CN101975251A - Gearing of dual clutch transmission - Google Patents

Gearing of dual clutch transmission Download PDF

Info

Publication number
CN101975251A
CN101975251A CN 201010299394 CN201010299394A CN101975251A CN 101975251 A CN101975251 A CN 101975251A CN 201010299394 CN201010299394 CN 201010299394 CN 201010299394 A CN201010299394 A CN 201010299394A CN 101975251 A CN101975251 A CN 101975251A
Authority
CN
China
Prior art keywords
retaining
gear
output shaft
gears
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010299394
Other languages
Chinese (zh)
Other versions
CN101975251B (en
Inventor
方志勤
尹良杰
祁稳
陈伟
郑海兵
文俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jianghuai Automobile Group Corp
Original Assignee
Anhui Jianghuai Automobile Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jianghuai Automobile Group Corp filed Critical Anhui Jianghuai Automobile Group Corp
Priority to CN2010102993947A priority Critical patent/CN101975251B/en
Publication of CN101975251A publication Critical patent/CN101975251A/en
Application granted granted Critical
Publication of CN101975251B publication Critical patent/CN101975251B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • F16H2003/0931Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts each countershaft having an output gear meshing with a single common gear on the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

The invention relates to gearing of dual clutch transmission. The gearing comprises an inner input shaft and an outer input shaft which are coaxially arranged as well as a first output shaft, a second output shaft, gears on each shaft, two clutches and four synchronizers; the inner input shaft is respectively provided with a first gear driving gear, a fifth gear driving gear and a third gear driving gear, a fourth gear driving gear on the outer input shaft is also taken as a sixth gear driving gear, a second gear driving gear is also taken as a reverse gear driving gear; a first synchronizer selectively transmits the torques of a first gear and a fifth gear to the first output shaft; a second synchronizer selectively transmits the torque of a fourth gear and the torque of the reverse gear to the first output shaft; a third synchronizer selectively transmits the torque of a six gear and the torque of a second gear to the second output shaft; and the fourth synchronizer selectively transmits the torque of a third gear to the second output shaft. The invention can reduce the axial length of transmission while torque is equivalent; structure is simple, and the quantity of parts is reduced; and cost is reduced.

Description

The double-clutch speed changer transmission device
Technical field
The invention belongs to the automotive transmission technical field, be specifically related to the double-clutch speed changer transmission device.
Background technique
Typical double-clutch speed changer transmission device refers to by two clutches and is connected with two input shafts respectively, transmits engine power.Double clutch transmissions is by two coaxial nested or clutches of being arranged in parallel, two input shafts of coaxial, inside and outside nested arrangement, two output shafts that are arranged in parallel are arranged in a plurality of synchromesh gears on the output shaft, a plurality of selector fork and 1 differential mechanism and form.Speed changer is strange, even number retaining input gear is arranged on two input shafts, and switching and the action of different synchronizer by two clutches realize torque conversion and output via different output shafts.Double-clutch speed changer is mainly used in passenger car, and the problem that existing dual-clutch transmission exists is that axial length is longer, can not adapt to the more and more higher compactedness requirement of passenger car, has reduced the car load flexible arrangement.Existing double-clutch speed changer all adopts the independent reverse gear shaft or the idle pulley that reverses gear to realize reversing gear of speed changer, has increased the processing of amount of parts and housing, has detected content, makes assembly process more complicated, has increased cost.In addition, existing double-clutch speed changer transmission device uses 1 retaining driving gear simultaneously as the driving gear that reverses gear, i.e. 1 retaining and the shared same clutch transmits power that reverses gear.Two problems have appearred in this layout: problem one is under the frequent operating mode of switching 1 retaining and reversing gear of needs, for example moves the storehouse, will increase the loss of 1 retaining, the place clutch that reverses gear, and reduces clutch working life; Problem two is to make car load increase when starting to walk from 2 retainings to fall 1 retaining process or direct 2 retaining startings that it is dangerous that this has sauntered after having caused the prolongation of gearshift time for acceleration and may having produced uphill starting.
Summary of the invention
The axial length that existing double-clutch speed changer exists is long, amount of parts is many in order to solve, assembly process complicated problems more, the invention provides a kind of new structure dual-clutch transmission transmission device.
The present invention realizes that the technical solution of above-mentioned purpose is as follows:
The double-clutch speed changer transmission device comprises the interior input shaft 1 and outer input shaft 2, first output shaft 3, second output shaft 4 of coaxial setting, describedly establish gear respectively on each, also comprise first clutch C1 and second clutch C2, one end of first clutch C1 and interior input shaft 1 is connected, one end of second clutch C2 and outer input shaft 2 is connected, and first clutch C1 and second clutch C2 are positioned at same input end.
Be fixed with a retaining driving gear 11, five retaining driving gears 15 and three retaining driving gears 13 in described on the input shaft 1 successively;
Be fixed with four retaining driving gears 24 on the described outer input shaft 2 successively and two retaining driving gears 22, four retaining driving gears also are used as six retaining driving gears simultaneously, two retaining driving gears also are used as the driving gear that reverses gear simultaneously;
Be provided with a retaining driven gear 31, five retaining driven gears 35, four retaining driven gears 34 on described first output shaft 3 successively, the driven gear 37 and first output gear 30 reverse gear; Wherein a retaining driven gear 31, five retaining driven gears 35, four retaining driven gears 34, driven gear 37 skies that reverse gear are enclosed within on first output shaft 3, and can rotate around first output shaft 3; First output gear 30 is fixedlyed connected with first output shaft 3, is used for exporting the moment of torsion of first output shaft 3; On first output shaft 3 between a retaining driven gear 31 and the five retaining driven gears 35, be fixed with the first synchronizer SC1, optionally the first retaining moment of torsion and the 5th retaining moment of torsion passed to first output shaft 3; On four retaining driven gears 34 and first output shaft 3 between the driven gear 37 of reversing gear, be fixed with the second synchronizer SC2, optionally the 4th retaining moment of torsion and the moment of torsion that reverses gear passed to first output shaft 3;
An one retaining driving gear 11 and a retaining driven gear 31 are normal engagement; Five retaining driving gears 15 and five retaining driven gears 35 are normal engagement;
Be provided with three retaining driven gears 43, six retaining driven gears 46, the two retaining driven gear 42 and second output gears 40 on described second output shaft 4 successively, wherein three retaining driven gears 43, six retaining driven gears 46 and two retaining driven gears, 42 skies are enclosed within on second output shaft 4, and can rotate around second output shaft 4; Second output gear 40 is fixedlyed connected with second output shaft 4, is used for exporting the moment of torsion of second output shaft 4; Be fixed with the 4th synchronizer SC4 and Parking ratchet 49, the four synchronizer SC4 on second output shaft 4 in three retaining driven gears 43 outsides and optionally the 3rd retaining moment of torsion passed to second output shaft 4; Be fixed with the 3rd synchronizer SC3 on second output shaft 4 between six retaining driven gears 46 and the two retaining driven gears 42, optionally the 6th retaining moment of torsion and the second retaining moment of torsion passed to second output shaft 4;
Second gear driving gear 22 and two retaining driven gears 42 are normal engagement; Three retaining driving gears 13 and three retaining driven gears 43 are normal engagement, and four retaining driving gears 24 are normal engagement with four retaining driven gears 34, six retaining driven gears 46 simultaneously.
Useful technique effect of the present invention embodies in the following areas:
1, the present invention is shared four, six retaining driving gears, also shared two, driving gear reverses gear, make axial length shorter, can shorten more than the axial length 20mm, at certain vehicle transmitting torque is under the situation of 270Nm, the actual axial length of dual-clutch transmission transmission device reaches 235mm, and is highly beneficial to preceding horizontal passenger car layout, meets the passenger car demand for development.
2, the double clutch transmissions that patent of the present invention provided, two retaining driven gears 42 are used as the intermediate idler gear of reversing gear simultaneously, reverse gear shaft and extra reverse idle gear have been cancelled, reduced amount of parts, at least the main parts size of Jian Shaoing comprises 1 tapered roller bearing, 1 combination bearing, 1 reverse gear shaft and 2 gears, reduce gear box casing processing, detected content, reduced double clutch assembly installation step, reduced cost.
3, the double clutch transmissions that patent of the present invention provided, with a retaining with reverse gear arranged apartly on different clutches, improved the working life of clutch, improved pairing device speed changer starting performance and safety.
4, Parking ratchet 49 is arranged on second output shaft 4 near the high order end position of bearings, compares the Parking ratchet is arranged in structure on the differential mechanism, has reduced the requirement of strength and the boundary dimension of halting mechanism.
Description of drawings
Fig. 1 is a structural representation of the present invention,
Fig. 2 is the side view of Fig. 1,
Fig. 3 is the spatial relation schematic representation between each gear of realizing reversing gear.
Embodiment
Below in conjunction with accompanying drawing, the present invention is done to describe further by embodiment.
Embodiment:
Referring to Fig. 1, the double-clutch speed changer transmission device comprises the interior input shaft 1 and outer input shaft 2, first output shaft 3, second output shaft 4 of coaxial setting, describedly establish gear respectively on each, also comprise first clutch C1 and second clutch C2, one end of first clutch C1 and interior input shaft 1 is connected, one end of second clutch C2 and outer input shaft 2 is connected, and first clutch C1 and second clutch C2 are positioned at same input end;
Be installed with a retaining driving gear 11, five retaining driving gears 15 and three retaining driving gears 13 on the interior input shaft 1 successively.
Be installed with four retaining driving gears 24 on the outer input shaft 2 successively and two retaining driving gears 22, four retaining driving gears also are used as six retaining driving gears simultaneously, two retaining driving gears also are used as the driving gear that reverses gear simultaneously.
Be provided with a retaining driven gear 31, five retaining driven gears 35, four retaining driven gears 34 on first output shaft 3 successively, the driven gear 37 and first output gear 30 reverse gear; Wherein a retaining driven gear 31, five retaining driven gears 35, four retaining driven gears 34, driven gear 37 skies that reverse gear are enclosed within on first output shaft 3, and can rotate around first output shaft 3; First output gear 30 is fixedlyed connected with first output shaft 3, is used for exporting the moment of torsion of first output shaft 3; On first output shaft 3 between a retaining driven gear 31 and the five retaining driven gears 35, be installed with the first synchronizer SC1, optionally the first retaining moment of torsion and the 5th retaining moment of torsion passed to first output shaft 3; On four retaining driven gears 34 and first output shaft 3 between the driven gear 37 of reversing gear, be installed with the second synchronizer SC2, optionally the 4th retaining moment of torsion and the moment of torsion that reverses gear passed to first output shaft 3;
An one retaining driving gear 11 and a retaining driven gear 31 are normal engagement; Five retaining driving gears 15 and five retaining driven gears 35 are normal engagement.
Be provided with three retaining driven gears 43, six retaining driven gears 46, the two retaining driven gear 42 and second output gears 40 on second output shaft 4 successively, wherein three retaining driven gears 43, six retaining driven gears 46 and two retaining driven gears, 42 skies are enclosed within on first output shaft 3, and can rotate around second output shaft 4; Second output gear 40 is fixedlyed connected with second output shaft 4, is used for exporting the moment of torsion of second output shaft 4; Be installed with the 4th synchronizer SC4 and Parking ratchet 49, the four synchronizer SC4 on second output shaft 4 in three retaining driven gears 43 outsides and optionally the 3rd retaining moment of torsion passed to second output shaft 4; Be installed with the 3rd synchronizer SC3 on second output shaft 4 between six retaining driven gears 46 and the two retaining driven gears 42, optionally the 6th retaining moment of torsion and the second retaining moment of torsion passed to second output shaft 4;
Three retaining driving gears 13 and three retaining driven gears 43 are normal engagement, and four retaining driving gears 24 are normal engagement with four retaining driven gears 34, six retaining driven gears 46 simultaneously.
The differential mechanism master of differential mechanism 6 subtracts gear 60 and meshes with first output gear 30, second output gear 40 respectively, see Fig. 2, Fig. 2 has shown the spatial relation between double clutch transmissions first and second input shafts of the present invention, first and second output shafts and the differential mechanism.
Six forward gears and a power transmission line that reverses gear of this device are as follows:
One retaining power transmission line: the first synchronizer SC1 and a retaining driven gear 31 combinations, first clutch C1 closure, input shaft 1 in Engine torque passes to by first clutch C1, retaining driving gear 11 and via normal engagement keeps off driven gear 31, the first synchronizer SC1, transfer torque to first output shaft 3, subtract gear 60 by first output gear 30 and differential mechanism master again moment of torsion is passed to differential mechanism 6, and finally by differential mechanism 6 outputting powers.
Two retaining power transmission lines: the 3rd synchronizer SC3 and 42 combinations of two retaining driven gears, second clutch C2 closure, Engine torque passes to outer input shaft 2 by second clutch C2, two retaining driving gears 22 and two via normal engagement keep off driven gears 42, the 3rd synchronizer SC3, transfer torque to second output shaft 4, subtract gear 60 by second output gear 40 and differential mechanism master again moment of torsion is passed to differential mechanism 6, and finally by differential mechanism 6 outputting powers.
Three retaining power transmission lines: the 4th synchronizer SC4 and 43 combinations of three retaining driven gears, first clutch C1 closure, input shaft 1 in Engine torque passes to by first clutch C1, three retaining driving gears 13 and three via normal engagement keep off driven gears 43, the 4th synchronizer SC4, transfer torque to second output shaft 4, subtract gear 60 by second output gear 40 and differential mechanism master again moment of torsion is passed to differential mechanism 6, and finally by differential mechanism 6 outputting powers.
Four retaining power transmission lines: the second synchronizer SC2 and 34 combinations of four retaining driven gears, second clutch C2 closure, Engine torque passes to outer input shaft 2 by second clutch C2, four retaining driving gears 24 and four via normal engagement keep off driven gears 34, the second synchronizer SC2, transfer torque to first output shaft 3, subtract gear 60 by first output gear 30 and differential mechanism master again moment of torsion is passed to differential mechanism 6, and finally by differential mechanism 6 outputting powers.
Five retaining power transmission lines: the first synchronizer SC1 and 35 combinations of five retaining driven gears, first clutch C1 closure, input shaft 1 in Engine torque passes to by first clutch C1, five retaining driving gears 15 and five via normal engagement keep off driven gears 35, the first synchronizer SC1, transfer torque to first output shaft 3, subtract gear 60 by first output gear 30 and differential mechanism master again moment of torsion is passed to differential mechanism 6, and finally by differential mechanism 6 outputting powers.
Six retaining power transmission lines: the 3rd synchronizer SC3 and 46 combinations of six retaining driven gears, second clutch C2 closure, Engine torque passes to outer input shaft 2 by second clutch C2, six retaining driving gears 24 and six via normal engagement keep off driven gears 46, the 3rd synchronizer SC3, transfer torque to second output shaft 4, subtract gear 60 by second output gear 40 and differential mechanism master again moment of torsion is passed to differential mechanism 6, and finally by differential mechanism 6 outputting powers.
Transfer route reverses gear: the second synchronizer SC2 and driven gear 37 combinations of reversing gear, second clutch C2 closure, Engine torque passes to outer input shaft 2 by second clutch C2, through two retaining driving gears 22 (simultaneously as reversing gear driving gear), two retaining driven gears 42 (changing the gear sense of rotation as the intermediate idler gear of reversing gear simultaneously), driven gear 37 reverses gear, the second synchronizer SC2, transfer torque to first output shaft 3, subtract gear 60 by first output gear 30 and differential mechanism master again moment of torsion is passed to differential mechanism 6, and finally by differential mechanism 6 outputting powers, see Fig. 3, Fig. 3 stresses the spatial relation between each gear of realizing reversing gear.
Shift process illustrates:
One keeps off the process that shifts into second: dual-clutch transmission is in a retaining, the first synchronizer SC1 and a retaining driven gear 31 combinations, and first clutch C1 closure, second clutch C2 opens; The dual-clutch transmission control system is sent one and is kept off the instruction that shifts into second, gearshift actuator is in advance with the 3rd synchronizer SC3 and 42 combinations of two retaining driven gears, this moment, second clutch C2 still was in open mode, i.e. the second clutch C2 and second output shaft 4 transferring power not; Along with shift process continues, first clutch C1 opens gradually, and meanwhile, second clutch C2 is closed gradually, and this process torque break can not occur; First clutch C1 opens fully, after the complete closure of second clutch C2, first synchronizer SC1 disengagement combines with a retaining driven gear 31, finish shift process, Engine torque subtracts gear 60, is finally exported by differential mechanism 6 via second clutch C2, outer input shaft 2, two retaining driving gears 22, two retaining driven gears 42, the 3rd synchronizer SC3, second output shaft 4, second output gear 40, differential mechanism master.

Claims (1)

1. double-clutch speed changer transmission device, comprise the interior input shaft (1) of coaxial setting and outer input shaft (2), first output shaft (3), second output shaft (4), describedly establish gear respectively on each, also comprise first clutch (C1) and second clutch (C2), first clutch (C1) is connected with an end of interior input shaft (1), second clutch (C2) is connected with an end of outer input shaft (2), and first clutch (C1) and second clutch (C2) are positioned at same input end, it is characterized in that:
Be fixed with a retaining driving gear (11), five retaining driving gears (15) and three retaining driving gears (13) in described on the input shaft (1) successively;
Be fixed with four retaining driving gears (24) and two retaining driving gears (22) on the described outer input shaft (2) successively, four retaining driving gears also are used as six retaining driving gears simultaneously, and two retaining driving gears also are used as the driving gear that reverses gear simultaneously;
Be provided with a retaining driven gear (31), five retaining driven gears (35), four retaining driven gear (34), the driven gear that reverses gear (37) and first output gears (30) on described first output shaft (3) successively; Wherein a retaining driven gear (31), five retaining driven gears (35), four retaining driven gears (34), the driven gear that reverses gear (37) sky are enclosed within on first output shaft (3), and can rotate around first output shaft (3); First output gear (30) is fixedlyed connected with first output shaft (3), is used for exporting the moment of torsion of first output shaft (3); On first output shaft (3) between a retaining driven gear (31) and the five retaining driven gears (35), be fixed with first synchronizer (SC1), optionally the first retaining moment of torsion and the 5th retaining moment of torsion passed to first output shaft (3); On first output shaft (3) between four retaining driven gears (34) and the driven gear that reverses gear (37), be fixed with second synchronizer (SC2), optionally the 4th retaining moment of torsion and the moment of torsion that reverses gear passed to first output shaft (3);
One retaining driving gear (11) is normal engagement with a retaining driven gear (31); Five retaining driving gears (15) and five retaining driven gears (35) are normal engagement;
Be provided with three retaining driven gears (43), six retaining driven gears (46), two retaining driven gear (42) and second output gears (40) on described second output shaft (4) successively, wherein three retaining driven gears (43), six retaining driven gears (46) and two retaining driven gear (42) skies are enclosed within on second output shaft (4), and can rotate around second output shaft (4); Second output gear (40) is fixedlyed connected with second output shaft (4), is used for exporting the moment of torsion of second output shaft (4); Be fixed with the 4th synchronizer (SC4) and Parking ratchet (49) on second output shaft (4) in three retaining driven gear (43) outsides, the 4th synchronizer (SC4) optionally passes to second output shaft (4) with the 3rd retaining moment of torsion; Be fixed with the 3rd synchronizer (SC3) on second output shaft (4) between six retaining driven gears (46) and the two retaining driven gears (42), optionally the 6th retaining moment of torsion and the second retaining moment of torsion passed to second output shaft (4);
Second gear driving gear (22) is normal engagement with two retaining driven gears (42); Three retaining driving gears (13) are normal engagement with three retaining driven gears (43), and four retaining driving gears (24) are normal engagement with four retaining driven gears (34), six retaining driven gears (46) simultaneously.
CN2010102993947A 2010-09-28 2010-09-28 Gearing of dual clutch transmission Active CN101975251B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102993947A CN101975251B (en) 2010-09-28 2010-09-28 Gearing of dual clutch transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102993947A CN101975251B (en) 2010-09-28 2010-09-28 Gearing of dual clutch transmission

Publications (2)

Publication Number Publication Date
CN101975251A true CN101975251A (en) 2011-02-16
CN101975251B CN101975251B (en) 2012-05-23

Family

ID=43575156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102993947A Active CN101975251B (en) 2010-09-28 2010-09-28 Gearing of dual clutch transmission

Country Status (1)

Country Link
CN (1) CN101975251B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678839A (en) * 2011-12-08 2012-09-19 河南科技大学 Double-clutch transmission used in tractor
CN103557322A (en) * 2013-10-16 2014-02-05 浙江吉利控股集团有限公司 Double-clutch automatic transmission
CN104105903A (en) * 2012-02-02 2014-10-15 戴姆勒股份公司 Dual-clutch transmission
CN105276100A (en) * 2014-06-30 2016-01-27 广州汽车集团股份有限公司 Transmission
CN113685503A (en) * 2020-05-18 2021-11-23 广州汽车集团股份有限公司 Ten keep off two separation and reunion derailleurs and vehicle
CN113685497A (en) * 2020-05-18 2021-11-23 广州汽车集团股份有限公司 Ten keep off two separation and reunion derailleurs and vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050000307A1 (en) * 2003-02-08 2005-01-06 Gerhard Gumpoltsberger Six-gear or seven-gear dual-clutch transmission
CN1734131A (en) * 2004-08-13 2006-02-15 现代自动车株式会社 Double clutch transmission
CN101082363A (en) * 2006-05-30 2007-12-05 三菱自动车工业株式会社 Double clutch transmission
CN101131198A (en) * 2006-08-23 2008-02-27 通用汽车环球科技运作公司 Powertrain with torque converter and axially compact seven speed dual clutch transmission
CN101260919A (en) * 2007-02-20 2008-09-10 通用汽车环球科技运作公司 Multi speed transmission having a countershaft gearing arrangement
CN201851608U (en) * 2010-09-28 2011-06-01 安徽江淮汽车股份有限公司 Transmission device of dual-clutch transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050000307A1 (en) * 2003-02-08 2005-01-06 Gerhard Gumpoltsberger Six-gear or seven-gear dual-clutch transmission
CN1734131A (en) * 2004-08-13 2006-02-15 现代自动车株式会社 Double clutch transmission
CN101082363A (en) * 2006-05-30 2007-12-05 三菱自动车工业株式会社 Double clutch transmission
CN101131198A (en) * 2006-08-23 2008-02-27 通用汽车环球科技运作公司 Powertrain with torque converter and axially compact seven speed dual clutch transmission
CN101260919A (en) * 2007-02-20 2008-09-10 通用汽车环球科技运作公司 Multi speed transmission having a countershaft gearing arrangement
CN201851608U (en) * 2010-09-28 2011-06-01 安徽江淮汽车股份有限公司 Transmission device of dual-clutch transmission

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678839A (en) * 2011-12-08 2012-09-19 河南科技大学 Double-clutch transmission used in tractor
CN102678839B (en) * 2011-12-08 2015-05-13 河南科技大学 Double-clutch transmission used in tractor
CN104105903A (en) * 2012-02-02 2014-10-15 戴姆勒股份公司 Dual-clutch transmission
CN103557322A (en) * 2013-10-16 2014-02-05 浙江吉利控股集团有限公司 Double-clutch automatic transmission
US10520064B2 (en) 2013-10-16 2019-12-31 Zhejiang Geely Holding Group Co., Ltd Dual-clutch automatic transmission
CN105276100A (en) * 2014-06-30 2016-01-27 广州汽车集团股份有限公司 Transmission
CN105276100B (en) * 2014-06-30 2018-06-05 广州汽车集团股份有限公司 A kind of speed changer
CN113685503A (en) * 2020-05-18 2021-11-23 广州汽车集团股份有限公司 Ten keep off two separation and reunion derailleurs and vehicle
CN113685497A (en) * 2020-05-18 2021-11-23 广州汽车集团股份有限公司 Ten keep off two separation and reunion derailleurs and vehicle
CN113685503B (en) * 2020-05-18 2024-03-22 广州汽车集团股份有限公司 Ten-gear double-clutch transmission and vehicle
CN113685497B (en) * 2020-05-18 2024-03-22 广州汽车集团股份有限公司 Ten-gear double-clutch transmission and vehicle

Also Published As

Publication number Publication date
CN101975251B (en) 2012-05-23

Similar Documents

Publication Publication Date Title
CN101975250B (en) Transmission device for dual clutch speed changer
CN102252063B (en) Transmission device of double-clutch transmission
CN101968104B (en) Driving device of double-clutch transmission
CN202431850U (en) Double-clutch transmission
EP2730808B1 (en) Transmission
CN101975251B (en) Gearing of dual clutch transmission
CN202152833U (en) Transmission device of double clutch transmission
CN201851606U (en) Transmission device for dual-clutch speed changer
CN201841948U (en) Dual clutch transmission driver
CN101975252A (en) Double-clutch gearbox transmission device
CN102242796A (en) Double-clutch transmission actuating device for
CN202152831U (en) Transmission device of double clutch transmission
CN202431852U (en) Double-clutch automatic transmission transmission gear
CN103758944A (en) Driving device for dual-clutch transmission
US8356528B2 (en) Transmission for industrial vehicle
CN201851608U (en) Transmission device of dual-clutch transmission
CN202914686U (en) Seven-speed dual clutch gearbox transmission device
CN101446336B (en) Double-clutch automatic gearbox
CN201802823U (en) Driving device for dual clutch transmission
US8359948B2 (en) Transmission for industrial vehicle
CN203162010U (en) Transmission device for dual-clutch transmission
CN104455236A (en) Double-clutch speed changer transmission device
CN202431851U (en) Driving device for dual clutch transmission
CN203176267U (en) Double-intermediate-shaft non-reverse-gear idler shaft mechanism
CN203939934U (en) A kind of vertical transmission device of dual-clutch transmission of putting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 230601 Anhui Province, Hefei City Industrial Park, the Peach Blossom Road No. 669

Patentee after: Anhui Jianghuai Automobile Group Limited by Share Ltd

Address before: The East Road in Baohe District of Hefei city of Anhui Province, No. 176 230022

Patentee before: Anhui Jianghuai Automobile Co., Ltd.

CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 230601 No. 99 Ziyun Road, Hefei Economic and Technological Development Zone, Anhui Province

Patentee after: Anhui Jianghuai Automobile Group Limited by Share Ltd

Address before: 230601 No. 669 Shixin Road, Taohua Industrial Park, Hefei City, Anhui Province

Patentee before: Anhui Jianghuai Automobile Group Limited by Share Ltd