CN101971458A - 平面型电池充电*** - Google Patents

平面型电池充电*** Download PDF

Info

Publication number
CN101971458A
CN101971458A CN2008801242960A CN200880124296A CN101971458A CN 101971458 A CN101971458 A CN 101971458A CN 2008801242960 A CN2008801242960 A CN 2008801242960A CN 200880124296 A CN200880124296 A CN 200880124296A CN 101971458 A CN101971458 A CN 101971458A
Authority
CN
China
Prior art keywords
converter
batter
elementary winding
charghing system
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801242960A
Other languages
English (en)
Other versions
CN101971458B (zh
Inventor
何永财
许树源
李志群
钟树鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
City University of Hong Kong CityU
Original Assignee
City University of Hong Kong CityU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by City University of Hong Kong CityU filed Critical City University of Hong Kong CityU
Publication of CN101971458A publication Critical patent/CN101971458A/zh
Application granted granted Critical
Publication of CN101971458B publication Critical patent/CN101971458B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种平面型电池充电***,包括:一个初级功率发射侧,包括一个用于产生与一充电平面基本相垂直磁通的初级绕组阵列(1);和一个次级功率接收侧,包括一个用于与待充电电池相连的次级绕组,次级绕组放在充电表面上时能够接收所述磁通,其中,一个包括第一级变换器和一个第二级逆变器的控制电路可激励其中一个初级绕组,第一级变换器提供一个可变的DC母线电压(Vdc),而第二级逆变器依照该DC母线电压(Vdc)产生一个固定频率恒值AC电流输入到该初级绕组中(1)。

Description

平面型电池充电***
技术领域
本发明涉及一种平面型电池充电***控制方法和装置。
背景技术
移动电话、MP3播放器和PDA之类的便携式消费电子产品日益普及,已使人们各式各样所需电池充电器的巨大种类数量感到担忧。式样繁多不仅对使用者不方便,而且还会最终导致电子废品问题。现已提出了能对至少一种电子产品充电的感应式或者无线式充电装置,提出了两种不同的思路来产生交变磁通,即“卧式磁通”方法和“立式磁通”方法。
现有技术
已经开发出感应式电子充电器用于某些类型的电子设备,如电动牙刷。有些现有技术文献,如US6,356,049,US6,301,128和US6,118,249就提出过感应式充电器。然而,这些感应式充电器采用的是在铁磁芯上缠绕组的传统变压器式设计。在初级(能量发送)绕组和次级(能量接收)绕组之间的主磁通必须通过所述磁芯材料。另一种非接触式充电器[Chang-Gyun Kim;Dong-Hyun Seo;Jung-Sik You;Jong-Hu Park;Cho,B.H.,′Design of a contactless battery charger for cellular phone′,IEEE Transactionson Industrial Electronics,Volume:48,Issue:6,Dec.2001 Page(s):1238-1247.]也使用铁芯作为耦合的变压器绕组的主体结构。然而,这些电池充电器不是采用平面结构,而且每个充电器在某一时刻只能为一个电子负载充电。
近期对平面磁技术和平面变压器技术的研究推动了对便携式电子设备所用的平面型非接触式电池充电***的开发。其中有两个特别有意义的方案,因为该两项方案允许在充电表面上放置一件或多件电子产品而同时为其充电,而不管这些电子产品的位向如何。
第一种平面型电池充电器,通过把圆形电机变薄为“煎饼”状而改进了旋转机器的概念,如GB2399225A、GB2398176A、WO2004/038888A、GB2388716A、US2003-210106-A1、GB2392024A和GB2399230A所述。其磁力线沿着(或大体平行于)平的充电表面卧式流动。待充电的电子设备则需要一个最好缠绕在一个软磁芯上的次级绕组。在该次级绕组中就会感应出一个AC电压通过一个电池充电电路为电池充电。
对这种电池充电器的本质性和固有性限制在于:充电装置必须有一个好的电磁通导,以将磁通沿着下表面限制住。否则,一旦该充电器放置在一个金属或导电平面上时,感生电流就会在金属或导电表面循环,由此产生能量损失和发热。解决这个问题有一个不完美的方法,那就是在下表面下方放置一块软磁材料(例如一块铁片、无定型软磁合金等)作为一个磁通导。然而,若该电磁通量较大,就要用一块相当厚的金属软磁材料,不仅难于设计成为一个薄充电盘,而且还由于需用大量的软磁材料而增大了成本。另外,利用一层软磁性材料所产生的电池屏蔽效果可能达不到电磁兼容(EMC)要求,仍会有某些磁通穿透软磁层而在充电盘下面的导电表面中感生出电流来。
屏蔽下表面磁场更好的方案是使用软磁材料和导电材料组合层。如US2003-95027-A1所述。值得注意的是,增加一薄层导电材料可显著增强屏蔽效果,参见US2003-95027-A1,US6,501,364和Tang S.C.,Hui S.Y.R and Chung H.,′Evaluation of the Shielding Effects on Printed-Circuit-Board Transformers using Ferrite Plates and Copper Sheets′,IEEE Transactionson Power Electronics,Vol.17,No.6,Nov.2002,pp.1080-1088。
如WO03/105308A、GB2389720A、GB2399446A、GB2389767A、GB2389767A和WO2007/019806所述,第二种方案是创造一个磁场,其磁力线沿大体竖直方向即沿垂直于充电盘平面的方向流出平面型充电表面。由于磁力线沿竖直方向进入和离开,就可以用一个很薄的线圈来收集其磁通。这样,就可能在便携式电子负载中设计和装入一个纤巧的次级接收单元。
发明内容
本发明提供一种平面型电池充电***,包括:一个初级功率发射侧,包括一个用于产生与一充电平面基本相垂直磁通的初级绕组阵列;和一个次级功率接收侧,包括一个用于与待充电电池相连的次级绕组,次级绕组放在充电表面上时能够接收所述磁通,其中,一个包括第一级变换器和一个第二级逆变器的控制电路可激励其中一个初级绕组,第一级变换器提供一个可变的DC母线电压,而第二级逆变器产生一个固定频率恒值AC电流输入到该初级绕组中。
第一级变换器可以是电流控制式的,也可以是电压控制式的。
最好监测馈送给初级绕组的电流,以反馈控制所述的可变DC母线电压。
在本发明某些实施例中,在第二级逆变器的输出端和初级绕组之间设置一个降压变压器。
所述第二级逆变器最好包括一个谐振电路,后者设定向初级绕组供给的AC电流频率。最好以与谐振电路频率相等的恒定频率切换第二级逆变器。
最好,次级侧适于在初级绕组激磁频率点接收能量。
最好,第一级变换器是一个升压变换器、降压变换器、回扫变换器、CUK变换器或Sepic变换器。第二级逆变器可以是一个全桥式、半桥式、D级型或者Z源型逆变器。
最好,各初级绕组的激磁频率相同,并产生同样大小的AC磁通。供给初级绕组的电流最好是正弦波。
附图说明
现参照附图举例说明本发明的具体实施方式,其中:
图1是本发明实施例的控制方法示意图;
图2是一个升压变换器示意图;
图3是一个回扫型AC-DC变换器;
图4是一个带有初级绕组和隔直流电容器的全桥逆变器;
图5是一个带有初级绕组和隔直流电容器的半桥逆变器;
图6示出一个平面型电池充电台中的典型绕组阵列;
图7示出一个AC-DC电压控制式第一级回扫变换器向一个第二级全桥固定频率逆变器供给恒流源;
图8示出一个AC-DC电流控制式第一级回扫变换器向一个第二级全桥固定频率逆变器供给恒流源;
图9示出一个AC-DC电压控制式第一级升压变换器向一个第二级全桥固定频率逆变器供给恒流源;
图10示出一个AC-DC电流控制式第一级升压变换器向一个第二级全桥固定频率逆变器供给恒流源;
图11示出一个AC-DC电流控制式第一级回扫变换器向一个全桥逆变器供电,后者通过一个变压器提供一个降压电流源;和
图12示出一个AC-DC电压控制式第一级回扫变换器向一个全桥逆变器供电,后者通过一个变压器提供一个降压电流源。
具体实施方式
对于平面型电池充电***来说,重要的是能用一个标准的充电盘对品种广泛的便携式电子产品进行感应式充电。为了达到这一要求,最好要满足几项条件:
(1)充电盘的受激绕组要能够产生充足的能量来为这些电子产品充电。
(2)由于感应式充电法依赖于充电盘(初级能量发送电路或简称为初级电路)和电子产品中的能量接收单元(次级电路)之间的近场磁耦合,充电盘必须要产生一个可控幅度的AC磁通,来实现对品种广泛的电子负载予以充电。
(3)由于可在同一个充电盘上对一定品种范围的电子负载充电,应有一个标准的工作频率和一套基本的次级电路设计参数。也就是说,品种广泛的电子产品之中的次级电路必须与充电盘产生的磁通匹配。
下面描述感应式充电盘所用的电控和AC磁控装置和方法。为了达到上述要求,设定下列设计和工作条件,以便使充电盘能用于给品种广泛的电子负载充电并能够控制受激绕组产生的磁通。
(1)充电盘的一个或多个绕组受到激励,可将之称为一个“主动组”。可为充电盘上的各个绕组绕圈设定一个共同幅度的AC磁通,则由各个线圈产生的AC磁场就会是相同的。无论在充电盘的充电表面上的任何位置,都可为电子产品同样充电。
(2)磁通必须产生充足的能量为电子产品充电。
(3)必须为充电盘产生的AC磁通设定一个确定的频率。必须将电子负载的次级能量接收电路设计成以相同的频率来拾取磁通。这确保了这些次级电路与充电盘相互匹配。
(4)由于磁通是主动组之绕组中激励电流的函数,驱动充电盘中绕组的逆变器应该是电流控制式的。
(5)为了控制提供给逆变器而后到主动组绕组的功率,前级变换器应具有一个可控的输出电压。由于低二级逆变器受控向主动组的绕组注入一个恒定的AC电流,第一级变换器的输出电压控制可用于控制主动组的功率;
(6)为了降低绕组的谐波损耗和EMI辐射,初级绕组中的电流要确保是正弦波。因此,在初级绕组上加上一个电容器以形成一个谐振电路。第二级逆变器应在该谐振频率下工作以确保绕组中的电流正弦波。
图1示出一个用于感应式充电盘(初级***)的电子控制***实施例,其两级功率电路驱动充电盘主动组的初级绕组,前级或第一级变换器与输入电源的性质有关;如果输入电源是一个AC源,该第一级变换器应是一个AC-DC变换器;如果是一个DC源,该第一级变换器应是DC-DC变换器。在任何情况下,输出电压(即图1的DC母线电压Vdc)应该是可控改变的。
如果输入电源是一个DC电压源,前级DC-DC变换器可以是但并不限于是回扫变换器、升压变换器、降压变换器、Cuk变换器和Sepis变换器。图2示例出一个升压变换器。如输入电源是一个AC电压源(即AC电源),前级变换器可采用一个AC-DC变换器,后者可具有或不具有功率因数校正。一个AC-DC变换器通常有一个二极管整流器和一个DC-DC变换器构成。图3示例出一个回扫型AC-DC变换器。第二级逆变器可以是一个全桥逆变器(图4)、半桥逆变器或Z源型逆变器。
如图6所示,充电盘的初级绕组可以包括一单个线圈,或一个阵列的串联线圈1,图示例为六边形线圈。线圈阵列可以是单层或多层结构,线圈阵列可以成组配置来实现定点充电,以便按需要激励应传输能量的线圈。
现参照图1解释控制原理,前级变换器通过改变其变换器开关的占空比来控制其输出电压Vdc。通常采用脉宽调制(PWM)技术控制转换器开关的占空比,进而控制变换器的输出电压。在图1中占空比函数表示为M(d)。要么以“电压控制”模式要么以“电流控制”模式控制第一级变换器,由其提供一个可控的DC母线电压Vdc。
第二级逆变器采用固定频率控制。通常,全桥逆变器相对边的开关一起开关,其两对开关交替通断,由此在逆变器的输出端可产生一个AC电压。若需要,在同一逆变器支路中两个开关切换时刻可***一个短的死区时间,以实现软切换,由此降低开关损耗和EMI辐射。逆变器以固定频率切换,该频率最好与初级电路中谐振电路的谐振频率相同。由于从第一级变换器馈入的电流保持恒值,第二级逆变器产生一个固定频率的恒流AC进入主动组绕组。该固定频率是很重要的,因为电子负载内的次级电路设计成在此频率下接收能量。应将此频率选择为辐射电磁干扰(EMI)不违反国际电磁兼容(EMC)要求。
在电压控制模式下,第一级变换器把DC母线电压馈送给第二级逆变器;在电流控制模式下,第一级变换器把一个DC电流馈送给第二级逆变器;在两种工作模式中,其目的是保持一个恒流馈送给第二级逆变器。也就是说,在电压控制模式下,变换器可以改变输出电压(Vdc)以将馈送给第二级逆变器的电流保持恒定。在电流控制模式下,变换器控制成向第二级逆变器提供一个所需数值的电流。
馈送给第二级逆变器的电流可以由一个电流传感器监测,该电流传感器可以是一个小电阻或者是一个霍尔电流传感器。若次级负载接收的功率上升(下降),该电流可能会下降(上升)。将反馈电流与一个预定参考值(Vref)相比较,该参考值表征馈送给初级绕组所需的电流,可由用户设定或根据标准设定,或者由负载获知的磁通、功率或其他要求来确定。其误差信号可由一个放大器A放大,且由一个比较器C与一个固定频率的三角载波参量相比较,该固定频率确定第一级变换器的开关频率。动态调节占空比来控制DC母线电压(Vdc),以将馈送给第二级逆变器的电流与所需的电流值相比保持在一个小的误差范围内。
图7示出本发明的一个实施例。在本实施例中,充电盘由一个AC电源供电。用一个AC-DC回扫变换器向一个DC-AC逆变器输入,由后者驱动位于充电盘主动组初级绕组。如图所示是一个由二极管2和门级驱动器3构成的、以电压控制模式工作的AC-DC回扫变换器。用一个感测电阻Rsen监测馈送给逆变器的电流。该感测的电流信号由一个阻容式滤波器滤波,然后在一个误差信号放大器4中与一个参考信号V ref相比较(该参考信号可以任意设定到2.5v,且表征逆变器所需的电流值),放大器4在其输出端产生一个误差信号。该电流误差信号Ve然后馈送到一个比较器5并与一个确定频率的锯齿波参考信号(Vsw)相比较,该频率决定了第一级AC-DC回扫变换器的开关频率。该比较器提供PWM信号来切换逆变器,该PWM信号的占空比控制着回扫变换器的输出电压(即,DC母线电压Vdc)。控制Vdc使流进逆变器的电流与所需值相比保持在一个小的误差范围内。只需以恒定频率(初级电路的谐振电路之谐振频率)驱动第二级逆变器而向充电盘的初级电路注入一个恒定幅度的AC电流。初级电路中的谐振电路确保主动组初级绕组中的电流是正弦波,以降低谐波损耗和EMI辐射。
图8示出本发明另一个典型实施例,其中第一级变换器工作在电流控制模式。在本实施例中,用一个感测电阻Rsen监测馈送给逆变器的电流。对感测的电流信号滤波并将其在一个差分信号放大器14中与一个所需的电流参考值(Vref,任意设定为2.5V)相比较。用另一个电流传感器Rs监测回扫变换器之功率开关中的电流,该开关电流与回扫变换器中耦合电感器初级绕组中的电流相同。对感测的开关电流(Vipk)予以滤波并将其在比较器15中与Ve相比较,以产生PWM信号来驱动回扫变换器的开关,其目的是为了第一级变换器将所需数值的电流馈送给第二级逆变器。只需以恒定频率(初级电路的谐振电路之谐振频率)驱动第二级逆变器而向充电盘的初级电路注入一个恒定幅度的AC电流。初级电路中的谐振电路确保主动组初级绕组中的电流是正弦波,以降低谐波损耗和EMI辐射。
同理也可以采用一个升压变换器作为第一级电压控制式和电流控制式变换器,分别示于图9和图10。
向充电盘主动组绕组里注入正弦波电流的另一种方式是采用一个二级逆变器驱动一个用电容器和降压变压器20之初级绕组构成的谐振电路,如图11和12所示。采用降压变压器的优点在于:可将逆变器的DC母线电压设定得更高,以使注入电容器和变压器初级绕组的电流能够保持得更低。这避免了对大电流电容器等原件的需要,以便于选择电路元器件。然后把降压变压器初级绕组中的正弦电流馈送到主动组绕组中。
总之,为了开发能够与品种广泛的便携式电子产品相兼容的电池充电盘,建议采用第一级变换器直接或间接地将电流控制到所需值(在小的误差范围内),并使之注入到在电压控制模式或电流控制模式下工作的第二级逆变器,从而由第二级逆变器注入充电盘主动组之初级绕组中的电流使在该主动组所有受激线圈中能够保持一个同样幅度的AC磁通(是电流的函数),这样第一级变换器也就控制住了主动组的功率。
可在初级电路中采用一个谐振电路,以确保在绕组中的电流是正弦波。初级绕组中的正弦电流产生AC磁通,确保谐波损耗和EMI辐射最小。采用第二级逆变器以与初级线路之谐振电路谐振频率相等的恒定频率通断,有助于确保初级绕组中的电流是正弦波。
次级能量接收电路最好设计成在充电盘第二级逆变器中设定的工作频率下工作,以确保充电盘与所有电子负载中的次级能量接收单元相兼容。
第一级变换器可以是但并不限于是回扫变换器、升压变换器、降压变换器、Cuk变换器和Sepis变换器。第二级逆变器可以是一个全桥逆变器、半桥逆变器、D级逆变器或Z源型逆变器,但并不限于此。第二级逆变器可以采用一个降压变压器,以便用一个更高的DC母线电压达到在给定功率要求的情况下降低谐振电容中的电流之目的。

Claims (12)

1.一种平面型电池充电***,包括:
一个初级功率发射侧,包括一个用于产生与一充电平面基本相垂直磁通的初级绕组阵列;
一个次级功率接收侧,包括一个用于与待充电电池相连的次级绕组,次级绕组放在充电表面上时能够接收所述磁通,
其中,一个包括第一级变换器和一个第二级逆变器的控制电路可激励其中一个初级绕组,第一级变换器提供一个可变的DC母线电压,而第二级逆变器产生一个固定频率恒值AC电流输入到该初级绕组中。
2.如权利要求1所述电池充电***,其中,第一级变换器是电流控制式的。
3.如权利要求1所述电池充电***,其中,第一级变换器是电压控制式的。
4.如权利要求1所述电池充电***,其中,监测馈送给初级绕组的电流,以反馈控制所述的可变DC母线电压。
5.如权利要求1所述电池充电***,其中,在第二级逆变器的输出端和初级绕组之间设置一个降压变压器。
6.如权利要求1所述电池充电***,其中,所述第二级逆变器包括一个谐振电路,后者设定向初级绕组供给的AC电流频率。
7.如权利要求6所述电池充电***,其中,以与谐振电路频率相等的恒定频率切换第二级逆变器。
8.如权利要求1所述电池充电***,其中,次级侧适于在初级绕组激磁频率点接收能量。
9.如权利要求1所述电池充电***,其中,第一级变换器是一个升压变换器、降压变换器、回扫变换器、CUK变换器或Sepic变换器。
10.如权利要求1所述电池充电***,其中,第二级逆变器是一个全桥式、半桥式、D级型或者Z源型逆变器。
11.如权利要求1所述电池充电***,其中,各初级绕组的激磁频率相同,并产生同样大小的AC磁通。
12.如权利要求1所述电池充电***,其中,供给初级绕组的电流是正弦波。
CN2008801242960A 2007-11-09 2008-10-31 平面型电池充电*** Expired - Fee Related CN101971458B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/938,042 2007-11-09
US11/938,042 US8228025B2 (en) 2007-11-09 2007-11-09 Electronic control method for a planar inductive battery charging apparatus
PCT/CN2008/072898 WO2009062438A1 (en) 2007-11-09 2008-10-31 Planar battery charging system

Publications (2)

Publication Number Publication Date
CN101971458A true CN101971458A (zh) 2011-02-09
CN101971458B CN101971458B (zh) 2013-08-07

Family

ID=40623085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801242960A Expired - Fee Related CN101971458B (zh) 2007-11-09 2008-10-31 平面型电池充电***

Country Status (3)

Country Link
US (2) US8228025B2 (zh)
CN (1) CN101971458B (zh)
WO (1) WO2009062438A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983613A (zh) * 2012-11-30 2013-03-20 邹小兰 一种无线充电装置
CN103124099A (zh) * 2011-11-17 2013-05-29 建兴电子科技股份有限公司 无线充电***及装置及其控制方法
CN104541430A (zh) * 2012-08-24 2015-04-22 高通股份有限公司 无线电力传递***中的电力供应控制
CN104659925A (zh) * 2013-11-20 2015-05-27 中兴通讯股份有限公司 无线电能收发方法和装置
CN105720700A (zh) * 2014-12-22 2016-06-29 施耐德电气(澳大利亚)有限公司 电源插座中的感应功率传输***
CN107925273A (zh) * 2015-08-03 2018-04-17 罗伯特·博世有限公司 用于感应式能量传输到感应蓄电池设备的感应充电装置以及用于感应蓄电池设备的感应式充电的方法
CN108696168A (zh) * 2018-06-22 2018-10-23 燕山大学 高增益单相单级无变压器型光伏逆变器及其控制方法
CN108779990A (zh) * 2016-03-31 2018-11-09 丹佛斯有限公司 公共事业仪表
US10523036B2 (en) 2016-12-14 2019-12-31 Shenzhen Yichong Wireless Power Technology Co. Ltd Resonant wireless charging system and method for electric toothbrush
CN110914100A (zh) * 2017-07-28 2020-03-24 Abb瑞士股份有限公司 无线充电***

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044813B1 (en) 2006-11-16 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Radio field intensity measurement device, and radio field intensity detector and game console using the same
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US7915858B2 (en) * 2007-10-30 2011-03-29 City University Of Hong Kong Localized charging, load identification and bi-directional communication methods for a planar inductive battery charging system
WO2009069844A1 (en) 2007-11-30 2009-06-04 Chun-Kil Jung Multiple non-contact charging system of wireless power transmision and control method thereof
JP5398160B2 (ja) * 2008-03-31 2014-01-29 パナソニック株式会社 電子機器、充電器、及び電子機器充電システム
CA2738206A1 (en) * 2008-09-23 2010-04-01 Powermat Ltd. Combined antenna and inductive power receiver
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
EP3059875B1 (en) 2008-09-27 2019-01-30 WiTricity Corporation Wireless energy transfer systems
DE102009000328A1 (de) * 2009-01-20 2010-07-22 Semikron Elektronik Gmbh & Co. Kg Batterieladegerät und Verfahren zu dessen Betrieb
US8686684B2 (en) * 2009-03-27 2014-04-01 Microsoft Corporation Magnetic inductive charging with low far fields
TWI383155B (zh) * 2009-04-21 2013-01-21 China Steel Corp Measurement device for non - sine wave electromagnetic properties
USD611898S1 (en) 2009-07-17 2010-03-16 Lin Wei Yang Induction charger
USD611899S1 (en) 2009-07-31 2010-03-16 Lin Wei Yang Induction charger
USD611900S1 (en) 2009-07-31 2010-03-16 Lin Wei Yang Induction charger
CN101989818A (zh) * 2009-08-06 2011-03-23 台达电子工业股份有限公司 双级交换式电源转换电路
US8633792B2 (en) 2009-09-09 2014-01-21 Koninklijke Philips N.V. Electronic device having a base part including a soft magnetic layer
US20110199045A1 (en) * 2010-02-15 2011-08-18 Convenientpower Hk Ltd Power transfer device and method
US8294418B2 (en) * 2010-02-03 2012-10-23 ConvenientPower, Ltd. Power transfer device and method
JP2011114885A (ja) * 2009-11-24 2011-06-09 Panasonic Electric Works Co Ltd 非接触電力伝送装置
US9561730B2 (en) * 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
TWM393916U (en) * 2010-05-31 2010-12-01 ming-xiang Ye Wireless charger for vehicle
TWM393921U (en) * 2010-06-08 2010-12-01 Winharbor Technology Co Ltd Wireless charging ebook
NZ586526A (en) * 2010-06-30 2012-12-21 Auckland Uniservices Ltd Inductive power transfer system with ac-ac converter and two-way power transmission ability
RU2565252C2 (ru) 2010-07-02 2015-10-20 Конинклейке Филипс Электроникс Н.В. Индукционная система электропитания
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
CN103460553B (zh) * 2011-01-30 2016-08-17 海尔集团公司 无线供电***及其负载识别控制方法
KR101267076B1 (ko) * 2011-03-24 2013-05-24 주식회사 한림포스텍 무선 전력 전송 어셈블리에서의 전력 제어 방법 및 무선 전력 전송 어셈블리
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
EP2764604B1 (en) 2011-08-04 2018-07-04 WiTricity Corporation Tunable wireless power architectures
KR101830960B1 (ko) * 2011-08-18 2018-02-22 삼성전자주식회사 휴대용 단말기의 일체형으로 구비된 엔에프시 안테나와 비접촉 충전 코일의 구분 장치 및 그 방법
EP2754222B1 (en) 2011-09-09 2015-11-18 Witricity Corporation Foreign object detection in wireless energy transfer systems
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
KR20140085591A (ko) 2011-11-04 2014-07-07 위트리시티 코포레이션 무선 에너지 전송 모델링 툴
EP2807720A4 (en) 2012-01-26 2015-12-02 Witricity Corp WIRELESS ENERGY TRANSFER WITH REDUCED FIELDS
US9156364B2 (en) 2012-02-14 2015-10-13 Ut-Battelle, Llc Wireless power charging using point of load controlled high frequency power converters
EP2677651B1 (en) * 2012-06-22 2020-07-08 Delta Electronics (Thailand) Public Co., Ltd. Synchronized isolated AC-AC converter with variable regulated output voltage
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
ITVR20120155A1 (it) * 2012-07-24 2014-01-25 Motive S R L Motore elettrico con inverter a bordo
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9722462B2 (en) * 2012-08-03 2017-08-01 Mediatek Singapore Pte. Ltd. System and method for controlling resonant wireless power source
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
EP4145671A1 (en) 2012-10-19 2023-03-08 WiTricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
JP6115626B2 (ja) * 2013-02-15 2017-04-19 株式会社村田製作所 ワイヤレス給電装置
WO2015023899A2 (en) 2013-08-14 2015-02-19 Witricity Corporation Impedance tuning
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
WO2015123614A2 (en) 2014-02-14 2015-08-20 Witricity Corporation Object detection for wireless energy transfer systems
US10664772B1 (en) 2014-03-07 2020-05-26 Steelcase Inc. Method and system for facilitating collaboration sessions
US9716861B1 (en) 2014-03-07 2017-07-25 Steelcase Inc. Method and system for facilitating collaboration sessions
WO2015161035A1 (en) 2014-04-17 2015-10-22 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
CN106489082B (zh) 2014-05-07 2021-09-21 无线电力公司 无线能量传送***中的异物检测
US9380682B2 (en) 2014-06-05 2016-06-28 Steelcase Inc. Environment optimization for space based on presence and activities
US9955318B1 (en) 2014-06-05 2018-04-24 Steelcase Inc. Space guidance and management system and method
US9766079B1 (en) 2014-10-03 2017-09-19 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US10614694B1 (en) 2014-06-06 2020-04-07 Steelcase Inc. Powered furniture assembly
US10433646B1 (en) 2014-06-06 2019-10-08 Steelcaase Inc. Microclimate control systems and methods
US11744376B2 (en) 2014-06-06 2023-09-05 Steelcase Inc. Microclimate control systems and methods
WO2015196123A2 (en) 2014-06-20 2015-12-23 Witricity Corporation Wireless power transfer systems for surfaces
US9438315B2 (en) 2014-07-03 2016-09-06 ConvenientPower HK Ltd. Wireless power adapter
EP3167532B1 (en) 2014-07-08 2018-10-17 WiTricity Corporation Resonator balancing in wireless power transfer systems
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9579517B2 (en) 2014-09-08 2017-02-28 Medtronic, Inc. Transformer-based charging circuits for implantable medical devices
US9861828B2 (en) 2014-09-08 2018-01-09 Medtronic, Inc. Monitoring multi-cell power source of an implantable medical device
US9539435B2 (en) 2014-09-08 2017-01-10 Medtronic, Inc. Transthoracic protection circuit for implantable medical devices
US9643025B2 (en) 2014-09-08 2017-05-09 Medtronic, Inc. Multi-primary transformer charging circuits for implantable medical devices
US9861827B2 (en) 2014-09-08 2018-01-09 Medtronic, Inc. Implantable medical devices having multi-cell power sources
US9604071B2 (en) 2014-09-08 2017-03-28 Medtronic, Inc. Implantable medical devices having multi-cell power sources
US9724528B2 (en) 2014-09-08 2017-08-08 Medtronic, Inc. Multiple transformer charging circuits for implantable medical devices
US10361566B2 (en) 2014-10-02 2019-07-23 Powermat Technologies Ltd. Wireless power transmitter and method of error detection during use thereof
US9852388B1 (en) 2014-10-03 2017-12-26 Steelcase, Inc. Method and system for locating resources and communicating within an enterprise
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
EP3136544A1 (en) * 2015-02-26 2017-03-01 Electrochem Solutions, Inc. Battery wireless charging system
US10733371B1 (en) 2015-06-02 2020-08-04 Steelcase Inc. Template based content preparation system for use with a plurality of space types
KR102353272B1 (ko) 2015-06-10 2022-01-19 삼성전자주식회사 무선 전력 송수신기
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
JP2018538517A (ja) 2015-10-14 2018-12-27 ワイトリシティ コーポレーションWitricity Corporation 無線エネルギー伝送システムにおける位相及び振幅の検出
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
WO2017070009A1 (en) 2015-10-22 2017-04-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
AU2017214479A1 (en) 2016-02-02 2018-08-09 Witricity Corporation Controlling wireless power transfer systems
CN114123540A (zh) 2016-02-08 2022-03-01 韦特里西提公司 可变电容装置及高功率无线能量传输***
CN105553120A (zh) * 2016-02-26 2016-05-04 卢佳龙 手机无线充电器
US9921726B1 (en) 2016-06-03 2018-03-20 Steelcase Inc. Smart workstation method and system
US11455011B2 (en) 2016-10-13 2022-09-27 Microsoft Technology Licensing, Llc Modular computing device with common AC power
US10345876B2 (en) 2016-10-13 2019-07-09 Microsoft Technology Licensing, Llc Computing device with removable power module
US10264213B1 (en) 2016-12-15 2019-04-16 Steelcase Inc. Content amplification system and method
CN111108662B (zh) 2017-06-29 2023-12-12 韦特里西提公司 无线电力***的保护和控制
US10840807B2 (en) 2017-09-22 2020-11-17 Thermo King Corporation DC to DC converter sourcing variable DC link voltage
CN110549878B (zh) * 2018-05-15 2020-10-16 哈尔滨工业大学 一种基于切换控制的无线电能传输自适应频率跟踪方法及***
US10910879B2 (en) 2018-06-11 2021-02-02 Convenientpower Hk Limited Passive wireless power adapter
US11984739B1 (en) 2020-07-31 2024-05-14 Steelcase Inc. Remote power systems, apparatus and methods
CN116613986B (zh) * 2023-07-19 2023-09-22 南京信息工程大学 一种准z源llc谐振变换器及其控制方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568036A (en) * 1994-12-02 1996-10-22 Delco Electronics Corp. Contactless battery charging system with high voltage cable
JP3363341B2 (ja) * 1997-03-26 2003-01-08 松下電工株式会社 非接触電力伝達装置
JPH11273977A (ja) * 1998-03-20 1999-10-08 Toyota Autom Loom Works Ltd 電気自動車用電磁誘導型非接触給電装置
DE19837675A1 (de) * 1998-08-19 2000-02-24 Nokia Technology Gmbh Ladevorrichtung für Akkumulatoren in einem mobilen elektrischen Gerät mit induktiver Energieübertragung
JP2001167802A (ja) * 1999-12-07 2001-06-22 Toyota Autom Loom Works Ltd 電磁誘導型非接触充電用の給電用カプラの衝撃吸収構造
US6301128B1 (en) * 2000-02-09 2001-10-09 Delta Electronics, Inc. Contactless electrical energy transmission system
KR100566220B1 (ko) * 2001-01-05 2006-03-29 삼성전자주식회사 무접점 배터리 충전기
KR20020057469A (ko) * 2001-01-05 2002-07-11 윤종용 코어 없는 초박형 프린트회로기판 변압기 및 그프린트회로기판 변압기를 이용한 무접점 배터리 충전기
US6501364B1 (en) * 2001-06-15 2002-12-31 City University Of Hong Kong Planar printed-circuit-board transformers with effective electromagnetic interference (EMI) shielding
US6888438B2 (en) * 2001-06-15 2005-05-03 City University Of Hong Kong Planar printed circuit-board transformers with effective electromagnetic interference (EMI) shielding
GB0213374D0 (en) 2002-06-10 2002-07-24 Univ City Hong Kong Planar inductive battery charger
GB2398176B (en) 2002-05-13 2006-03-08 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
GB2399229B (en) 2002-05-13 2005-11-09 Splashpower Ltd Inductive power transfer system having areas with horizontal field
US6906495B2 (en) * 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
GB2388715B (en) 2002-05-13 2005-08-03 Splashpower Ltd Improvements relating to the transfer of electromagnetic power
GB0213023D0 (en) 2002-06-07 2002-07-17 Zap Wireless Technologies Ltd Improvements relating to charging of devices
EP2479866B1 (en) * 2002-06-10 2018-07-18 City University of Hong Kong Planar inductive battery charger
GB0213375D0 (en) 2002-06-10 2002-07-24 Univ City Hong Kong Apparatus for energy transfer by induction
US6960968B2 (en) * 2002-06-26 2005-11-01 Koninklijke Philips Electronics N.V. Planar resonator for wireless power transfer
US7622891B2 (en) 2002-10-28 2009-11-24 Access Business Group International Llc Contact-less power transfer
GB2399446A (en) 2003-02-13 2004-09-15 Martin Herbert Decorative lamp with separate heating and lighting sources.
CN1674405A (zh) * 2004-06-11 2005-09-28 深圳市丕希软件科技有限公司 电器的非接触式供电方法及其装置
KR100792311B1 (ko) * 2005-07-30 2008-01-07 엘에스전선 주식회사 충전전력 공급장치, 충전 장치, 배터리 장치, 무접점 충전 시스템 및 무접점 충전 방법
GB0517082D0 (en) 2005-08-19 2005-09-28 Univ City Hong Kong Auxiliary winding for improved performance of a planar inductive charging platform
KR100792308B1 (ko) * 2006-01-31 2008-01-07 엘에스전선 주식회사 코일 어레이를 구비한 무접점 충전장치, 무접점 충전시스템 및 충전 방법

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124099A (zh) * 2011-11-17 2013-05-29 建兴电子科技股份有限公司 无线充电***及装置及其控制方法
CN104541430A (zh) * 2012-08-24 2015-04-22 高通股份有限公司 无线电力传递***中的电力供应控制
US9859956B2 (en) 2012-08-24 2018-01-02 Qualcomm Incorporated Power supply control in wireless power transfer systems
CN102983613A (zh) * 2012-11-30 2013-03-20 邹小兰 一种无线充电装置
CN104659925A (zh) * 2013-11-20 2015-05-27 中兴通讯股份有限公司 无线电能收发方法和装置
CN105720700A (zh) * 2014-12-22 2016-06-29 施耐德电气(澳大利亚)有限公司 电源插座中的感应功率传输***
CN107925273A (zh) * 2015-08-03 2018-04-17 罗伯特·博世有限公司 用于感应式能量传输到感应蓄电池设备的感应充电装置以及用于感应蓄电池设备的感应式充电的方法
CN108779990A (zh) * 2016-03-31 2018-11-09 丹佛斯有限公司 公共事业仪表
CN108779990B (zh) * 2016-03-31 2021-03-23 丹佛斯有限公司 公共事业仪表
US10523036B2 (en) 2016-12-14 2019-12-31 Shenzhen Yichong Wireless Power Technology Co. Ltd Resonant wireless charging system and method for electric toothbrush
CN110914100A (zh) * 2017-07-28 2020-03-24 Abb瑞士股份有限公司 无线充电***
CN108696168A (zh) * 2018-06-22 2018-10-23 燕山大学 高增益单相单级无变压器型光伏逆变器及其控制方法

Also Published As

Publication number Publication date
CN101971458B (zh) 2013-08-07
WO2009062438A1 (en) 2009-05-22
USRE45651E1 (en) 2015-08-11
US8228025B2 (en) 2012-07-24
US20090121675A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
CN101971458B (zh) 平面型电池充电***
Jiang et al. Analysis, design, and implementation of WPT system for EV's battery charging based on optimal operation frequency range
Li et al. A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling
Wu et al. An AC processing pickup for IPT systems
JP6140220B2 (ja) 電気自動車での無線電力送信
Lee et al. Reflexive field containment in dynamic inductive power transfer systems
US20150311724A1 (en) Ac inductive power transfer system
CN107487210B (zh) 用于车辆的无线电力传输
JP5780765B2 (ja) 非接触給電システム
KR101936462B1 (ko) 전기 자동차용 배터리 충전 장치
US20170047768A1 (en) Transmission system, method for inductively charging an electrically driven vehicle, and vehicle assembly
Wu et al. Design of symmetric voltage cancellation control for LCL converters in inductive power transfer systems
CN101277069A (zh) 感应电力***
CN102742138A (zh) Ac-dc转换器和ac-dc转换方法
CN108808875B (zh) 一种适用于电池特性的恒流、恒压无线充电***及无线充电的方法
CN104160605A (zh) 包括具有谐振隔离级的ac/dc转换器的车辆电池外部装载装置
CN110914100A (zh) 无线充电***
Choi et al. 4kW magnetic resonance wireless power transfer system
US10447090B1 (en) Inductive power receiver
Subudhi et al. Wireless electric vehicle battery-charging system for solar-powered residential applications
Kitamoto et al. A novel type of high power-factor miniaturized wireless ev charger with optimized power receiving circuit and single-ended inverter
Chaidee et al. An inverter topology for MultiTransmitter wireless power transfer systems
Shin et al. Optimal current control of a wireless power transfer system for high power efficiency
Iqbal et al. A quasi impedance source inverter based wireless power transfer system for battery charging applications for electric vehicle
Nagashima et al. Inductively coupled wireless power transfer with class-DE power amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130807

Termination date: 20211031

CF01 Termination of patent right due to non-payment of annual fee