,而接头试剂包括:(i)活性酯类,诸如NHS酯、HOBt酯、卤代甲酸酯、和酸性卤化物;(ii)烷基和苯甲基卤化物,诸如卤代乙酰胺;(iii)醛类、酮类、羧基和马来酰亚胺基团。某些抗体具有可还原的链间二硫键,即半胱氨酸桥。可通过还原剂诸如DTT(二硫苏糖醇)处理使抗体具有与接头试剂偶联的反应活性。每个半胱氨酸桥理论上将形成两个反应性硫醇亲核体。可经由赖氨酸与2-亚氨基硫烷(Traut氏试剂)的反应,导致胺转变为硫醇,从而将额外亲核基团引入抗体。可以通过导入一个、两个、三个、四个、或更多个半胱氨酸残基(例如制备包含一个或多个非天然半胱氨酸氨基酸残基的突变型抗体)而将反应性硫醇基导入抗体(或其片段)。
还可通过修饰抗体来生成本发明的抗体-药物偶联物,即引入可与接头试剂或药物上的亲核取代基反应的亲电子部分。可用例如高碘酸盐氧化剂氧化糖基化抗体的糖,从而形成可与接头试剂或药物部分的胺基团反应的醛或酮基团。所得亚胺Schiff减基可形成稳定的键,或者可用例如硼氢化物试剂还原而形成稳定的胺连接。在一个实施方案中,糖基化抗体的碳水化合物部分与半乳糖氧化酶或偏高碘酸钠的反应可在蛋白质中生成羰(醛和酮)基团,它可与药物上的适宜基团反应(Hermanson,Bioconjugate Techniques)。在另一个实施方案中,包含N末端丝氨酸或苏氨酸残基的蛋白质可与偏高碘酸钠反应,导致在第一个氨基酸处生成醛(Geoghegan & Stroh,Bioconjugate Chem.3:138-146(1992);US 5362852)。此类醛可与药物部分或接头亲核体反应。
同样,药物部分上的亲核基团包括但不限于:胺、硫醇、羟基、酰肼、肟、肼、缩氨基硫脲、肼羧酸酯、和芳基酰肼基团,它们能够与接头部分上的亲电子基团反应而形成共价键,而接头试剂包括:(i)活性酯类,诸如NHS酯、HOBt酯、卤代甲酸酯、和酸性卤化物;(ii)烷基和苯甲基卤化物,诸如卤代乙酰胺;(iii)醛类、酮类、羧基、和马来酰亚胺基团。
或者,可通过例如重组技术或肽合成来制备包含抗体和细胞毒剂的融合蛋白。DNA的长度可包含各自编码偶联物两个部分的区域,或是彼此毗邻或是由编码接头肽的区域分开,该接头肽不破坏偶联物的期望特性。
在又一个实施方案中,可将抗体与“受体”(诸如链霉亲和素)偶联从而用于肿瘤预先靶向,其中对患者施用抗体-受体偶联物,接着使用清除剂由循环中清除未结合的偶联物,然后施用与细胞毒剂(如放射性核苷酸)偶联的“配体”(如亲合素)。
如下用MC-MMAE通过偶联本文中提供的任何抗体来制备抗体(Ab)-MC-MMAE。用过量的100mM二硫苏糖醇(DTT)处理溶于500mM硼酸钠和500mM氯化钠pH 8.0的抗体。于37℃温育约30分钟后,通过SephadexG25树脂上的洗脱更换缓冲液并用含1mM DTPA的PBS洗脱。通过溶液在280nm处的吸光度测定还原的抗体浓度,并通过与DTNB(Aldrich,Milwaukee,WI)的反应及412nm处的吸光度测定硫醇浓度,由此检查硫醇/抗体值。使溶于PBS中的还原的抗体在冰上变冷。将溶于DMSO的药物接头试剂马来酰亚胺己酰基-单甲基auristatin E(MMAE)即MC-MMAE在乙腈和水中稀释至已知浓度,并加至冷却的PBS中的还原的抗体2H9。约1小时后,加入过量的马来酰亚胺以淬灭反应并覆盖任何未反应的抗体硫醇基团。通过离心超滤将反应混合液浓缩,通过PBS中的G25树脂的洗脱将2H9-MC-MMAE纯化和脱盐,在无菌条件下通过0.2μm滤器过滤,并冷冻供贮存。
抗体-MC-MMAF可以遵循为制备Ab-MC-MMAE而提供的方案通过用MC-MMAF偶联本文中提供的任何抗体来制备。
抗体-MC-val-cit-PAB-MMAE可以遵循为制备Ab-MC-MMAE而提供的方案通过用MC-val-cit-PAB-MMAE偶联本文中提供的任何抗体来制备。
抗体-MC-val-cit-PAB-MMAF可以遵循为制备Ab-MC-MMAE而提供的方案通过用MC-val-cit-PAB-MMAF偶联本文中提供的任何抗体来制备。
如下用SMCC-DM1通过偶联本文中提供的任何抗体来制备抗体-SMCC-DM1。将纯化的抗体用4-(N-马来酰亚胺甲基)环己烷-1-羧酸琥珀酰亚氨基酯(SMCC,Pierce Biotechnology,Inc)衍生化以引入SMCC接头。具体而言,用7.5个摩尔当量的SMCC(20mM,在DMSO中,6.7mg/ml)处理50mM磷酸钾/50mM氯化钠/2mM EDTA,pH 6.5中的20mg/ml抗体。在氩气下于环境温度搅动2小时后,将反应混合液通过用50mM磷酸钾/50mM氯化钠/2mMEDTA,pH 6.5平衡的Sephadex G25柱过滤。合并并测定含有抗体的级分。
将如此制备的抗体-SMCC用50mM磷酸钾/50mM氯化钠/2mM EDTA,pH 6.5稀释至终浓度约10mg/ml,并与DM1在二甲基乙酰胺中的10mM溶液反应。将反应液在氩气下于环境温度搅动16.5小时。然后将偶联反应混合液通过用1 x PBS pH6.5平衡的Sephadex G25凝胶过滤柱(1.5 x 4.9cm)过滤。根据252nm和280nm处的吸光度的测量,DM1药物/抗体比率(p)可以是约2-5。
如下用SPP-DM1通过偶联本文中提供的任何抗体来制备Ab-SPP-DM1。将纯化的抗体用4-(2-吡啶基硫代)戊酸N-琥珀酰亚氨基酯衍生化以引入二硫代吡啶基。用SPP(2.3ml乙醇中的5.3个摩尔当量)处理44.7ml含NaCl(50mM)和EDTA(1mM)的50mM磷酸钾缓冲液(pH 6.5)中的抗体(376.0mg,8mg/mL)。在氩气下于环境温度温育90分钟后,将反应混合液通过用35mM柠檬酸钠,154mM NaCl和2mM EDTA缓冲液平衡的Sephadex G25柱凝胶过滤。然后合并并测定含有抗体的级分。抗体的修饰程度如上所述测定。
将抗体-SPP-Py(约10μmol可释放的2-硫代吡啶基团)用上文35mM柠檬酸钠缓冲液pH6.5稀释至终浓度约2.5mg/ml。然后向抗体溶液中加入3.0mM二甲基乙酰胺(DMA,在最终的反应混合液中为3%v/v)中的DM1(1.7个当量,17μmol)。让反应在氩气下于环境温度进行约20小时。将反应液加载至用35mM柠檬酸钠,154mM NaCl,pH 6.5平衡的Sephacryl S300凝胶过滤柱(5.0cm x 90.0cm,1.77L)。流速可以为约5.0ml/min,收集了65份级分(各20.0ml)。合并并检测各级分,其中通过测量252nm和280nm处的吸光度来测定每个抗体分子连接的DM1药物分子的数目(p′),可以是每个2H9抗体约2-4个DM1药物模块。
如下用BMPEO-DM1通过偶联本文中提供的任何抗体来制备抗体-BMPEO-DM1。可以用双马来酰亚胺试剂BM(PEO)4(Pierce Chemical)修饰抗体,在抗体的表面上留下未反应的马来酰亚胺基团。这可如下来实现,将BM(PEO)4在50%乙醇/水混合液中溶解至浓度10mM,以10倍摩尔过量加至在磷酸盐缓冲盐水中以大约1.6mg/ml(10微摩尔)的浓度含有抗体的溶液,并让其反应1小时以形成抗体-接头中间体,2H9-BMPEO。通过在30mM柠檬酸盐pH 6及150mM NaCl缓冲液中凝胶过滤(HiTrap column,Pharmacia)来除去过量的BM(PEO)4。将大约10倍摩尔过量的DM1溶于二甲基乙酰胺(DMA)并加至2H9-BMPEO中间体。也可采用二甲基甲酰胺(DMF)来溶解药物模块试剂。让反应混合液反应过夜,然后在PBS中凝胶过滤或透析以除去未反应的DM1。通过在PBS中的S200柱上凝胶过滤来除去高分子量聚集体并供应纯化的2H9-BMPEO-DM1。
抗体衍生物
可进一步修饰本发明的抗体以包含本领域知道的且易于获得的额外非蛋白质性质部分。在一个实施方案中,适于抗体衍生化的部分是水溶性聚合物。水溶性聚合物的非限制性实例包括但不限于聚乙二醇(PEG)、乙二醇/丙二醇共聚物、羧甲基纤维素、右旋糖苷、聚乙烯醇、聚乙烯吡咯烷酮、聚-1,3-二氧戊环、聚-1,3,6-三噁烷、乙烯/马来酸酐共聚物、聚氨基酸(均聚物或随机共聚物)、和右旋糖苷或聚(n-乙烯吡咯烷酮)聚乙二醇、丙二醇均聚物、环氧丙烷/环氧乙烷共聚物、聚氧乙烯化多元醇(如甘油)、聚乙烯醇及其混合物。由于其在水中的稳定性,聚乙二醇丙醛在生产中可能具有优势。聚合物可以是任何分子量,而且可以是分支的或不分支的。附着到抗体上的聚合物数目可以变化,而且如果附着了超过一个聚合物,那么它们可以是相同或不同的分子。一般而言,可根据下列考虑来确定用于衍生化的聚合物的数目和/或类型,包括但不限于待改进抗体的具体特性或功能、抗体衍生物是否将用于指定条件下的治疗等。
在另一个实施方案中,提供了抗体与可通过暴露于辐射而选择性加热的非蛋白质性质模块的偶联物。在一个实施方案中,该非蛋白质性质模块是碳纳米管(Kam et al.,Proc.Natl.Acad.Sci.102:11600-11605(2005))。辐射可以是任何波长的,包括但不限于对普通细胞无害但将非蛋白质性质模块加热至接近抗体-非蛋白质性质模块的细胞被杀死的温度的波长。
药物配制剂
可通过将具有期望纯度的抗体与任选的生理学可接受载体、赋形剂或稳定剂混合来制备包含本发明抗体的治疗用配制剂,以水溶液、冻干或其它干燥剂型的形式贮存(《Remington′s Pharmaceutical Sciences》,第16版,Osol,A.编,1980)。可接受的载体、赋形剂或稳定剂在所采用的剂量和浓度对接受者是无毒的,而且包括缓冲剂,诸如磷酸盐、柠檬酸盐和其它有机酸;抗氧化剂,包括抗坏血酸和甲硫氨酸;防腐剂(诸如氯化十八烷基二甲基苄基铵;氯化己烷双胺;苯扎氯铵、苯索氯铵;酚、丁醇或苯甲醇;对羟基苯甲酸烷基酯,诸如对羟基苯甲酸甲酯或丙酯;邻苯二酚;间苯二酚;环己醇;3-戊醇;和间甲酚);低分子量(少于约10个残基)多肽;蛋白质,诸如血清清蛋白、明胶或免疫球蛋白;亲水性聚合物,诸如聚乙烯吡咯烷酮;氨基酸,诸如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或赖氨酸;单糖、二糖和其它碳水化合物,包括葡萄糖、甘露糖或糊精;螯合剂,诸如EDTA;糖类,诸如蔗糖、甘露醇、海藻糖或山梨醇;成盐相反离子,诸如钠;金属复合物(如Zn-蛋白质复合物);和/或非离子表面活性剂,诸如TWEENTM、PLURONICSTM或聚乙二醇(PEG)。
本文中的配制剂还可含有超过一种所治疗具体适应症所必需的活性化合物,包括但不限于那些活性互补且彼此没有不利影响的。合适的是,此类分子以对于预定目的有效的量组合。
活性成分还可包载于例如通过凝聚技术或通过界面聚合制备的微胶囊中(例如分别是羟甲基纤维素或明胶微胶囊和聚(甲基丙烯酸甲酯)微胶囊)、在胶状药物传递***中(例如脂质体、清蛋白微球体、微乳剂、纳米颗粒和纳米胶囊)、或在粗滴乳状液中。此类技术公开于例如《Remington′sPharmaceutical Sciences》,第16版,Osol,A.编,1980。
用于体内施用的配制剂必须是无菌的。这可容易的通过使用无菌滤膜过滤来实现。
可制备持续释放配制剂。持续释放配制剂的合适例子包括含有本发明免疫球蛋白的固体疏水性聚合物半透性基质,该基质以定型产品的形式存在,如薄膜或微胶囊。持续释放基质的例子包括聚酯、水凝胶(例如聚(2-羟乙基-甲基丙烯酸酯)或聚(乙烯醇))、聚交酯(美国专利3,773,919)、L-谷氨酸和γ-乙基-L-谷氨酸酯的共聚物、不可降解的乙烯-乙酸乙烯、可降解的乳酸-乙醇酸共聚物诸如LUPRON DEPOTTM(由乳酸-乙醇酸共聚物和醋酸亮丙瑞林构成的可注射微球体)及聚-D-(-)-3-羟基丁酸。虽然诸如乙烯-乙酸乙烯和乳酸-乙醇酸等聚合物能够持续释放分子100天以上,但是某些水凝胶释放蛋白质的时间较短。当胶囊化抗体在体内长时间维持时,它们可能由于暴露于37℃的潮湿环境而变性或聚集,导致生物学活性损失和免疫原性可能改变。可根据相关机制来设计合理的稳定化策略。例如,如果发现聚集机制是经由硫醇-二硫化物互换而形成分子间S-S键,那么可通过修饰巯基残基、由酸性溶液冻干、控制湿度、采用适宜添加剂和开发特定的聚合物基质组合物来实现稳定。
用途
本发明的抗体可用于例如体外、离体和体内治疗方法。本发明的抗体可用作为一种拮抗剂以在体外、离体和/或体内部分或完全封闭特异性抗原活性。此外,至少一些的本发明的抗体可中和来自其它物种的抗原活性。因此,本发明的抗体可用于例如在含有抗原的细胞培养物中、在具有与本发明的抗体交叉反应的抗原的人受试者或其它哺乳动物受试者(如黑猩猩、狒狒、狨猴、猕猴和恒河猴、猪或小鼠)中抑制特异性抗原活性。在一个实施方案中,通过将抗体与抗原接触以致抗原活性被抑制,本发明的抗体可用于抑制抗原活性。在一个实施方案中,所述抗原是人蛋白分子。
在一个实施方案中,本发明的抗体可用于抑制患有其中抗原活性是有害的病症的受试者中该抗原的方法,所述方法包括给予受试者本发明的抗体,使得受试者中该抗原活性得以抑制。在一个实施方案中,抗原是人蛋白分子并且受试者是人受试者。可选地,受试者可以是表达本发明的抗体所结合抗原的哺乳动物。更进一步地,受试者可以是一种抗原已导入(如通过给予抗原或通过表达抗原转基因)的哺乳动物。可将本发明的抗体给予人受试者用于治疗目的。此外,可将本发明的抗体给予表达该抗体交叉反应的抗原的非人哺乳动物(如灵长类动物、猪或小鼠)用于兽医用目的或作为人疾病的动物模型。关于后者,上述动物模型可用于评价本发明的抗体的治疗效果(如测试给药剂量和时程)。本发明的抗体可用于治疗、抑制、延迟进展、预防/延迟复发、改善或预防与多聚遍在蛋白和多聚遍在蛋白化蛋白异常表达和/或活性有关的疾病、病症或状况,包括但不限于癌症、肌肉病症、遍在蛋白途径相关的遗传性病症、免疫/炎性病症、神经***疾病和其它的遍在蛋白途径相关病症。
在一个方面中,本发明的封闭抗体特异于具有K63赖氨酸键的多聚遍在蛋白,并通过封闭或干扰K63连接的多聚遍在蛋白和与该K63连接的多聚遍在蛋白相互作用的蛋白之间的相互作用抑制正常的K63连接的多聚遍在蛋白活性,由此抑制相应的信号传导途径以及其它相关的分子或细胞事件。在另一个方面中,本发明的特异于K63连接的多聚遍在蛋白的封闭抗体与一种或多种偶联有K63连接的多聚遍在蛋白的蛋白质相互作用,由此抑制该蛋白质与信号传导途径或其它结合配偶的相互作用及干扰相关的分子或细胞事件。
在某些实施方案中,给予患者包含偶联有细胞毒剂的本发明抗体的免疫偶联物。在某些实施方案中,免疫偶联物和/或其结合的抗原为在其细胞表面上表达一种或多种与K63连接的多聚遍在蛋白有关的蛋白质的细胞所内在化,从而在杀死该免疫偶联物所结合的靶细胞中增强了该免疫偶联物的治疗效能。在一个实施方案中,细胞毒剂靶向或干扰靶细胞中的核酸。上述细胞毒剂的例子包括任何一种本文中提及的化学治疗剂(如美登木素生物碱类或加利车霉素)、放射性同位素或核糖核酸酶或DNA核酸内切酶。
在治疗中本发明的抗体可单独或与其它组合物联合使用。例如,本发明的抗体可与另一种抗体和/或佐剂/治疗剂(例如类固醇)联合给药。例如,在治疗方案如在治疗任何一种本文所描述的疾病包括癌症、肌肉病症、遍在蛋白途径相关的遗传性病症、免疫/炎性病症、神经***疾病和其它遍在蛋白途径相关的病症中,本发明的抗体可与抗炎剂和/或杀菌剂联合给药。上述这样的联合治疗包括联合给药(其中两种或更多种药物包括在同一或不同的制剂中)以及分开给药,在这样的情况下,可在附加治疗给予之前和/或之后给予本发明的抗体。
本发明的抗体(以及附加的治疗剂)可通过任何适合的方式给药,包括肠胃外、皮下、腹膜内、肺内和鼻内给药,以及视局部治疗需要,损伤区给药。肠胃外输注包括肌内、静脉内、动脉内、腹膜内或皮下给药。此外,抗体适于通过脉冲式输注给药,特别是使用递减剂量的抗体。部分取决于给药是否是短期或长期的,可以是任何适合的途径如通过注射,例如静脉或皮下注射。部分取决于给药是否是短期或长期的,可通过任何适合的途径给予剂量,如通过注射例如静脉内或皮下注射。
在制备及给予抗体中要考虑本发明的抗体的结合靶的位置。当结合靶为细胞内分子时,对于要被导入其中结合靶所处的细胞中的抗体或其抗原结合片段提供了本发明的某些实施方案。在一个实施方案中,本发明的抗体可以作为胞内抗体在细胞内表达。如本文中所使用的,术语“胞内抗体”指如Marasco,Gene Therapy 4:11-15(1997);Kontermann,Methods 34:163-170(2004);美国专利号6,004,940和6,329,173;美国专利申请公开号2003/0104402和PCT公开号WO2003/077945中所述的,一种在细胞内表达并且能与靶分子选择性结合的抗体或其抗原结合部分。胞内抗体的细胞内表达受将编码期望抗体或其抗原结合部分的核酸(缺少野生型前导序列和通常与编码抗体或抗原结合片段的基因相关的分泌信号)导入靶细胞中的影响。可使用任何将核酸导入细胞中的标准方法,包括但不限于显微注射,弹道式注射(ballistic injection),电穿孔,磷酸钙沉淀,脂质体以及使用携带有目的核酸的逆转录病毒、腺病毒、腺伴随病毒和痘苗病毒载体进行转染。可将一种或多种编码本发明的抗多聚遍在蛋白抗体的全部或部分的核酸递送给靶细胞,使得一种或多种胞内抗体(intrabody)得以表达,从而能在细胞内与多聚遍在蛋白结合并调节一条或多条多聚遍在蛋白介导的细胞途径。
在另一个实施方案中,提供了内在化的抗体。抗体可具有某些增强将抗体递送入细胞中的特性,或可被修饰以具有上述特性。用于实现其的技术是本领域已知的。例如,已知抗体的阳离子化能促进其被细胞摄取(参见如美国专利号6,703,019)。脂质转染或脂质体也可用于将抗体递送入细胞中。在使用抗体片段的情况下,与靶蛋白结合域特异性结合的最小抑制性片段通常是有利的。例如,基于抗体的可变区序列,可设计保留与靶蛋白序列结合能力的的肽分子。上述肽可化学合成和/或通过重组DNA技术产生。参见如Marasco等,Proc.Natl.Acad.Sci.USA,90:7889-7893(1993)。
可通过本领域已知的方法增加调节多肽进入靶细胞。例如,某些序列如来源于HIV Tat或触角足(Antennapedia)同源结构域蛋白的那些序列能指导异源蛋白穿过细胞膜从而有效地摄入。参见如Chen等,Proc.Natl.Acad.Sci.USA(1999),96:4325-4329。
当结合的靶位于脑中时,某些本发明的实施方案提供了穿过血脑屏障的抗体或其抗原结合片段。某些神经变性疾病与增加的血脑屏障透过性有关,使得抗体或抗原结合片段能容易地导入脑中。当血脑屏障保持完整时,存在着一些用于转运分子穿过该血脑屏障的本领域已知的方法,包括但不限于物理方法、基于脂质的方法以及基于受体和通道的方法。
将抗体或抗原结合片段转运穿过血脑屏障的物理方法包括但不限于完全绕过血脑屏障或通过在血脑屏障中产生开口。绕过方法包括但不限于直接注射入脑中(参见如Papanastassiou等,Gene Therapy 9:398-406(2002))、间质输注/对流增强的递送(convection-enhanced delivery)(参见如Bobo等,Proc.Natl.Acad.Sci.USA 91:2076-2080(1994))和在脑中***递送装置(参见如Gill等,Nature Med.9:589-595(2003);和Gliadel WafersTM,GuildfordPharmaceutical)。在屏障中产生开口的方法包括但不限于超声波(参见如美国专利公开号2002/0038086)、渗透压(如通过给予高渗的甘露醇(Neuwelt,E.A.,Implication of the Blood-Brain Barrier and its Manipulation,Vols 1 & 2,PlenumPress,N.Y.(1989)))、通过如缓激肽或透化剂A-7透化(参见如美国专利号5,112,596,5,268,164,5,506,206和5,686,416)和用含有编码抗体或抗原结合片段的基因的载体转染跨越血脑屏障的神经细胞(参见如美国专利公开号2003/0083299)。
基于脂质的将抗体或抗原结合片段转运穿过血脑屏障的方法包括但不限于将抗体或抗原结合片段包囊入连接有与血脑屏障的血管内皮上受体结合的抗体结合片段的脂质体中(参见如美国专利申请公开号20020025313),以及将抗体或抗原结合片段包被在低密度脂蛋白颗粒(参见如美国专利申请公开号20040204354)或载脂蛋白E(参见如美国专利申请公开号20040131692)中。
基于受体和通道的将抗体或抗原结合片段转运穿过血脑屏障的方法包括但不限于使用糖皮质激素阻断剂来增加血脑屏障的透过性(参见如美国专利申请公开号2002/0065259,2003/0162695和2005/0124533);激活钾通道(参见如美国专利申请公开号2005/0089473),抑制ABC药物运载体(参见如美国专利申请公开号2003/0073713);用转铁蛋白包被抗体并调节一种或多种转铁蛋白受体的活性(参见如美国专利申请公开号2003/0129186),以及阳离子化抗体(参见如美国专利号5,004,697)。
本发明的抗体组合物应当以一种符合良好的医学实践的方式配制、确定剂量及给药。关于这一点考虑的因素包括在治疗的特定病症、在治疗的特定哺乳动物、患者个体的临床状态、病因、药物递送部位、给药方法、服药日程以及其它为开业医生所知的因素。抗体无需但可任选地与一种或多种目前用于预防或治疗所述病症的药物一起配制。上述其它药物的有效量取决于配方中所存在的本发明的抗体的量、所治疗病症的类型、以及其它上述讨论的因素。这些药物通常以相同的剂量使用并具有本文中所描述的给药途径,或以约1-99%的本文所描述的剂量使用,或以任何剂量并通过任何途径使用,所述剂量和途径是凭经验确定的/经临床测定合适的。
为了预防或治疗疾病,本发明的抗体(当单独或与其它药物如化学治疗剂联合使用时)的合适剂量应取决于所要治疗的疾病的类型、抗体的种类、疾病的严重性和病程、所给予抗体的预防或治疗目的、之前的治疗、患者的临床史和对抗体的应答、以及主治医师的斟酌决定。抗体适合于在一次或一系列的治疗中给予患者。取决于疾病的类型和严重性,约1μg/kg-15mg/kg(例如0.1mg/kg-10mg/kg)的抗体可作为首次候选用量给予患者,无论是例如通过一次或多次单独的给药或通过连续输注。取决予上述提及的因素,一个典型的日剂量可在约1μg/kg-100mg/kg或更多的范围内。对于几天或更长时间的重复给药,取决于病情,治疗应通常持续直至出现病症得到期望的抑制为止。抗体的一个例证性的剂量应为约0.05mg/kg-约10mg/kg。因此,可将一个或多个约0.5mg/kg、2.0mg/kg、4.0mg/kg或10mg/kg(或它们的任何组合)的剂量给予患者。上述剂量可间歇给予,如每周或每三周给予一次(如使得患者得到约2-约20个,或例如约6个剂量的抗体)。可给予初始较高的负荷剂量,接着给予一个或多个较低的剂量。一个例证性的给药方案包括给予约4mg/kg的初始负荷剂量,继之以约2mg/kg抗体的周维持剂量。然而,可使用其它给药方案。通过常规技术和测定方法易于监测该治疗的进展。
制品
在本发明的另一个方面,提供了包含可用于治疗、预防和/或诊断上文所述紊乱的物质的制品。制品包括容器和贴在所述容器上或与其相连的标签或包装插页。合适的容器包括例如瓶子、小管、注射器等。容器可用各种材料制成,诸如玻璃或塑料。容器中装有其自身或在联合其它组合物时有效治疗、预防和/或诊断疾患的组合物,而且可具有无菌存取口(例如容器可以是具有皮下注射针头可刺穿的塞子的静脉内溶液袋或小管)。组合物中的至少一种活性剂是本发明的抗体。标签或包装插页指示该组合物用于治疗选择的疾患。此外,制品可包括(a)其中装有组合物的第一容器,其中所述组合物包含本发明的抗体;和(b)其中装有组合物的第二容器,其中所述组合物包含其它细胞毒剂或其它类型的治疗剂。本发明此实施方案中的制品还可包括指示该组合物可用于治疗特定疾患的包装插页。或者/另外,制品还可包括第二(或第三)容器,其中装有制药学可接受的缓冲剂,诸如注射用抑菌水(BWFI)、磷酸盐缓冲盐水、林格氏(Ringer)溶液和右旋糖溶液。它还可包括商业和用户立场上所需的其它物质,包括其它缓冲剂、稀释剂、滤器、针头和注射器。
以下是本发明的方法和组合物的实施例。应当理解,根据上文提供的一般描述,可以实施各种其它实施方案。
实施例
实施例1:K63连接的双遍在蛋白特异性抗体片段的亲和力成熟
美国专利公开文本号US2007-0218069(通过述及完整收入本文)中记载了多组能够区分K48连接的多聚遍在蛋白和K63连接的多聚遍在蛋白的抗体。该公开文本中鉴定的最好的抗K63连接的Fab的亲和力和特异性(Apu2.16,Kd大约100nM和对K48连接的多聚遍在蛋白的少量人为结合)劣于该公开文本中鉴定的最好的抗K48连接的Fab的亲和力和特异性(Apu2.07,Kd大约1nM,没有观察到对K63连接的多聚遍在蛋白的结合)。寻求改良的K63连接的多聚遍在蛋白特异性Fab/抗体以推动期望的具有更强特异性或亲和力的Fab/抗体的应用。
(A)文库生成
对Apu2.16抗K63连接的双遍在蛋白抗体片段(Fab)进行诱变以使该抗体亲和力成熟。如Apu2.16和K63连接的双遍在蛋白的共晶体结构所显示的(见图2和美国专利公开文本号US2007-0218069,完整收入本文),基于它们与K63连接的双遍在蛋白接触,选择CDR L2的残基49、50、52、和53和CDR H2的残基50、52、53、54、和56来诱变。使用带有CDR L2第51位和CDR H2第52a位TAA终止密码子的Apu2.16终止模板来推动这两个CDR区的诱变。此构建物的表达在细菌碱性磷酸酶(PhoA)启动子的控制下。轻链和重链二者均含有氨基端细菌stII信号序列以容许在大肠杆菌中分泌。重链羧基端以符合读码框的方式融合至琥珀终止密码子,接着是M13噬菌体的基因产物III,从而容许当在琥珀抑制基因大肠杆菌菌株中表达时单价Fab展示在噬菌体上。合成简并寡核苷酸以软随机化接触位置,使得50%的时间会保留Apu2.16野生型残基而50%的时间会编码其余19种氨基酸之一。为了实现软随机化,设计寡核苷酸,使得某些核苷酸位置70%的时间被指定碱基占据且10%的时间被其它三种碱基之一占据(Gallop et al.,J.Med.Chem.37:1233(1994))。在特定碱基处包括此类软随机化的情况中,软随机化的存在以该碱基位置处数字的存在来标示。数字“5”指示碱基腺嘌呤在该位置存在70%的时间,而碱基鸟嘌呤、胞嘧啶、和胸腺嘧啶各自存在10%的时间。类似地,数字“6”指鸟嘌呤,“7”指胞嘧啶,而“8”指胸腺嘧啶,其中在每种情况中,其它三种碱基各自只存在10%的时间。
在Kunkel诱变反应(参见Kunkel,Proc.Natl.Acad.Sci.USA 82:488(1985)和Sidhu et al.,Meth.Enzymol.328:333(2000))中使用诱变寡核苷酸310887(CCGAAGCTTCTGATT857876GCA877567CTCTACTCTGGAGTC)(SEQ IDNO:             1)               和            310890(GGCCTGGAATGGGTTGCA858ATT878CCT858858GGC878ACTTCTTATGCCGATAGC)(SEQ ID NO:2)及40μg Apu2.16终止模板的Kunkel DNA。将诱变反应电穿孔入ElectroTen Blue大肠杆菌(Stratagene),并在25mL SOC培养基中在摇动中于37℃回收45分钟。取出20微升,将10倍连续稀释液涂布到含有羧苄青霉素的固体琼脂板上,并于37℃培养过夜以测定库容量。将剩余的培养物转移至500mL含有50μg/mL羧苄青霉素、50μg/mL卡那霉素、和1010噬菌体/mL M13K07辅助噬菌体(New England Biolabs)的2YT肉汤。将培养物在摇动中于30℃培养14小时。该文库含有大约3 x 1010CFU。通过两轮用1/5体积20%聚乙二醇(PEG)/2.5M NaCl沉淀自培养物上清液纯化噬菌体。
(B)文库分选
在针对96孔Maxisorb免疫板(Nunc)上固定化的酶促合成的K63连接的双遍在蛋白(Boston Biochem)的分选中使用所扩增的噬菌体。将板用50mM碳酸钠缓冲液pH 9.6中的5μg/mL K63连接的双遍在蛋白于4℃包被过夜。将经过包被的板用含有0.05%Tween-20的PBS(PBST)中的2.5%奶在摇动中于25℃封闭1小时。将噬菌体在2.5%奶/PBST中稀释至OD268为5.0并在冰上温育1小时。封闭后,将板用PBST清洗5次。添加100μl/孔噬菌体并在摇动中于25℃温育1小时。结合后,将板用PBST清洗10次。将噬菌体用100μL/孔100mM HCl在摇动中于25℃洗脱20分钟。将洗脱液用1/10体积1M Tris pH 11.0中和并随后在XL-1blue大肠杆菌(Stratagene)中添加M13K07辅助噬菌体来扩增。
在后续轮次的分选中使用所扩增的噬菌体。如上所述实施第二次分选,只是使用100nM生物素化的K63连接的双遍在蛋白作为溶液中的靶物且以OD268为1.0使用噬菌体。在5μg/mL中性亲合素包被的免疫板上捕捉生物素化的K63连接的双遍在蛋白连同结合的噬菌体。与第二轮类似地实施第三轮分选,其中添加可溶性100nM K48连接的双遍在蛋白和100nM单遍在蛋白(Boston Biochem)作为噬菌体封闭和噬菌体结合捕捉中的竞争物。在第四轮分选中,将生物素化的K63连接的双遍在蛋白靶物浓度降低至10nM,并将K48连接的双遍在蛋白和单遍在蛋白竞争物浓度各自提高至1μM。在第三轮和第四轮后观察到与单独的中性亲合素相比对生物素化的K63连接的双遍在蛋白的结合的富集。
以96孔形式在1mL含有50μg/mL羧苄青霉素和1010个噬菌体/mL M13K07辅助噬菌体的2YT肉汤中培养来自第四次分选的96个克隆。在针对K63连接的双遍在蛋白、K48连接的双遍在蛋白、单遍在蛋白、或未包被板孔的高通量噬菌体ELISA中使用来自那些培养物的上清液。51个克隆展现出对K63连接的双遍在蛋白的特异性结合,使用标准规程对它们的DNA测序。表B显示了每个克隆的CDR L2和H2序列。CDR L1、L3、H1、和H3没有测序,但是因为它们不是诱变的目标,所以预期它们保留了Apu2.16模板CDR L1序列(RASQSVSSAVA)(SEQ ID NO:3)、CDR L3序列(QQYSSYSSLFT)(SEQ IDNO:4)、CDR H1序列(VKTGLI)(SEQ ID NO:5)、和CDR H3序列(EYYRWYTAI)(SEQ ID NO:6),它们没有作为诱变的目标。
(C)Fab生成
选择24个最特异性的抗K63连接的双遍在蛋白克隆(根据在上文所述噬菌体斑点ELISA中对K63连接的双遍在蛋白的结合相对于K48连接的双遍在蛋白的信号比大于10来判断)用于可溶性Fab生成。编码这些Fab的质粒转化入大肠杆菌中,并在含有羧苄青霉素的固体琼脂上涂板。使用单菌落接种25mL含有50μg/mL羧苄青霉素的2YT肉汤。将培养物于37℃培养过夜,并使用5mL接种500mL含有50μg/mL羧苄青霉素的完全C.R.A.P.培养基(3.57g(NH4)2SO4、0.71g柠檬酸钠2H2O、1.07g KCl、5.36g酵母提取物、5.36g HycaseSF(Sheffield),通过添加KOH将pH调节至7.3并用超纯水将体积调节至872mL,高压灭菌,冷却至55℃,向其中添加(每L)110mL 1M MOPS pH 7.3、11mL 50%葡萄糖、和7mL 1M MgSO4)。将培养物在摇动中于30℃培养24小时。通过离心收获细胞,并将沉淀物保存于-20℃。如下纯化Fab,即在35mL冷的含有10μg/mL DNA酶I、0.2mg/mL溶菌酶、和1mM苯甲基磺酰氟化物(PMSF)的清洗缓冲液(PBS+150mM NaCl)中重悬浮每份沉淀物。通过于25℃快速漩涡震动45分钟来重悬浮沉淀物。通过离心沉淀细胞碎片,并将溶胞物加载到用冷的清洗缓冲液预平衡的1mL蛋白A-Sepharose柱(GE HealthSciences)上。用50mL冷的清洗缓冲液清洗柱,用3mL 0.1M乙酸洗脱,并用150μL 2M Tris,pH11.0中和。使用Amicon Ultra-15离心滤器单元(5KD截留,Millipore)浓缩Fab。分光光度法测定所得Fab浓度,并将浓缩的Fab保存于4℃。
(D)对分离的Fab的亲和力分析
使用BIACORETM A100***(Biacore)通过表面等离振子共振(SPR)测定24个选定Fab(见上文实施例1(C))的亲和力。使用由制造商供应的胺偶联方案在CM5芯片的四个流动室中的两个中固定化大约50个共振单位的K63连接的双遍在蛋白或K48连接的双遍在蛋白。活化每个CM5芯片上的一个流动室并在没有固定化蛋白质的情况中乙醇胺封闭,用作参照。在每个流动室上注射(总共60μL,流速30μL/min)每种Fab的2倍连续稀释液(31.25-500nM)。自每个流动室信号减去参照信号。解离期(10分钟)后,用15μL 10mM HCl再生芯片表面。使用由制造商提供的软件通过非线性回归分析同时计算动力学常数和结合常数,显示于表C。显示了来自亲本Apu2.16Fab动力学常数和结合常数的三次分开测量的平均值及24种亲和力成熟的Fab的单次测量。亲本Apu2.16Fab及24种亲和力成熟的Fab任一都不展示可检测的对K48连接的双遍在蛋白的结合。
表C:通过SPR测量亲和力成熟的抗K63连接的多聚遍在蛋白Fab结合K63连接的双遍在蛋白的结合常数
(E)亲和力成熟的Fab的Western印迹
自实施例1(D)中SPR分析获得的结合常数指示三个克隆(Apu3.A8、Apu3.A12、和Apu3.B3)展示单数码纳摩尔结合(single digit nanomolarbinding)。对这三种Fab连同亲本Apu2.16Fab测试在Western印迹中对K63连接的双遍在蛋白和K48连接的双遍在蛋白的检测。在4-12%NuPAGE凝胶(Invitrogen)上运行6个浓度的K63连接的双遍在蛋白(31-1000ng)和3个浓度的K48连接的双遍在蛋白(250-1000ng),转移至聚偏氟乙烯(PVDF)膜,并用亲本克隆和三个亲和力成熟的Fab印迹。各Fab含有羧基端6x-His标签,并如此用抗五His-HRP偶联的二抗抗体(Qiagen)检测,接着是化学发光显影。所有四种Fab都特异性检测K63连接的双遍在蛋白(见图3)。对所测试的四种Fab都没有观察到对K48连接的双遍在蛋白的结合。
(F)转换成IgG
在HEK293细胞中作为人IgG表达亲本Fab Apu2.16和三种亲和力成熟的Fab Apu3.A8、Apu3.A12、Apu3.B3。表达构建物是通过将Fab可变域克隆入编码重链和轻链人IgG的pRK哺乳动物表达构建物(Gorman et al.,DNA Prot.Eng.Tech.2:3-10(1990))而生成的。通过标准方法学通过蛋白A-Sepharose柱上的亲和层析纯化IgG。
实施例2:内源遍在蛋白化蛋白质的检测
评估实施例1(F)中描述的亲和力成熟的抗K63连接的多聚遍在蛋白IgG的活性。对于Western印迹分析,遵循本领域标准规程,在聚丙烯酰胺凝胶上运行多聚遍在蛋白或多聚遍在蛋白化的蛋白质,并将凝胶内含物转移至硝酸纤维素印迹。将所得硝酸纤维素印迹在含有5%脱脂奶粉的10mM Tris-HCl pH7.5、150mM NaCl、0.1%Tween-20(TBST)中封闭大约1小时。添加抗K63连接的多聚遍在蛋白一抗(或是IgG形式的亲本Apu2.16抗体,或是IgG形式的Apu3.A8、Apu3.A12、或Apu3.B3)至终浓度5μg/mL,于室温最少1小时。于4℃实施过夜温育。将印迹在TBST中清洗3次,每次清洗10分钟。用在含有5%脱脂奶粉的TBST中1∶10,000稀释的过氧化物酶偶联的抗人IgG(ICNCappel)检测结合的抗K63连接的多聚遍在蛋白抗体。于室温1小时后,将印迹在TBST中清洗3-6次,依照制造商的指令在Supersignal(Pierce)中温育,并使胶片曝光。对于内源遍在蛋白化蛋白质的Western印迹,使用Lipofectamine2000(Invitrogen)用或不用表达带3xHA标签的TRAF6的载体转染293T细胞。转染后2天在25μM MG-132(Calbiochem)中培养最后一个小时后收获细胞。在磷酸盐缓冲盐水中清洗细胞,然后在冰冷的补充有完全蛋白酶抑制剂混合物(Roche)的裂解缓冲液(20mM Tris-Cl pH 7.5、135mM NaCl、1.5mM MgCl2、1mM EGTA、1%Triton X-100、10%甘油、1mM二硫苏糖醇、2mM N-乙基-马来酰亚胺)中制备蛋白质提取物。
如图4和5所示,所测试的三种亲和力成熟的抗K63连接的IgG在Western印迹中都比亲本Apu2.16IgG更好地工作。图4描绘了针对固定化的纯化的含有两个至七个遍在蛋白亚基的K48连接的或K63连接的多聚遍在蛋白的Western印迹的结果。亲本IgG Apu2.16在所测试的任何浓度都不能检测任何数目的遍在蛋白亚基的K63连接的或K48连接的多聚遍在蛋白。亲和力成熟的IgG Apu3.A8、Apu3.A12、或Apu3.B3在所测试的每种浓度都能检测含有2-6个亚基的K63连接的多聚遍在蛋白,而且在除最低浓度之外所测试的所有浓度都能检测含有7个亚基的K63连接的多聚遍在蛋白。用这三种亲和力成熟的IgG都没有观察到对K48连接的多聚遍在蛋白的非特异性结合。为了确定亲和力成熟的抗体是否能够检测内源遍在蛋白化的蛋白质,将293T细胞用TRAF6转染并用MG-132处理,已经发现MG-132在体内导致TRAF6的K63连接的遍在蛋白化(Wertz et al.,Nature(2004)430:694-699)。与图4中用固定化的纯化的多聚遍在蛋白进行的Western印迹相似,亲本Apu2.16IgG在Western印迹测定法中不能够检测K63连接的多聚遍在蛋白化TRAF6或K63连接的多聚遍在蛋白化的任何其它蛋白质(图5)。然而,Apu3.A8、Apu3.A12、和Apu3.B3中每一种抗体在相同的Western印迹测定法中都特异性检测到K63连接的多聚遍在蛋白化的TRAF6和K63连接的多聚遍在蛋白化的其它蛋白质(图5)。
前述实验证实了亲和力成熟的抗体能够检测固定化的多聚遍在蛋白化的蛋白质。实施了进一步的实验来确定这些抗体是否能够免疫沉淀多聚遍在蛋白化的蛋白质。对于免疫沉淀测定法,先前描述的裂解缓冲液还含有6M尿素,并将细胞于室温裂解15分钟。然后通过离心除去不溶性材料,并将可溶性溶胞物在常规的裂解缓冲液中稀释以降低尿素浓度至0.29M。将溶胞物用蛋白A-Sepharose(GE)于4℃预清除1小时,然后与5μg指定抗体一起于4℃温育1小时。于4℃用蛋白A-Sepharose捕捉抗体复合物1小时,在裂解缓冲液中彻底清洗,并通过在补充有2.5%2-巯基乙醇的Novex Tris-甘氨酸SDS-样品缓冲液(Invitrogen)中煮沸来洗脱。
当含有TRAF6的溶胞物在存在1%SDS的情况中变性以使其自其它遍在蛋白化的蛋白质分离,并在稀释SDS至低达0.05%后实施免疫沉淀时,K63特异性抗体没有捕捉到TRAF6(数据未显示)。然而,当表达TRAF6的细胞在存在可选变性剂6M尿素的情况中裂解时,TRAF6的免疫沉淀是成功的。如图6A所示,这三种亲和力成熟的抗体比亲本抗体Apu2.16更好地免疫沉淀K63连接的多聚遍在蛋白化的Traf6,显示了与亲本抗K63多聚遍在蛋白抗体相比亲和力成熟的抗体在结合溶液中内源K63遍在蛋白化的蛋白质方面得到改进。在进一步的实验中,用混杂的脱遍在蛋白酶Usp2处理免疫沉淀的K63连接的多聚遍在蛋白化材料逐渐延长的时间段分解在图6A中和在图6B第2道中观察到的较高分子量条带的拖尾,证实了免疫沉淀的TRAF6是遍在蛋白化的(图6B,第3-5道)。可能与Usp2有关的非特异性蛋白水解活性不太可能对所观察到的较慢迁移种类的消失负有责任,因为使用半胱氨酸蛋白酶抑制剂N-乙基马来酰亚胺(NEM)抑制Usp2脱遍在蛋白活性阻止了拖尾的分解(图6B,第6道)。被K63特异性抗体Apu3.A8免疫沉淀的TRAF6之一部分根据其迁移表现为未修饰的TRAF6,可能要归于TRAF6的过表达,其诱导圈禁未修饰TRAF6的自我寡聚物的形成。
这些结果得到了质谱术实验的证实。当用胰蛋白酶消化多聚遍在蛋白链时,可观察到与7种不同类型的赖氨酸连接每一种对应的独特肽。这遵循错误切割的赖氨酸上的一般共有的GlyGly基序(This follows the generalconsensus of a GlyGly motif on a miscleaved lysine)。七种可能的多聚遍在蛋白链连接的每一种在碰撞诱导解离时产生具有独特质量(当以10ppm质量准确度测量时)的独特肽及独特碎裂样式。因此使用高分辨率质谱仪以及针对感兴趣的特定签名肽的靶向分析,能检测和定量K48或K63多聚遍在蛋白链连接的丰度水平。简言之,如上所述使用抗K48连接的抗体、三种亲和力成熟的抗K63连接的多聚遍在蛋白IgG Apu3.A8、Apu3.A12、和Apu3.B3的混合物、或对照抗体实施来自BJAB细胞的免疫沉淀反应。使用乙腈∶水+0.1%TFA自珠化学提取蛋白质,还原,烃基化,并用胰蛋白酶消化。以流速1μL/min及1小时梯度(溶剂A:水+0.1%甲酸;溶剂B:乙腈+0.1%甲酸)使用偶联至nanoACQUITYTM UPLC的杂合LTQ-Orbitrap质谱仪(Thermo-Fisher Scientific)。使用经过胰蛋白酶消化的合成的四遍在蛋白(Boston Biochem)校准和调试仪器以确认靶向分析研究的最佳电荷状态(charge state)。为K48连接的多聚遍在蛋白确定的m/z为487.6、730.89、和1460.78,而为K63连接的多聚遍在蛋白确定的m/z为561.80、748.73、和1122.6。胰蛋白酶消化、反相分离和靶向串联质谱术后,提取K48和K63多聚遍在蛋白肽的离子层析图,并计算峰面积以推导浓度。
图7A和7B显示了免疫沉淀分析的结果。如图7A所示,这三种亲和力成熟的抗K63连接的多聚遍在蛋白抗体的混合物特异性免疫沉淀K63连接的多聚遍在蛋白化的蛋白质。图7B中的结果显示了抗K63连接的多聚遍在蛋白抗体不与K48连接的多聚遍在蛋白肽起交叉反应(而出于比较,K48连接的多聚遍在蛋白抗体显示对K48连接的多聚遍在蛋白肽的实质性富集)。
在进一步的质谱术实验中,如上所述自人BJAB细胞免疫沉淀多聚遍在蛋白化的蛋白质,然后使用标准方法通过SDS-PAGE来解析。将免疫沉淀的凝胶解析的蛋白质提交凝胶内胰蛋白酶消化,然后使用遍在蛋白-AQUA法(Kirkpatrick et al.,Nat.Cell Biol.8:700-710(2006))的一种变化形式来分析。简言之,给胰蛋白酶消化物补充同位素标记的内部标准肽,其代表每一种多聚遍在蛋白链连接和不分支的遍在蛋白,然后使用窄范围提取离子层析图(Crosas et al.,Cell 127:1401-1413(2006))检测高分辨率前体离子扫描中的标准品加它们的对应天然分析物。通过相对于其对应内部标准品比较来自每份经过消化的肽的信号,对BJAB免疫沉淀物中每种多聚遍在蛋白链连接的丰度和遍在蛋白的总量定量。具体而言,在旋转烧瓶中在补充有100μM L-天冬酰胺、50μM 2-巯基乙醇、和10%胎牛血清的高葡萄糖型式的Dulbecco氏改良Eagle氏培养基中培养BJAB细胞。在PBS中清洗细胞(>109),并在含有6M尿素、2mM N-乙基马来酰亚胺(NEM)和完全蛋白酶抑制剂混合物(Roche)的裂解缓冲液(20mM Tris-HCl pH 7.5、135mM NaCl、1.5mM MgCl2、1mMEGTA、1%Triton X-100、10%甘油)中于室温裂解30分钟。通过离心除去不溶性材料,然后将溶胞物用补充有蛋白酶抑制剂、2mM NEM和1mM DTT的裂解缓冲液稀释至4M尿素。用蛋白A-Sepharose(GE Healthcare)预清除1小时后,将溶胞物分成三份样品,接受30μgApu3.A8抗K63(IgG形式)、Apu2.07抗K48(IgG形式)、或同种型对照抗体(抗Her2)。将样品于室温温育2小时,随后离心以除去沉淀的材料。向可溶性溶胞物中添加另外的抗体(10μg)以及蛋白A-Sepharose,并将样品于室温温育过夜。将Sepharose珠在裂解缓冲液中彻底清洗,然后在PBS中清洗。将珠在还原性SDS样品缓冲液中洗脱,用碘乙酰胺烃基化,然后在4-20%Tris甘氨酸凝胶(Invitrogen)中通过SDS-PAGE解析。切下凝胶的所有面积(除了代表沉淀用抗体的重链和轻链的25和55kDa区域),压碎,在含25mM NH4HCO3的50∶50乙腈∶水中清洗,并脱水。然后将凝胶在含有胰蛋白酶(Promega)的25mM NH4HCO3中再水合,并于37℃温育过夜。通过添加0.008%TFA来淬灭反应。在5%乙酸中提取肽,然后在100%乙腈中提取两次。在这些样品中掺入AQUA肽标准品(1pmol)并经自动采样器注射,用于通过NanoAcquity UPLC***(Waters)上的反相层析来分离。使用分析柱(1.7μm BEH-130C18柱100x 100mm(Waters))以流速1μL/min及在70分钟里施加的梯度2%溶剂B至90%溶剂V(其中溶剂A是水+0.1%甲酸,而溶剂B是100%乙腈+0.1%甲酸)分离加载到前置柱(5μmC18,180x 20mm)上的肽,分析时间共90分钟。直接将肽洗脱入喷射电压2kV的纳米喷射电离源,并使用LTQ XL-Orbitrap质谱仪(ThermoFisher)来分析。在FTMS中以60,000分辨率分析前体离子(precursorion)。如下实施定量,即比较每种肽的重型和轻型的峰面积,以10ppm质量准确度提取离子层析图至4个小数位。
依照制造商的指令(Boston Biochem)实施MuRF1自我遍在蛋白化反应。对于免疫沉淀,将样品在含有4M尿素的裂解缓冲液中稀释100倍,用蛋白A-Sepharose预清除,然后用抗体(20μg)和蛋白A-Sepharose免疫沉淀过夜。用P4D1抗体(Santa Cruz Biotechnology)印迹总遍在蛋白。用自5%溶剂B至30%溶剂B的15分钟梯度在Agilent 1100LC模块上解析通过质谱术分析的MuRF1样品,分析时间共30分钟。通过自预期的m/z提取窗口±15ppm,创建离子层析图。
抗K48连接的多聚遍在蛋白抗体Apu2.07、抗K63连接的多聚遍在蛋白抗体Apu3.A8和识别Her2的同种型对照抗体分别免疫沉淀49.1pmol、2.2pmol和0.2pmol的总遍在蛋白(图7C)。此结果与用于免疫沉淀的输入溶胞物中K48连接的多聚遍在蛋白链比K63连接的多聚遍在蛋白链更丰富的观察结果一致(图7D)。对被抗K48抗体免疫沉淀的多聚遍在蛋白连接的直接检查揭示了12.7pmol K48-GG签名肽和剩余量的某些其它连接的签名肽(0.1pmol K63、1.1pmol K11、和2.0pmol K6)(图7E)。类似地,被抗K63连接的多聚遍在蛋白抗体Apu3.A8免疫沉淀的多聚遍在蛋白链主要生成K63-GG签名肽(0.3pmol K63),和较少量的其它连接的肽(0.18pmol K48、0.08pmol K11、和0.06pmol K6)(图7F)。鉴于通过表面等离振子共振对抗多聚遍在蛋白抗体看到的强结合偏爱,这些质谱术结果提示显著比例的被遍在蛋白修饰的细胞底物展现异质多聚遍在蛋白链连接。
为了证实这些自BJAB细胞溶胞物免疫沉淀的“非靶”(off-target)连接衍生自携带异质多聚遍在蛋白链的底物,而非非特异性结合,调查靶连接对于“非靶”连接免疫沉淀的必要性。在体外与混杂的E2酶UbcH5c (Kim et al.J.Biol.Chem.282:17375-17386(2007))组合使用E3MuRF1生成缺少K48或K63连接的混合的连接多聚遍在蛋白链。使用K48或K63突变成精氨酸的突变型遍在蛋白,自MuRF1自我遍在蛋白化反应排除K48或K63连接(图7G)。通过用泛遍在蛋白抗体进行的Western印迹,MuRF-1自我遍在蛋白化反应生成高分子量拖尾,不管使用野生型、K48R、或K63R遍在蛋白中哪种(图7H第1、5、和9道)。对用野生型遍在蛋白进行的反应的遍在蛋白-AQUA分析揭示了三种主要的连接:K48、K63、和K11(图7I第1道)。正如预期的,用K48R遍在蛋白实施的反应缺少K48连接的多聚遍在蛋白链(图7I第9道)。当MuRF1用野生型遍在蛋白修饰是,抗K48连接的和抗K63连接的多聚遍在蛋白抗体都免疫沉淀多聚遍在蛋白化种类(图7H第3-4道),但是如果抗体特异性针对的靶连接确实,那么每一种抗体都不能这样做(图7H第7和12道)。同种型匹配的对照抗体(抗HER2)不能自任何反应免疫沉淀遍在蛋白化的MuRF1(图7H第2、6、和10道)。对来自野生型Ub反应的免疫沉淀种类的遍在蛋白-AQUA分析证明了K48、K63、和K11连接的链的存在,不管用于富集的抗体是什么(图7J第3道和图7K第4道)。正如根据Western印迹(图7H,第7和12道)所预测的,只有在抗体的靶连接也存在的情况中,K11连接的链才被抗K48连接的和抗K63连接的多聚遍在蛋白抗体二者免疫沉淀(图7J和7K)。这些结果证明了抗K48连接的和抗K63连接的多聚遍在蛋白抗体在免疫沉淀的背景中保留它们的保真度。另外,它们指示被抗K48连接的和抗K63连接的多聚遍在蛋白抗体自细胞免疫沉淀的可选连接必然衍生自携带靶连接和非靶连接二者的底物个体。
实施例3:使用亲和力成熟的抗体进行的遍在蛋白化途径检测
已经鉴定出多种细胞途径受到关键蛋白质多聚遍在蛋白化的调节。使用本发明的亲和力成熟的抗K63连接的多聚遍在蛋白抗体来测定细胞中特定蛋白质的K63连接的多聚遍在蛋白化程度,帮助阐述其中用K63连接的多聚遍在蛋白进行的遍在蛋白化发挥作用的细胞信号传导途径。
(A)TNFR1的TNFα活化
肿瘤坏死因子受体1(TNFR1)的TNFα活化导致RIP和TRAF2结合(见图8A)。TRAF2添加K63连接的多聚遍在蛋白链至RIP,这容许TAK1/TAB2/TAB3的募集及随后NFκB信号传导途径的激活(参见Wertz et al.,Nature(2004)430:694-699)。经由这种途径的信号传导的下调由脱遍在蛋白酶A20进行,它除去RIP上的K63连接的多聚遍在蛋白链并用K48连接的多聚遍在蛋白链替换,将RIP靶向蛋白酶体以进行降解。使用本发明的亲和力成熟的抗K63连接的多聚遍在蛋白抗体来评估该途径的各种扰动期间RIP的多聚遍在蛋白化的程度和类型。
简言之,用21μM MG-132处理HeLa S3细胞10分钟。随后用100ng/mLTNF处理细胞0-25分钟。在每个时间点,沉淀细胞并用PBS清洗一次。将经过清洗的沉淀物在20mL包括蛋白酶抑制剂25μM MG-132、10mM N-乙基马来酰亚胺(NEM)、和50mM NaF的TNFR1免疫沉淀缓冲液(20mM Tris、150mMNaCl、1%Triton X-100、和1mM EDTA)中在旋转中于4℃裂解10分钟。将溶胞物以10,000x g离心5分钟。将经过预清除的溶胞物与200μL蛋白A珠一起在摇动中于4℃温育1小时。通过以2,000rpm离心5分钟来沉淀珠和碎片。自每个时间点溶胞物采集样品,用于如上所述的Western印迹分析。对于免疫沉淀样品,向每份样品添加20μL抗TNFR1抗体,并将样品于4℃旋转2.5小时。向每份样品添加200μL未封闭的蛋白A珠,并再次将样品于4℃旋转2.5小时。将珠用免疫沉淀缓冲液清洗两次,在包括1M NaCl的免疫沉淀缓冲液中清洗两次,并在免疫沉淀缓冲液中清洗两次。通过用含有6M尿素的遍在蛋白链裂解缓冲液(20mM Tris-Cl pH 7.5、135mM NaCl、1.5mM MgCl2、1mM EGTA、1%Triton X-100和10%甘油)处理并于室温温和搅动15分钟,回收特异性结合至珠的蛋白质。通过离心沉淀珠。将上清液用包括蛋白酶抑制剂、10mMNEM和0.5mM二硫苏糖醇的遍在蛋白链裂解缓冲液稀释25倍,接着用50μL蛋白A珠+10μg Herceptin预清除2小时。将抗K48连接的多聚遍在蛋白抗体和抗K63连接的多聚遍在蛋白抗体(Apu3.A8和Apu3.B3的1∶1混合物)于4℃预偶联至蛋白A珠3小时。将免疫沉淀反应样品与预偶联的抗体之一组合,并于4℃旋转2小时,接着在裂解缓冲液中清洗并添加样品缓冲液。将样品还原并烃基化,并在4-12%Tris/Gly 1.5mm 15孔Novex凝胶上运行,接着是依照上文实施例2中所述规程的转移、免疫印迹、和Western印迹分析。
图9B示意性显示了已知RIP修饰途径的一种简化形式。用TNFα处理HeLa S3细胞刺激与TNFR1形成的复合物中的RIP的K63连接的多聚遍在蛋白化。两阶段免疫沉淀(首先免疫沉淀TNFR1复合物,然后免疫沉淀K48连接的多聚遍在蛋白化的蛋白质或K63连接的多聚遍在蛋白化的蛋白质)容许分析TNFα处理后RIP的遍在蛋白化状态。如图9A所示,RIP蛋白在TNFα处理的第一个5分钟内迅速结合TNFR1,而且结合的RIP的量保持恒定,不管此后TNFα处理的时间(印迹4)。最初与TNFR1结合的RIP是K63连接的多聚遍在蛋白化的,但是较长的TNFα处理导致链编辑,产生K48连接的多聚遍在蛋白化RIP(比较印迹6和7)。如此,区分携带K63连接的多聚遍在蛋白标记物的RIP与携带K48连接的多聚遍在蛋白标记物的RIP的能力提供了关于由TNFα触发的细胞途径的重要信息,而且本发明的亲和力成熟的抗体为检查这种由RIP介导的途径提供了一种便利和有用的工具,无需实施质谱术或其它生物物理分析。
(B)IRAK1的多聚遍在蛋白链编辑
鉴于激酶RIP1被K63连接的多聚遍在蛋白链再被K48连接的多聚遍在蛋白链序贯修饰(后者由E3脱遍在蛋白酶A20赋予),而且已知A20也是由某些TLR进行的信号传导的负调节物(Boone et al.Nat.Immunol.5:1052-1060(2004)),对被募集至TLR的其它激酶衔接物和白介素-1受体(IL-1R)调查相似方式的调节。IRAK1是经历多聚遍在蛋白链编辑的潜在候选物,因为经过翻译后修饰的IRAK被迅速募集至活化的受体复合物并随后被降解(Yamin和Miller J.Biol.Chem.272:21540-21547(1997))。用25μM MG-132处理稳定表达IL-1R和IL1R-AcP的293细胞,立即添加10ng/mL IL-1β(eBIoscience)。用PBS清洗细胞,并在含有6M尿素的IRAK IP缓冲液(20mM HEPES pH 7.6、150mM NaCl、1.5mM MgCl2、2mM EGTA、10mM NaF、2mM DTT、和0.5%Triton X-100)中裂解。将可溶性溶胞物在裂解缓冲液中稀释大约20倍,并如上文实施例3(A)关于RIP1所述用抗K48连接的多聚遍在蛋白抗体Apu2.07或用抗K63连接的多聚遍在蛋白抗体Apu3.A8和Apu3.B3的1∶1混合物实施免疫沉淀。IRAK 1抗体是自Santa Cruz Biotechnology获得的。
用IL-1β处理后,稳定表达IL-1R的细胞在2分钟内显现了经修饰IRAK1的拖尾(图10A)。更慢迁移形式的IRAK1在10分钟时更丰富,而且能以NEM敏感性方式被Usp2转变成未修饰形式的IRAK1。这些结果提示较高分子量形式的IRAK1要归于遍在蛋白化。遍在蛋白化IRAK1的出现与下游NF-κB信号传导的激活(通过IκBα降解证明)一致(图10B)。在用IL-1β处理后的不同时间,在6M尿素中制备细胞溶胞物,并用连接特异性多聚遍在蛋白抗体免疫沉淀,然后进行针对IRAK1的Western印迹(图10C)。在IL-1β处理后5分钟检测到用K63连接的多聚遍在蛋白链修饰的IRAK1,而且在处理后30-60分钟达到最大,反映了高分子量IRAK1拖尾的出现时机(比较图10B的上部小图与图10C的下部小图)。IRAK1上显现的K48连接的多聚遍在蛋白的量在90-150分钟时达到峰值,此后总IRAK1信号的强度开始减弱。当在存在蛋白酶体抑制剂MG-132的情况中用IL-1β处理细胞时,这种遍在蛋白化IRAK1降解受到抑制(图10D),与K48连接的多聚遍在蛋白链将IRAK1靶向蛋白酶体降解一致。如此,用IL-1β处理的细胞中IRAK1的多聚遍在蛋白链编辑类似用TNF处理的细胞中RIP1的多聚遍在蛋白链编辑,而且这种多聚遍在蛋白链编辑过程可能代表终止下游信号传导事件的通用机制。如上文关于RIP所述,区分携带K63连接的多聚遍在蛋白标记物的IRAK1与携带K48连接的多聚遍在蛋白标记物的IRAK1的能力提供了关于由IL-1β触发的细胞途径的重要信息(见图8B),而且本发明的亲和力成熟的抗体为检查这种由IRAKl介导的途径提供了一种便利和有用的工具,无需实施质谱术或其它生物物理分析。
实施例4:与K63dUB复合的APU3.A8的晶体结构
为了了解在Apu3.A8中观察到的亲和力和特异性改进的结构后果,将Fab片段与K63连接的双遍在蛋白复合地结晶,并将结构解析至2.6分辨率(图2C)。简言之,在大肠杆菌中表达Apu3.A8的Fab片段,使用蛋白G-Sepharose纯化,并用0.58%乙酸洗脱。使用在20mM MES pH 5.5中平衡及用NaCl梯度洗脱的SP HiTrap柱(GE Healthcare)纯化含有Fab的级分。通过在20mMTris-HCl pH 7.3、150mM NaCl中流过S-200柱(GE Healthcare),进一步纯化蛋白质。通过将4.1mM遍在蛋白(K63R和D77)、0.1μM E1(Boston Biochem)、和20μM E2(UbcH13/Uev1a用于K63)(Boston Biochem)在50mM Tris-HCl、5mM MgCl2、0.5mM DTT、2.5mM ATP中于37℃温育过夜,生成K63连接的双遍在蛋白(参见例如Pickart和Raasi,Meth.Enzymol.399:21-36(2005))。在NaCl梯度和20mM MES pH 5.5中使用阳离子交换柱纯化双遍在蛋白,然后浓缩至0.5mg/mL。自3倍摩尔过量的Fab及双遍在蛋白制备双遍在蛋白-Fab复合物。在20mM Tris-HCl pH 7.3、150mM NaCl中在Superdex 75柱上纯化蛋白质复合物。合并复合物级分,并浓缩至17mg/mL,用于结晶筛选试验。在来自蛋白质(17mg/mL,在20mM Tris-HCl pH 7.3、150mM NaCl中)和孔液(0.1MTris-HCl pH 8.0、1.6M LiSO4)的1∶1混合物的静坐液滴(sitting drops)中于18℃两周后生长了K63R双遍在蛋白-Apu3.A8的晶体(90μm x 90μm x 150μm)。添加了30%甘油的孔液对晶体防冻。在SSRL梁线7-1处收集结晶数据(表D),并用HKL(HKL)加工。使用程序PHASER(CCP4)通过分子置换解析结构,接着用REFMAC5(CCP4)精化。使用精化的Apu2.16复合物作为搜索模型(参见图2A和美国专利公开文本No.US2007-0218069)解析Apu3.A8复合物(图2C和2D)。所有图都是用PyMol(www.pymol.org)制作的。
表D:X射线数据收集和精化统计
*圆括号中的数值是高分辨率壳的。
所得结构显示L2和H2中极大改善特异性的变化具有相对较小的对Fab结构的影响(图2C)。排除轻链CDR L3和N端链构象差异(二者都可归于晶体挤压的差异)后,A8Fab的结构实际上与亲本A16Fab的结构相同(在412个C-α原子上rmsd 0.08)。将这两种结构与人源化抗HER2抗体4D5的Fv区比较(图2D)。这三种Fab的L1和N端的构象差异相当大。T5的C-α原子在Apu2.16或Apu3.A8任一与人源化4D5的结构之间移位14埃,尽管这三种结构在这些区中具有相同的序列。L3的构象和序列同样差异相当大。这些差异组合起来影响Apu3.A8中的位置Q90,使得它占据正常情况中被N端链占据的空间,导致此链的移位及伴随的L1重排。上述共晶体结构中K63双遍在蛋白的结构与单独的K63双遍在蛋白的晶体结构(pdb代码2JF5)或与K48双遍在蛋白的晶体或溶液结构(Cook et al.,J.Biol.Chem.267:16467-16471(1992);Varadan etal.,J.Mol.Biol.324:637-647(2002))的比较证明了这些Fab识别K63连接独特的特定双遍在蛋白构象。
令人惊讶的是,L2中的R52和H2中的T52都不密切接触双遍在蛋白,而且这两个残基对Apu3.A8上遍在蛋白结合表面的贡献都不大。相反,这两处突变的影响似乎主要是由K63受体遍在蛋白和轻链的表面之间改善的静电相容性驱动的(图2E)。在Apu3.A8轻链中,R52(在Apu3.A8中引入的)和R66促成一个带正电荷的区域,其紧密接近遍在蛋白表面上部分由来自K63受体遍在蛋白的残基D21、D58、和E18创建的一个带负电荷的区域。
实施例5:多聚遍在蛋白链在细胞内的定位
前面的实验证明了本发明的亲和力成熟的抗体能够在Western印迹的背景中灵敏且特异性地检测K63连接的多聚遍在蛋白化的蛋白质,能够自细胞溶胞物特异性免疫沉淀K63连接的多聚遍在蛋白化的蛋白质,而且可用于帮助阐述一种或多种蛋白质的K63连接的多聚遍在蛋白化所牵涉的细胞途径。实施了进一步的实验来确定该抗体在用于显现细胞内多聚遍在蛋白化种类及任何此类检测到的蛋白质定位在哪里的间接免疫荧光显微术中使用的能力。将在2孔腔式载玻片中培养的HeLa细胞用PBS中的4%低聚甲醛于室温固定20分钟,用PBS漂洗2次,并用含有0.1%Triton X-100的PBS透化5分钟。在补充有10%山羊血清、0.1%Triton X-100和0.1%皂苷的Earle氏平衡盐溶液中封闭1小时后,将细胞用封闭液中的1μg/mL Apu2.07抗K48、1μg/mLApu3.A8抗K63、或5μg/mL PW8155抗蛋白酶体抗体(Biomol International)于4℃C标记过夜。将细胞用含有0.1%Triton X-100的PBS清洗3次,然后与4滴Image-IT Fx信号增强剂(Invitrogen)一起温育15分钟。将细胞用含有0.1%Triton X-100的PBS清洗3次,然后用在封闭液中稀释的Cy2偶联的抗人和德克萨斯红偶联的抗家兔抗体(Jackson ImmunoResearch)染色1小时。将细胞用含有0.1%Triton X-100的PBS清洗3次,用水漂洗2次,然后用含有DAPI(Invitrogen)的ProLong GoldTM和1.5mm盖玻片封固。在Axioplan 2光学显微镜(Zeiss)下检查细胞,并用受SlideBookTM软件(Intelligent Imaging Innovations)控制的CoolSNAPHQ CCD照相机(Photometrics)记录图像。另外,获取Z系列图像,并使用SlideBookTM或AutoQuantTM(Media Cybernetics)软件通过解卷积显微术来分析(数据未显示)。为了确认信号的定位,还用LSM510META激光扫描共焦显微镜(Zeiss)检查样品。呈现的所有图像都是单次捕捉宽视野荧光显微照片。
结果显示于图11。抗K48连接的多聚遍在蛋白抗体Apu2.07将HeLa细胞的细胞核和细胞质都染色,但是不标记核仁(图11A)。这种染色样式与用识别核心20S亚基的多克隆抗体标记的蛋白酶体(图11B和C)几乎完全一致,符合K48连接的多聚遍在蛋白链一般将蛋白质靶向蛋白酶体降解的想法。在有丝***期间的中间体处检测到K48连接的多聚遍在蛋白链,但是没有检测到蛋白酶体。比较而言,用抗K63连接的多聚遍在蛋白抗体Apu3.A8染色的HeLa细胞标记了在各细胞间数目和尺寸都有变化的细胞质散斑(图11D)。在那些散斑中没有检测到K63连接的多聚遍在蛋白链与蛋白酶体的共定位(图11E和F)。在对照实验中,只有在存在靶连接的情况中,用连接特异性抗体获得的染色能被合成的多聚遍在蛋白链竞争(数据未显示)。这些结果指示K48和K63连接的多聚遍在蛋白链可存在于不同的亚细胞区域中,而且抗体Apu2.07和Apu3.A8能够在间接免疫荧光测定法中检测K48连接的或K63连接的多聚遍在蛋白。

Claims (18)

1.一种特异性结合K63连接的多聚遍在蛋白的分离的抗体或其抗原结合片段,其中该分离的抗体或其抗原结合片段包含六个高变(HVR)序列,其中HVR-H1为SEQ ID NO:5;HVR-H3为SEQ ID NO:6;HVR-L1为SEQID NO:3;HVR-L3为SEQ ID NO:4;且(i)HVR-H2为SEQ ID NO:60,且HVR-L2为SEQ ID NO:8,或(ii)HVR-H2为SEQ ID NO:63,且HVR-L2为SEQ ID NO:11,或(iii)HVR-H2为SEQ ID NO:66,且HVR-L2为SEQID NO:14。
2.权利要求1的抗体或抗原结合片段,其中该抗体或抗原结合片段对K63连接的多聚遍在蛋白的亲和力相对于亲本Fab Apu2.16的亲和力有改善。
3.权利要求1的抗体或抗原结合片段,其中该抗体或抗原结合片段对K63连接的多聚遍在蛋白的Kd小于或等于10nM。
4.权利要求1-3任一项的抗体或抗原结合片段,其中该抗体或抗原结合片段特异性结合K63连接的多聚遍在蛋白化的蛋白质。
5.权利要求4的抗体或抗原结合片段,其中该抗体或抗原结合片段抑制K63连接的多聚遍在蛋白化的蛋白质降解。
6.权利要求4的抗体或抗原结合片段,其中该抗体或抗原结合片段调控至少一种由多聚遍在蛋白介导的信号传导途径。
7.权利要求4的抗体或抗原结合片段,其中该抗体或抗原结合片段抑制至少一种由多聚遍在蛋白介导的信号传导途径。
8.权利要求4的抗体或抗原结合片段,其中该抗体或抗原结合片段刺激至少一种由多聚遍在蛋白介导的信号传导途径。
9.一种核酸分子,其编码权利要求1-8任一项的抗体或抗原结合片段。
10.一种载体,其包含权利要求9的核酸。
11.一种宿主细胞,其包含权利要求10的载体。
12.一种细胞系,其能够生成权利要求1-8任一项的抗体或抗原结合片段。
13.一种生成权利要求1-8任一项的抗体或抗原结合片段的方法,包括在该抗体或抗原结合片段生成的条件下培养包含编码该抗体或抗原结合片段的核酸分子的宿主细胞。
14.一种组合物,其包含有效量的权利要求1-8任一项的抗体或抗原结合片段和药学可接受载体。
15.一种鉴定样品中K63连接的多聚遍在蛋白或K63连接的多聚遍在蛋白化的蛋白质的存在的方法,包括使该样品与权利要求1-8任一项的至少一种抗体或抗原结合片段接触。
16.一种测定怀疑含有K63连接的多聚遍在蛋白或K63连接的多聚遍在蛋白化的蛋白质的样品中K63连接的多聚遍在蛋白或K63连接的多聚遍在蛋白化的蛋白质的存在的方法,包括使该样品暴露于权利要求1-8任一项的至少一种抗体或抗原结合片段并测定该至少一种抗体或抗原结合片段对该样品中K63连接的多聚遍在蛋白或K63连接的多聚遍在蛋白化的蛋白质的结合。
17.一种将样品中的K63连接的多聚遍在蛋白化的蛋白质与非K63连接的多聚遍在蛋白化的蛋白质分开的方法,包括使该样品与权利要求1-8任一项的至少一种抗体或抗原结合片段接触。
18.一种测定样品中K63连接的多聚遍在蛋白的功能和/或活性的方法,包括使该样品与权利要求1-8任一项的至少一种抗体或抗原结合片段接触并评估所述接触步骤对该样品的影响。
CN200980109579.2A 2008-01-18 2009-01-16 用于靶向k63连接的多聚遍在蛋白的方法和组合物 Active CN101977934B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US1157708P 2008-01-18 2008-01-18
US61/011,577 2008-01-18
US12786208P 2008-05-16 2008-05-16
US61/127,862 2008-05-16
PCT/US2009/031310 WO2009126350A2 (en) 2008-01-18 2009-01-16 Methods and compositions for targeting polyubiquitin

Publications (2)

Publication Number Publication Date
CN101977934A CN101977934A (zh) 2011-02-16
CN101977934B true CN101977934B (zh) 2014-09-17

Family

ID=40899467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980109579.2A Active CN101977934B (zh) 2008-01-18 2009-01-16 用于靶向k63连接的多聚遍在蛋白的方法和组合物

Country Status (7)

Country Link
US (7) US8133488B2 (zh)
EP (1) EP2247617B1 (zh)
JP (1) JP5523345B2 (zh)
CN (1) CN101977934B (zh)
CA (1) CA2710398A1 (zh)
ES (1) ES2414804T3 (zh)
WO (1) WO2009126350A2 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309170B1 (en) 2005-12-15 2019-05-22 Genentech, Inc. Polyubiquitin antibodies
US8133488B2 (en) 2008-01-18 2012-03-13 Genentech, Inc. Methods and compositions for targeting polyubiquitin
US20110053198A1 (en) * 2009-08-25 2011-03-03 Quest Diagnostics Investments Incorporated Ubiquitin proteasome system profiling and the use thereof in clinical applications for proliferative hematological disorders
US20110053199A1 (en) * 2009-08-25 2011-03-03 Quest Diagnostics Investments Incorporated Ubiquitin proteasome system profiling and the use thereof in clinical applications for cancer diagnosis
US20110053197A1 (en) * 2009-08-25 2011-03-03 Quest Diagnostics Investments Incorporated Ubiquitin proteasome system profiling and the use thereof in clinical applications for cancer diagnosis
WO2011069009A1 (en) * 2009-12-04 2011-06-09 Quest Diagnostics Investments Incorporated Polyubiquitin levels as a prognostic indicator in leukemia
CA2793503A1 (en) 2010-04-15 2011-10-20 Genentech, Inc. Anti-polyubiquitin antibodies and methods of use
US9598499B2 (en) * 2010-12-30 2017-03-21 Institut National De La Santé Et De La Recherche Médicale (Inserm) Antigen binding formats for use in therapeutic treatments or diagnostic assays
KR20140054177A (ko) * 2011-08-05 2014-05-08 제넨테크, 인크. 항-폴리유비퀴틴 항체 및 이용 방법
WO2016073693A2 (en) 2014-11-05 2016-05-12 Voyager Therapeutics, Inc. Aadc polynucleotides for the treatment of parkinson's disease
US10597660B2 (en) 2014-11-14 2020-03-24 Voyager Therapeutics, Inc. Compositions and methods of treating amyotrophic lateral sclerosis (ALS)
SG11201703419UA (en) 2014-11-14 2017-05-30 Voyager Therapeutics Inc Modulatory polynucleotides
WO2017189964A2 (en) 2016-04-29 2017-11-02 Voyager Therapeutics, Inc. Compositions for the treatment of disease
US11326182B2 (en) 2016-04-29 2022-05-10 Voyager Therapeutics, Inc. Compositions for the treatment of disease
KR20240056729A (ko) 2016-05-18 2024-04-30 보이저 테라퓨틱스, 인크. 조절성 폴리뉴클레오티드
JP7133477B2 (ja) * 2016-06-24 2022-09-08 ジェネンテック, インコーポレイテッド 抗ポリユビキチン多重特異性抗体
US11603542B2 (en) 2017-05-05 2023-03-14 Voyager Therapeutics, Inc. Compositions and methods of treating amyotrophic lateral sclerosis (ALS)
JOP20190269A1 (ar) 2017-06-15 2019-11-20 Voyager Therapeutics Inc بولي نوكليوتيدات aadc لعلاج مرض باركنسون
EP3625263A4 (en) 2017-10-27 2021-05-05 New York University ANTI-GALECTIN-9 ANTIBODIES AND THEIR USES
AU2020247993A1 (en) * 2019-03-25 2021-11-18 New York University Anti-Galectin-9 antibodies and uses thereof
SG11202112112UA (en) * 2019-05-01 2021-11-29 Univ New York Anti-galectin-9 antibodies and uses thereof
WO2022031772A1 (en) * 2020-08-07 2022-02-10 Cornell University Therapeutic composition of cure-pro compounds for targeted degradation of bet domain proteins, and methods of making and usage
TW202325727A (zh) 2021-08-30 2023-07-01 美商建南德克公司 抗聚泛素多特異性抗體
WO2023238127A1 (en) * 2022-06-06 2023-12-14 Technion Research & Development Foundation Limited Ubiquitin high affinity cyclic peptides and methods of use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007120334A2 (en) * 2005-12-15 2007-10-25 Genentech, Inc. Methods and compositions for targeting polyubiquitin

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896111A (en) 1973-02-20 1975-07-22 Research Corp Ansa macrolides
US4151042A (en) 1977-03-31 1979-04-24 Takeda Chemical Industries, Ltd. Method for producing maytansinol and its derivatives
US4137230A (en) 1977-11-14 1979-01-30 Takeda Chemical Industries, Ltd. Method for the production of maytansinoids
US4307016A (en) 1978-03-24 1981-12-22 Takeda Chemical Industries, Ltd. Demethyl maytansinoids
US4265814A (en) 1978-03-24 1981-05-05 Takeda Chemical Industries Matansinol 3-n-hexadecanoate
JPS5562090A (en) 1978-10-27 1980-05-10 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS55164687A (en) 1979-06-11 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS5566585A (en) 1978-11-14 1980-05-20 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
US4256746A (en) 1978-11-14 1981-03-17 Takeda Chemical Industries Dechloromaytansinoids, their pharmaceutical compositions and method of use
JPS55102583A (en) 1979-01-31 1980-08-05 Takeda Chem Ind Ltd 20-acyloxy-20-demethylmaytansinoid compound
JPS55162791A (en) 1979-06-05 1980-12-18 Takeda Chem Ind Ltd Antibiotic c-15003pnd and its preparation
JPS55164685A (en) 1979-06-08 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS55164686A (en) 1979-06-11 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
US4309428A (en) 1979-07-30 1982-01-05 Takeda Chemical Industries, Ltd. Maytansinoids
JPS5645483A (en) 1979-09-19 1981-04-25 Takeda Chem Ind Ltd C-15003phm and its preparation
EP0028683A1 (en) 1979-09-21 1981-05-20 Takeda Chemical Industries, Ltd. Antibiotic C-15003 PHO and production thereof
JPS5645485A (en) 1979-09-21 1981-04-25 Takeda Chem Ind Ltd Production of c-15003pnd
WO1982001188A1 (en) 1980-10-08 1982-04-15 Takeda Chemical Industries Ltd 4,5-deoxymaytansinoide compounds and process for preparing same
US4450254A (en) 1980-11-03 1984-05-22 Standard Oil Company Impact improvement of high nitrile resins
US4313946A (en) 1981-01-27 1982-02-02 The United States Of America As Represented By The Secretary Of Agriculture Chemotherapeutically active maytansinoids from Trewia nudiflora
US4315929A (en) 1981-01-27 1982-02-16 The United States Of America As Represented By The Secretary Of Agriculture Method of controlling the European corn borer with trewiasine
JPS57192389A (en) 1981-05-20 1982-11-26 Takeda Chem Ind Ltd Novel maytansinoid
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5667988A (en) 1992-01-27 1997-09-16 The Scripps Research Institute Methods for producing antibody libraries using universal or randomized immunoglobulin light chains
ATE196606T1 (de) 1992-11-13 2000-10-15 Idec Pharma Corp Therapeutische verwendung von chimerischen und markierten antikörpern, die gegen ein differenzierung-antigen gerichtet sind, dessen expression auf menschliche b lymphozyt beschränkt ist, für die behandlung von b-zell-lymphoma
JPH07238096A (ja) 1994-02-25 1995-09-12 S R L:Kk 抗ポリユビキチン・モノクローナル抗体およびポリユビキチンの測定方法
AU2003239966B9 (en) 2002-06-03 2010-08-26 Genentech, Inc. Synthetic antibody phage libraries
EP1517921B1 (en) * 2002-06-28 2006-06-07 Domantis Limited Dual specific ligands with increased serum half-life
US20050106667A1 (en) 2003-08-01 2005-05-19 Genentech, Inc Binding polypeptides with restricted diversity sequences
US20070218079A1 (en) 2004-05-12 2007-09-20 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method to induce rnai in prokaryotic organisms
EP2363146B1 (en) 2005-08-25 2015-06-24 The Arizona Board Of Regents On Behalf Of The University Of Arizona Method for inhibiting metastasis in a stem cell fusion model of carcinogenesis
EP1808493A3 (en) 2006-01-13 2007-11-21 Hybrigenics S.A. Substrates and methods for assaying deubiquitinating enzymes activity
WO2008121813A2 (en) 2007-03-30 2008-10-09 Genentech, Inc. Modulation of cytokine production
US8133488B2 (en) 2008-01-18 2012-03-13 Genentech, Inc. Methods and compositions for targeting polyubiquitin
CA2793503A1 (en) 2010-04-15 2011-10-20 Genentech, Inc. Anti-polyubiquitin antibodies and methods of use
KR20140054177A (ko) 2011-08-05 2014-05-08 제넨테크, 인크. 항-폴리유비퀴틴 항체 및 이용 방법
WO2018067198A1 (en) * 2016-10-03 2018-04-12 The Regents Of The University Of California Inhibitory antibodies and methods of use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007120334A2 (en) * 2005-12-15 2007-10-25 Genentech, Inc. Methods and compositions for targeting polyubiquitin

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design;Clark et al;《Protein Science》;20061231;第15卷;949-960 *
Clark et al.Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design.《Protein Science》.2006,第15卷949-960.
张玉秀等.遍在蛋白***.《生命的化学》.1999,第19卷(第5期),230-232.
遍在蛋白***;张玉秀等;《生命的化学》;19991231;第19卷(第5期);230-232 *

Also Published As

Publication number Publication date
US20190023774A1 (en) 2019-01-24
ES2414804T3 (es) 2013-07-22
WO2009126350A3 (en) 2009-12-03
US9365642B2 (en) 2016-06-14
JP5523345B2 (ja) 2014-06-18
US20240067709A1 (en) 2024-02-29
US20210115120A1 (en) 2021-04-22
US20160009791A1 (en) 2016-01-14
EP2247617A2 (en) 2010-11-10
EP2247617B1 (en) 2013-02-27
US11753464B2 (en) 2023-09-12
US20160355577A1 (en) 2016-12-08
US20090191209A1 (en) 2009-07-30
US8133488B2 (en) 2012-03-13
WO2009126350A2 (en) 2009-10-15
JP2011511624A (ja) 2011-04-14
US10035849B2 (en) 2018-07-31
US9081015B2 (en) 2015-07-14
US20120135008A1 (en) 2012-05-31
CA2710398A1 (en) 2009-10-15
CN101977934A (zh) 2011-02-16
US10808028B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
CN101977934B (zh) 用于靶向k63连接的多聚遍在蛋白的方法和组合物
JP6143538B2 (ja) ポリユビキチンを標的とする方法と組成物
CN101437852A (zh) 抗tat226抗体和免疫偶联物
CN101432306A (zh) 以relt作为靶物的方法和组合物
CN101374862B (zh) 靶向多聚泛蛋白的方法和组合物
MX2008007225A (en) Methods and compositions for targeting polyubiquitin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant