CN101917017A - 单级升/降压储能型光伏并网发电控制*** - Google Patents

单级升/降压储能型光伏并网发电控制*** Download PDF

Info

Publication number
CN101917017A
CN101917017A CN201010234868XA CN201010234868A CN101917017A CN 101917017 A CN101917017 A CN 101917017A CN 201010234868X A CN201010234868X A CN 201010234868XA CN 201010234868 A CN201010234868 A CN 201010234868A CN 101917017 A CN101917017 A CN 101917017A
Authority
CN
China
Prior art keywords
power
voltage
energy
output
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010234868XA
Other languages
English (en)
Other versions
CN101917017B (zh
Inventor
葛宝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201010234868XA priority Critical patent/CN101917017B/zh
Publication of CN101917017A publication Critical patent/CN101917017A/zh
Application granted granted Critical
Publication of CN101917017B publication Critical patent/CN101917017B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种单级升/降压储能型光伏并网发电控制***,包括:相互相连的储能型功率变换主电路和控制***,所述储能型功率变换主电路包括相互连接的光伏电池、电感和电容电路网络、储能电池以及三相逆变器;所述控制***用于对所述储能型功率变换主电路进行所述储能电池的充放电管理、所述光伏电池的最大功率跟踪与限值控制以及所述三相逆变器的输出有功和无功功率的闭环控制。本发明通过单级功率变换完成升/降压、逆变和储能,以较简的结构实现最小逆变器容量,确保电网得到平稳功率,可最大限度地收集太阳能,改善发电效率。实现无功补偿、电力调峰控制等,改善电网质量。

Description

单级升/降压储能型光伏并网发电控制***
技术领域
本发明涉及光伏发电技术领域,尤其涉及一种单级升/降压储能型光伏并网发电控制***。
背景技术
传统上的电能主要以火力发电为主,但是其化石燃料非常有限,越来越少,甚至可能枯竭,价格则越来越昂贵;而且,燃烧化石燃料产生大量污染,对生存环境造成严重危害。2009年12月7日在丹麦首都哥本哈根举行了***气候变化大会,体现了世界对环境的关注,节能减排、利用可再生新能源已经受到足够关注,并步入人类日常生活。
光伏发电是颇具前景的新能源发电之一,主要包括独立发电***和并网发电***两类,并网型光伏发电是当今发展的主流趋势[谢建,马勇刚,廖华,苏庆益,李景天,杨丽娟,太阳能电池及其应用技术讲座(五)光伏发电***,《可再生能源》,第25卷,第5期,2007年10月,页码117-120]。
功率变换器在光伏发电中担负着重要角色,是连接光伏电池与电网(或用户)、有效传递能量的桥梁,其可靠性、效率与费用对整个光伏发电***至关重要。
应用于光伏发电***中的功率变换器拓扑结构,具有两级或单级、有变压器或无变压器的特点。单级式结构如图1a所示[吴理博,赵争鸣,刘建政,王健,袁立强,具有无功补偿功能的单级式三相光伏并网***,《电工技术学报》,第21卷,第1期,2006年1月,页码28-32],具有紧凑、低费用、高效率和高可靠性特点。但是,这种单级功率变换器只具有降压功能,而且一块光伏电池板输出电压较低(典型值为12V,24V,或48V),受光线辐射、尤其是温度变化的影响,输出电压宽范围变化。为此,传统单级式的逆变器容量偏大,以适应光伏电池电压的宽范围变化;为了满足并网电压要求,在逆变器输出与电网间连接一个低频升压变压器,导致***体积庞大、效率降低、高噪声和高费用。不采用变压器时,则将若干光伏电池板串联,以得到一个较高的直流电压(比电网电压略高),串联的光伏电池在局部阴影时存在较大功率损失和热斑问题。两级式结构如图1b所示[程军照,吴夕科,李澍森,左文霞,采用Boost的两级式光伏发电并网逆变***,《高电压技术》,第35卷,第8期,2009年8月,页码2048-2052],其应用DC/DC变换器,将宽范围变化的光伏电池输出电压升到一个恒定的期望值,逆变器的KVA定额最小,也无需变压器。但是,DC/DC变换器将使***费用增加,效率降低。
光伏电池产生的功率受辐射和温度影响,所以光伏发电***输出的功率与天气、季节相关,具有不确定性。随机波动的功率对电网有负面影响,尽管目前尚无导致严重电网失败的案例,但是随着太阳能电站数量、容量的扩大,这个问题将日益突出,寻求解决方案刻不容缓。另一方面,用电消耗也随季节和人类生活***稳的功率,从而最小化或消除光伏发电***对电网的负面影响。另外,储能型光伏并网发电***还能实现一些重要的辅助功能,诸如无功补偿、电力调峰控制等,使电网更可靠。但是,现有的方案基于传统单级或两级功率变换器,体现有各自的不足;为了有效管理储能电池的充放电,还额外引入双向DC/DC变换器,增加了硬件费用和控制的复杂度,效率将降低。
发明内容
本发明的目的在于提供一种单级升/降压储能型光伏并网发电控制***,基于本发明,可以实现单级功率变换完成升/降压、逆变和储能,并且,以较简的结构实现最小逆变器容量,确保电网得到平稳功率,可最大限度地收集太阳能,改善发电效率以及实现无功补偿、电力调峰控制等,改善电网质量。
本发明提供了一种单级升/降压储能型光伏并网发电控制***,它包括:储能电池充放电管理单元、最大功率跟踪与限值控制单元、光伏电池功率计算单元、调节器、前馈控制单元、功率闭环控制单元、逆变器输出有功和无功功率计算单元、d-q轴电压电流分量计算单元、3相电压和电流测量单元、d-q轴电流闭环控制单元、SPWM调制单元、储能型功率变换主电路和储能电池电压和电流测量单元。
其中,储能型功率变换主电路包括:储能电池,3相逆变器,具有反并联二极管的开关管S、电解电容C1、C2和C3,电感L1和L2,输出滤波电感Lf和电容Cf,光伏电池与串联二极管,电网;其连接方式为:储能电池与电容C2并联,跨接于开关管S的发射极和3相逆变器正极间,且电容C2及储能电池的正极与3相逆变器正极相连;开关管S的集电极与电容C1正极、电感L2相连;电感L2的另一端连接于3相逆变器正极;电容C1的负极与3相逆变器负极相连;电感L1的一端与电容C3的正极相连,另一端与电容C2的负极相连;光伏电池串联二极管后与电容C3并联,且二极管的阴极与电容C3的正极相连,电容C3的负极与3相逆变器的负极相连;3相逆变器输出经过LC滤波器后并入电网。
具有反并联二极管的开关管S,电解电容C1和C2,电感L1和L2,构成该储能型功率变换主电路的电感和电容电路网络。
控制***的连接方式为:储能电池充放电管理单元通过储能电池电压和电流测量单元,获取储能电池的电压和电流,评估储能电池当前的状态,结合用户功率需求,确定并网输出有功和无功功率数值和光伏功率限值,通过对储能电池的充放电管理,在储能电池允许的条件下,一方面满足电网需求,另一方面最大可能地获取太阳能发电功率;从储能型功率变换主电路,通过3相电压和电流测量单元,测取逆变器输出的3相电压和电流并输入给d-q轴电压电流分量计算单元;d-q轴电压电流分量计算单元输出d-q轴电压电流分量,一方面提供给逆变器输出有功和无功功率计算单元,用于计算逆变器输出有功和无功功率,另一方面反馈给d-q轴电流闭环控制单元;逆变器输出有功和无功功率反馈给功率闭环控制单元,储能电池充放电管理单元产生的期望输出有功和无功功率值作为功率闭环控制单元的给定;在功率闭环控制单元内,将给定功率与反馈功率做差,经过调节器控制;功率闭环控制单元产生d-q轴电流期望值,输入给d-q轴电流闭环控制单元,与反馈的d-q轴电流分量综合,得到3相逆变器的期望输出电压信号;3相期望输出电压信号综合直通占空比信号D,经过SPWM调制单元,输出PWM驱动信号给储能型功率变换主电路;储能电池充放电管理单元产生光伏电池输出功率限值,输入给最大功率跟踪与限值控制单元,用于光伏电池最大功率跟踪与限值控制的上限;光伏电池功率计算单元根据光伏电池的电流和端电压,计算光伏电池的实际输出功率,输入给最大功率跟踪与限值控制单元,进行最大功率跟踪控制,直到达到上限;最大功率跟踪过程中,产生光伏电池期望端电压V* in,其一方面通过前馈控制单元产生直通占空比初始值D0,另一方面与光伏电池实际的端电压Vin求差,电压差经过调节器后得到直通占空比的补偿量d;补偿量d和初始值D0求和,得到总的直通占空比D;PWM驱动信号用于驱动3相逆变器和开关管S;3相逆变器各桥臂的直通占空比D,用于控制光伏电池的输出功率,同时控制输入电压Vin到直流母线峰值电压Vpeak的泵升电压比;开关管S的状态由直通状态控制,3相逆变器电路直通时S关闭,否则S导通;对3相逆变器进行脉宽调制,控制其输出电压和电流,进而控制3相逆变器输出的有功和无功功率;储能电池功率为光伏电池功率与逆变器输出功率的差。
可见,该***以单级功率变换的形式同时实现了升/降压、逆变与能量存储,可并网或独立运行,适应于光伏电池电压的宽范围变化。避免了以往单级逆变器设计容量过大的弊端,无需两级式***中额外的DC/DC变换器。而且,无需额外的功率电路即可有效地管理储能电池的充放电,简化了***硬件。该***中逆变器允许电路直通,不会由此导致电路损坏,增强了***可靠性,无需死区则改善了输出电流波形。
该***中,储能电池实现能量缓冲或削峰填谷的作用,即:当光伏电池提供的功率不足以电网(或用户)需求时,储能电池将提供能量,补充功率差;当光伏电池产生的功率大于电网(或用户)需求时,多余的功率将输入储能电池,进行能量存储。储能电池的充放电管理,通过控制光伏电池和逆变器的输出功率实现,既能最大限度地利用光伏输出功率,又能合理地实现电池的最小损耗和最长寿命。由于储能电池的作用,电网将得到平稳的功率,消除了太阳能发电功率的随机波动;也实现了最大限度地收集太阳能,改善发电效率。可实现无功补偿、电力调峰控制等,改善电网质量。
相对于现有技术而言,本发明具有如下优势:
(1)消除了光伏发电***注入电网功率的随机波动,提高了供电质量;
(2)适应于光伏电池输出电压的宽范围变化;
(3)可实现无功补偿、电力调峰控制等,改善电网质量;
(4)可最大限度地收集太阳能,***效率高;
(5)采用单级功率变换实现升/降压、逆变和能量存储,可避免以往单级逆变器设计容量过大的弊端,也无需两级式***中额外的DC/DC变换器及现有储能***中额外的功率电路,降低了复杂性和成本,效率较高;
(6)***可靠性较高。
附图说明
图1a为现有的光伏并网发电功率主电路单级结构图;
图1b为现有的光伏并网发电功率主电路两级结构图;
图2为本发明储能型光伏并网发电控制***示意图;
图3a为本发明控制***在光伏电池功率变化、逆变器输出有功功率恒定时的储能电池端电压及其SOC仿真结果;
图3b为本发明控制***在光伏电池功率变化、逆变器输出有功功率恒定时的光伏电池端电压及两电容电压之和仿真结果;
图3c为本发明控制***在光伏电池功率变化、逆变器输出有功功率恒定时的两电感电流仿真结果;
图3d为本发明控制***在光伏电池功率变化、逆变器输出有功功率恒定时的逆变器输出相电压和相电流仿真结果;
图3e为本发明控制***在光伏电池功率变化、逆变器输出有功功率恒定时的逆变器输出相电压和相电流局部放大波形;
图3f为本发明控制***在光伏电池功率变化、逆变器输出有功功率恒定时的逆变器直流母线电压和直通占空比仿真结果;
图4a为本发明控制***在光伏电池输出功率恒定、逆变器输出有功功率变化时的储能电池端电压及其SOC仿真结果;
图4b为本发明控制***在光伏电池输出功率恒定、逆变器输出有功功率变化时的光伏电池端电压及两电容电压之和仿真结果;
图4c为本发明控制***在光伏电池输出功率恒定、逆变器输出有功功率变化时的两电感电流仿真结果;
图4d为本发明控制***在光伏电池输出功率恒定、逆变器输出有功功率变化时的逆变器输出相电压和相电流仿真结果;
图4e为本发明控制***在光伏电池输出功率恒定、逆变器输出有功功率变化时的逆变器输出相电压和相电流局部放大波形;
图4f为本发明控制***在光伏电池输出功率恒定、逆变器输出有功功率变化时的逆变器直流母线电压和直通占空比仿真结果。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图2所示,本发明的一种单级升/降压储能型光伏并网发电控制***包括:储能电池充放电管理单元,最大功率跟踪与限值控制单元,光伏电池功率计算单元,调节器,前馈控制单元,功率闭环控制单元,逆变器输出有功和无功功率计算单元,d-q轴电压电流分量计算单元,三相电压和电流测量单元,d-q轴电流闭环控制单元,SPWM调制单元,储能型功率变换主电路,储能电池电压和电流测量单元;其中,储能型功率变换主电路包括:储能电池,三相逆变器,具有反并联二极管的开关管S,电解电容C1、C2和C3,电感L1和L2,输出滤波电感Lf和电容Cf,光伏电池与串联二极管,电网;其连接方式为:储能电池与电容C2并联,跨接于开关管S的发射极和三相逆变器正极间,且电容C2及储能电池的正极与三相逆变器正极相连;开关管S的集电极与电容C1正极、电感L2相连;电感L2的另一端连接于三相逆变器正极;电容C1的负极与三相逆变器负极相连;电感L1的一端与电容C3的正极相连,另一端与电容C2的负极相连;光伏电池串联二极管后与电容C3并联,且二极管的阴极与电容C3的正极相连,电容C3的负极与三相逆变器的负极相连;三相逆变器输出经过LC滤波器后并入电网。
具有反并联二极管的开关管S,电解电容C1和C2,电感L1和L2,构成该储能型功率变换主电路的电感和电容电路网络。
对于该储能型功率变换主电路,逆变器各桥臂可以直通,使其具有升压功能,通过控制其直通占空比,控制从输入电压Vin到直流母线峰值电压Vpeak的泵升电压比,它们具有关系式
V peak = 1 1 - 2 D V in
式中,D为直通占空比。开关管S的状态由直通状态控制,逆变器电路直通时S关闭,否则S导通;逆变器的输出电压和电流通过逆变器脉宽调制实现。可见,该功率电路以单级功率变换的形式,同时实现升/降压、逆变和储能,适应于光伏电池电压的宽范围变化,避免了以往单级逆变器设计容量过大的弊端,也无需两级式***中额外的DC/DC变换器,同时也避免了现有储能***中额外的功率电路。逆变器允许电路直通,不会由此导致电路损坏,增强了***可靠性,无需死区则改善了输出电流波形。
如图2所示,本发明控制***的连接方式为:储能电池充放电管理单元通过储能电池电压和电流测量单元,获取储能电池的电压和电流,评估储能电池当前的状态,结合用户功率需求,确定并网输出有功和无功功率数值和光伏功率限值,通过对储能电池的充放电管理,在储能电池允许的条件下,一方面满足电网需求,另一方面最大可能地获取太阳能发电功率;从储能型功率变换主电路,通过三相电压和电流测量单元,测取逆变器输出的三相电压和电流并输入给d-q轴电压电流分量计算单元;d-q轴电压电流分量计算单元输出d-q轴电压电流分量,一方面提供给逆变器输出有功和无功功率计算单元,用于计算逆变器输出有功和无功功率,另一方面反馈给d-q轴电流闭环控制单元,用于控制并网逆变器三相电流的d-q轴分量;逆变器输出有功和无功功率反馈给功率闭环控制单元,储能电池充放电管理单元产生的期望输出有功和无功功率值作为功率闭环控制单元的给定,二者取差,经过比例积分调节器后,产生d-q轴电流分量期望值;功率闭环控制单元产生的d-q轴电流期望值,输入给d-q轴电流闭环控制单元,与反馈的d-q轴电流分量综合,产生三相逆变器的期望输出电压信号;三相期望输出电压信号综合直通占空比信号D,经过SPWM调制单元,输出PWM驱动信号给储能型功率变换主电路;储能电池充放电管理单元产生光伏电池输出功率限值,输入给最大功率跟踪与限值控制单元,用于光伏电池最大功率跟踪与限值控制的上限;光伏电池功率计算单元根据光伏电池的电流ipv和端电压Vin,计算光伏电池的实际输出功率,输入给最大功率跟踪与限值控制单元,进行最大功率跟踪控制,直到达到上限;最大功率跟踪过程中,产生光伏电池期望端电压V* in,其一方面通过前馈控制单元产生直通占空比初始值D0,另一方面与光伏电池实际的端电压Vin求差,电压差经过调节器后得到直通占空比的补偿量d;补偿量d和初始值D0求和,得到总的直通占空比D;PWM驱动信号用于驱动三相逆变器和开关管S;三相逆变器各桥臂的直通占空比D,用于控制光伏电池的输出功率,同时控制输入电压Vin到直流母线峰值电压Vpeak的泵升电压比;另一方面,PWM驱动信号对三相逆变器进行脉宽调制,控制其输出电压和电流,进而控制三相逆变器输出的有功和无功功率。
储能电池功率为光伏电池功率与逆变器输出功率的差,实现能量缓冲或削峰填谷的作用。根据光伏电池产生功率和注入电网功率的情况,储能电池将进行充电或放电,即:1)当光伏电池产生功率大于注入电网功率时,储能电池充电,充电功率为二者的差功率;2)当光伏电池产生功率小于注入电网功率时,储能电池放电,放电功率为二者的差功率;3)当光伏电池产生功率等于注入电网功率时,储能电池不充电也不放电。
应用上述实施方案,进行仿真建模,图3和图4给出了一些原理性仿真结果,图中的符号分别为:Vb表示储能电池端电压,单位为伏特(V);SOC表示储能电池充电状态,用百分数(%)表示;Time表示时间,单位为秒(s);Vc1表示电容C1的端电压,Vc2表示电容C2的端电压,Vc1+Vc2表示电容C1和C2端电压的和,单位均为伏特(V);Vin表示光伏电池端电压,单位为伏特(V);iL1和iL2分别为电感L1和L2的电流,单位为安培(A);Va表示逆变器输出经滤波器后的a相电压,单位为伏特(V);ia表示逆变器输出到电网的a相电流,单位为安培(A);Vpn表示直流母线电压,单位为伏特(V);D表示直通占空比。
图3对应的运行条件为:控制光伏电池端电压恒定,逆变器输出有功功率恒定、无功功率为零。参数为:控制Vin为280V,在0-10s期间光伏电池输出功率5375W,在10-20s期间光伏电池输出功率2800W,在20-22s期间光伏电池输出功率4087.5W;在0-22s期间逆变器输出有功功率4087.5W;储能电池初始SOC为35%。图3a为0-22s期间储能电池的端电压Vb及SOC响应,由于在0-10s期间充入储能电池的功率为1287.5W,使得储能电池端电压Vb与SOC增加;在10-20s期间储能电池则以功率1287.5W放电,使得储能电池端电压Vb与SOC减小;在20-22s期间,由于光伏电池功率全部输出给电网,储能电池不充电也不放电,使得其端电压Vb与SOC保持恒定。图3b为***运行期间电容C1与C2的端电压和,及光伏电池端电压Vin响应。电容C1与C2的端电压和等于直流母线峰值电压。可见,即使光伏电池功率变化,逆变器输出功率不变,但由于该***的升压功能和储能电池的能量缓冲作用,电容C1与C2的端电压和(Vc1+Vc2,即,直流母线峰值电压)被稳定地泵升于380V。光伏电池端电压的闭环控制使得其稳定于280V。随着光伏电池功率的变化,其输出电流iL1分别为19.2A、10A和14.6A,电感电流iL2也变化,如图3c所示。图3d为逆变器输出到电网的a相电压和电流波形,图3e为局部放大图,分别展示了9.9s-10.1s和19.9s-20.1s期间的a相电压和电流。可以发现,整个运行期间a相电压和电流保持恒定且同相位,功率因数为1,输出有功功率恒定、无功功率为零。图3f为***运行期间的直流母线电压Vpn和直通占空比D的波形。由于逆变器存在直通状态,在直通期间直流母线电压为零,非直通期间直流母线电压(即直流母线峰值电压)为电容C1与C2的端电压和,直通占空比D的波形则显示了光伏电池端电压闭环调节的过程。
图4对应的运行条件为:光伏电池端电压Vin被控制于280V,且输出恒定功率2800W,逆变器输出有功功率变化、无功功率为零。在10s前,逆变器输出有功功率1512.5W,在10-20s期间逆变器输出有功功率4087.5W,在20-22s期间逆变器输出有功功率2800W,储能电池的初始SOC为35%。图4a为0-22s期间储能电池的端电压Vb及SOC响应,由于在0-10s期间充入储能电池的功率为1287.5W,使得储能电池端电压Vb与SOC增加;在10-20s期间储能电池则以功率1287.5W放电,使得储能电池端电压Vb与SOC减小;在20-22s期间,由于光伏电池功率全部输出给电网,储能电池不充电也不放电,使得其端电压Vb与SOC保持恒定。图4b为***运行期间电容C1与C2的端电压和,及光伏电池端电压Vin的响应。电容C1与C2的端电压和等于直流母线峰值电压。可见,即使光伏电池功率不变,逆变器输出功率变化很大,但由于该***的升压功能和储能电池的能量缓冲作用,电容C1与C2的端电压和(Vc1+Vc2,即,直流母线峰值电压)被稳定地泵升于380V。光伏电池端电压的闭环控制使得其稳定于280V。由于光伏电池输出功率恒定,其端电压被控制为恒定,则其输出电流iL1恒定,如图4c所示,而逆变器输出功率的变化导致电感L2的电流iL2变化。图4d为逆变器输出到电网的a相电压和电流波形,图4e为局部放大图,分别展示了9s-9.1s、19s-19.1s和21.8s-21.9s期间的a相电压和电流。可以发现,整个运行期间a相电压保持恒定且与a相电流同相位,功率因数为1,逆变器输出无功功率为零。但是,a相电流却有变化,在0-10s期间最小,在10-20s期间最大,在20-22s期间居中,反应到逆变器输出的有功功率为:0-10s期间输出功率最小,10-20s期间输出功率最大,20-22s期间输出功率居中。图4f为***运行期间的直流母线电压Vpn和直通占空比D的波形。由于逆变器存在直通状态,在直通期间直流母线电压为零,非直通期间直流母线电压(即直流母线峰值电压)为电容C1与C2的端电压和,直通占空比D的波形则显示了光伏电池端电压闭环调节的过程。
以上对本发明所提供的一种单级升/降压储能型光伏并网发电控制***进行详细介绍,本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (3)

1.一种单级升/降压储能型光伏并网发电控制***,其特征在于,包括:
相互相连的储能型功率变换主电路和控制***,所述储能型功率变换主电路包括相互连接的光伏电池、电感和电容电路网络、储能电池以及三相逆变器;
所述控制***用于对所述储能型功率变换主电路进行所述储能电池的充放电管理、所述光伏电池的最大功率跟踪与限值控制以及所述三相逆变器的输出有功和无功功率的闭环控制。
2.根据权利要求1所述的光伏并网发电控制***,其特征在于,所述储能型功率变换主电路还包括:
具有反并联二极管的开关管S、电解电容C1、C2和C3、电感L1和L2、由输出滤波电感Lf和电容Cf组成的LC滤波器以及串联二极管;其中,
所述储能电池与所述电容C2并联,跨接于所述开关管S的发射极和所述三相逆变器正极间,且所述电容C2及所述储能电池的正极与所述三相逆变器正极相连;所述开关管S的集电极与所述电容C1正极、所述电感L2相连;所述电感L2的另一端连接于所述三相逆变器正极;所述电容C1的负极与所述三相逆变器负极相连;所述电感L1的一端与所述电容C3的正极相连,另一端与所述电容C2的负极相连;所述光伏电池串联二极管后与所述电容C3并联,且所述二极管的阴极与所述电容C3的正极相连,所述电容C3的负极与所述三相逆变器的负极相连;所述三相逆变器输出经过所述LC滤波器后并入电网。
3.根据权利要求2所述的光伏并网发电控制***,其特征在于,所述控制***包括:储能电池充放电管理单元、最大功率跟踪与限值控制单元、光伏电池功率计算单元、调节器、前馈控制单元、功率闭环控制单元、逆变器输出有功和无功功率计算单元、d-q轴电压电流分量计算单元、三相电压和电流测量单元、d-q轴电流闭环控制单元、SPWM调制单元、储能电池电压和电流测量单元;其中,
所述储能电池充放电管理单元通过所述储能电池电压和电流测量单元,获取储能电池的电压和电流,评估所述储能电池当前的状态,结合用户功率需求,确定并网输出有功和无功功率数值和光伏功率限值;通过对储能电池的充放电管理,在储能电池允许的条件下,满足电网需求以及最大可能地获取太阳能发电功率;
从所述储能型功率变换主电路,通过所述三相电压和电流测量单元,测取所述逆变器输出的三相电压和电流并输入给d-q轴电压电流分量计算单元;d-q轴电压电流分量计算单元输出d-q轴电压电流分量,以提供给所述逆变器输出有功和无功功率计算单元,用于计算逆变器输出有功和无功功率,以及反馈给d-q轴电流闭环控制单元;
逆变器输出有功和无功功率反馈给功率闭环控制单元,储能电池充放电管理单元产生的期望输出有功和无功功率值作为功率闭环控制单元的给定;功率闭环控制单元产生d-q轴电流期望值,输入给d-q轴电流闭环控制单元,与反馈的d-q轴电流分量综合,得到三相逆变器的期望输出电压信号;三相期望输出电压信号综合直通占空比信号D,经过SPWM调制单元,输出PWM驱动信号给储能型功率变换主电路;
储能电池充放电管理单元产生光伏电池输出功率限值,输入给最大功率跟踪与限值控制单元,用于光伏电池最大功率跟踪与限值控制的上限;
光伏电池功率计算单元根据光伏电池的电流和端电压,计算光伏电池的实际输出功率,输入给最大功率跟踪与限值控制单元,进行最大功率跟踪控制,直到达到上限;
最大功率跟踪过程中,产生光伏电池期望端电压V* in,用于通过前馈控制单元产生直通占空比初始值D0,以及与光伏电池实际的端电压Vin求差,电压差经过调节器后得到直通占空比的补偿量d;补偿量d和初始值D0求和,得到总的直通占空比D;PWM驱动信号用于驱动三相逆变器和开关管S;
三相逆变器各桥臂的直通占空比D,用于控制光伏电池的输出功率,同时控制输入电压Vin到直流母线峰值电压Vpeak的泵升电压比;开关管S的状态由直通状态控制,三相逆变器电路直通时S关闭,否则S导通;对三相逆变器进行脉宽调制,控制其输出电压和电流,进而控制三相逆变器输出的有功和无功功率;储能电池功率为光伏电池功率与逆变器输出功率的差。
CN201010234868XA 2010-07-21 2010-07-21 单级升/降压储能型光伏并网发电控制*** Expired - Fee Related CN101917017B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010234868XA CN101917017B (zh) 2010-07-21 2010-07-21 单级升/降压储能型光伏并网发电控制***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010234868XA CN101917017B (zh) 2010-07-21 2010-07-21 单级升/降压储能型光伏并网发电控制***

Publications (2)

Publication Number Publication Date
CN101917017A true CN101917017A (zh) 2010-12-15
CN101917017B CN101917017B (zh) 2012-12-12

Family

ID=43324445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010234868XA Expired - Fee Related CN101917017B (zh) 2010-07-21 2010-07-21 单级升/降压储能型光伏并网发电控制***

Country Status (1)

Country Link
CN (1) CN101917017B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088192A (zh) * 2011-03-02 2011-06-08 中南大学 单相单级电流型光伏并网逆变器及其控制方法
CN102185533A (zh) * 2011-05-23 2011-09-14 北京交通大学 储能型准-z源光伏发电控制***和控制方法
CN102231534A (zh) * 2011-07-06 2011-11-02 山东大学 直流侧无电压传感器控制策略的两级单相光伏并网***及控制方法
CN102244391A (zh) * 2011-07-12 2011-11-16 华北电力大学 基于锂电池和超级电容的储能并网电路及其控制方法
CN102270882A (zh) * 2011-02-24 2011-12-07 上海瑞华(集团)有限公司 一种储能控制***
CN102394496A (zh) * 2011-07-21 2012-03-28 浙江大学 一种分布式发电***和微电网的电能质量综合评估方法
CN102570876A (zh) * 2010-12-28 2012-07-11 欧利生电气株式会社 单相电压型交直流变换装置以及互连***
CN102611138A (zh) * 2012-03-20 2012-07-25 湖南大学 一种无延时的单相光伏并网功率调节方法
CN102611297A (zh) * 2012-03-14 2012-07-25 电子科技大学 一种抑制光伏并网逆变器最大功率点波动的控制方法
CN102709940A (zh) * 2012-05-22 2012-10-03 北京交通大学 一种储能型准-z源单相光伏发电***的设计方法
CN102751739A (zh) * 2012-07-02 2012-10-24 上海电力学院 一种防灾型光伏发电***
CN103138286A (zh) * 2011-12-05 2013-06-05 上海航天有线电厂 一种基于数字控制技术的三相逆变器装置
CN103457292A (zh) * 2013-09-05 2013-12-18 孙祯 一种太阳能并网发电***及其控制方法
CN103503267A (zh) * 2011-05-10 2014-01-08 Abb研究有限公司 一种控制器中控制动态补偿器的方法、控制器、计算机程序和计算机程序产品
CN104600725A (zh) * 2013-10-31 2015-05-06 西门子公司 光伏串联补偿***
CN104953614A (zh) * 2015-06-02 2015-09-30 航天科工海鹰集团有限公司 分布式电源并网控制***
CN106451544A (zh) * 2016-10-25 2017-02-22 中国科学院广州能源研究所 一种光储联合的三电平并网***控制方法
CN106786804A (zh) * 2017-03-24 2017-05-31 阳光电源股份有限公司 光储混合并网发电***输出功率调控方法和能量管理***
CN106849179A (zh) * 2017-04-18 2017-06-13 阳光电源股份有限公司 光伏发电控制方法和光伏电站
CN108110802A (zh) * 2017-12-29 2018-06-01 国网甘肃省电力公司电力科学研究院 一种并网功率控制方法
CN109067195A (zh) * 2018-10-11 2018-12-21 华北水利水电大学 一种带储能装置的电力电子变压器
CN113162084A (zh) * 2020-12-09 2021-07-23 江苏时代新能源科技有限公司 功率变换器的控制方法、装置及存储介质
CN114243751A (zh) * 2021-11-09 2022-03-25 长春吉电能源科技有限公司 一种电力电子化光储融合并网***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050117375A1 (en) * 2002-02-22 2005-06-02 Renjie Xu Modular ac voltage supply and algorithm for controlling the same
JP2008193817A (ja) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置
CN101345500A (zh) * 2008-05-16 2009-01-14 广东志成冠军集团有限公司 具有并网发电、独立发电及ups功能的光伏发电***
CN101656422A (zh) * 2009-09-25 2010-02-24 山东昂立天晟光伏科技有限公司 一种供电变电所用太阳能光伏发电***
CN101697421A (zh) * 2009-10-23 2010-04-21 湖南大学 微电网光伏微电源控制***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050117375A1 (en) * 2002-02-22 2005-06-02 Renjie Xu Modular ac voltage supply and algorithm for controlling the same
JP2008193817A (ja) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置
CN101345500A (zh) * 2008-05-16 2009-01-14 广东志成冠军集团有限公司 具有并网发电、独立发电及ups功能的光伏发电***
CN101656422A (zh) * 2009-09-25 2010-02-24 山东昂立天晟光伏科技有限公司 一种供电变电所用太阳能光伏发电***
CN101697421A (zh) * 2009-10-23 2010-04-21 湖南大学 微电网光伏微电源控制***

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570876B (zh) * 2010-12-28 2014-12-10 欧利生电气株式会社 单相电压型交直流变换装置以及互连***
US9712075B2 (en) 2010-12-28 2017-07-18 Origin Electric Company, Limited Method of controlling single-phase voltage source AC/DC converter and interconnection system
CN102570876A (zh) * 2010-12-28 2012-07-11 欧利生电气株式会社 单相电压型交直流变换装置以及互连***
CN102270882A (zh) * 2011-02-24 2011-12-07 上海瑞华(集团)有限公司 一种储能控制***
CN102088192A (zh) * 2011-03-02 2011-06-08 中南大学 单相单级电流型光伏并网逆变器及其控制方法
CN103503267A (zh) * 2011-05-10 2014-01-08 Abb研究有限公司 一种控制器中控制动态补偿器的方法、控制器、计算机程序和计算机程序产品
CN102185533B (zh) * 2011-05-23 2013-05-15 北京交通大学 储能型准-z源光伏发电控制***和控制方法
CN102185533A (zh) * 2011-05-23 2011-09-14 北京交通大学 储能型准-z源光伏发电控制***和控制方法
CN102231534B (zh) * 2011-07-06 2013-07-10 山东大学 直流侧无电压传感器控制策略的两级单相光伏并网***及控制方法
CN102231534A (zh) * 2011-07-06 2011-11-02 山东大学 直流侧无电压传感器控制策略的两级单相光伏并网***及控制方法
CN102244391A (zh) * 2011-07-12 2011-11-16 华北电力大学 基于锂电池和超级电容的储能并网电路及其控制方法
CN102394496A (zh) * 2011-07-21 2012-03-28 浙江大学 一种分布式发电***和微电网的电能质量综合评估方法
CN102394496B (zh) * 2011-07-21 2013-12-18 浙江大学 一种分布式发电***和微电网的电能质量综合评估方法
CN103138286A (zh) * 2011-12-05 2013-06-05 上海航天有线电厂 一种基于数字控制技术的三相逆变器装置
CN102611297A (zh) * 2012-03-14 2012-07-25 电子科技大学 一种抑制光伏并网逆变器最大功率点波动的控制方法
CN102611297B (zh) * 2012-03-14 2015-04-08 电子科技大学 一种抑制光伏并网逆变器最大功率点波动的控制方法
CN102611138A (zh) * 2012-03-20 2012-07-25 湖南大学 一种无延时的单相光伏并网功率调节方法
CN102709940A (zh) * 2012-05-22 2012-10-03 北京交通大学 一种储能型准-z源单相光伏发电***的设计方法
CN102709940B (zh) * 2012-05-22 2014-07-30 北京交通大学 一种储能型准-z源单相光伏发电***的设计方法
CN102751739A (zh) * 2012-07-02 2012-10-24 上海电力学院 一种防灾型光伏发电***
CN103457292A (zh) * 2013-09-05 2013-12-18 孙祯 一种太阳能并网发电***及其控制方法
CN104600725A (zh) * 2013-10-31 2015-05-06 西门子公司 光伏串联补偿***
CN104600725B (zh) * 2013-10-31 2017-09-29 西门子公司 光伏串联补偿***
CN104953614A (zh) * 2015-06-02 2015-09-30 航天科工海鹰集团有限公司 分布式电源并网控制***
CN104953614B (zh) * 2015-06-02 2018-05-11 航天科工海鹰集团有限公司 分布式电源并网控制***
CN106451544A (zh) * 2016-10-25 2017-02-22 中国科学院广州能源研究所 一种光储联合的三电平并网***控制方法
CN106451544B (zh) * 2016-10-25 2019-05-24 中国科学院广州能源研究所 一种光储联合的三电平并网***控制方法
CN106786804A (zh) * 2017-03-24 2017-05-31 阳光电源股份有限公司 光储混合并网发电***输出功率调控方法和能量管理***
CN106849179A (zh) * 2017-04-18 2017-06-13 阳光电源股份有限公司 光伏发电控制方法和光伏电站
CN106849179B (zh) * 2017-04-18 2020-07-07 阳光电源股份有限公司 光伏发电控制方法和光伏电站
CN108110802A (zh) * 2017-12-29 2018-06-01 国网甘肃省电力公司电力科学研究院 一种并网功率控制方法
CN108110802B (zh) * 2017-12-29 2020-07-03 国网甘肃省电力公司电力科学研究院 一种并网功率控制方法
CN109067195A (zh) * 2018-10-11 2018-12-21 华北水利水电大学 一种带储能装置的电力电子变压器
CN113193760A (zh) * 2018-10-11 2021-07-30 华北水利水电大学 一种带储能装置的电力电子变压器
CN113162084A (zh) * 2020-12-09 2021-07-23 江苏时代新能源科技有限公司 功率变换器的控制方法、装置及存储介质
CN113162084B (zh) * 2020-12-09 2023-11-14 江苏时代新能源科技有限公司 功率变换器的控制方法、装置及存储介质
CN114243751A (zh) * 2021-11-09 2022-03-25 长春吉电能源科技有限公司 一种电力电子化光储融合并网***

Also Published As

Publication number Publication date
CN101917017B (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
CN101917017B (zh) 单级升/降压储能型光伏并网发电控制***
CN101917016B (zh) 储能型级联多电平光伏并网发电控制***
CN102185533B (zh) 储能型准-z源光伏发电控制***和控制方法
Jain et al. An integrated hybrid power supply for distributed generation applications fed by nonconventional energy sources
Verma et al. Grid to vehicle and vehicle to grid energy transfer using single-phase bidirectional AC-DC converter and bidirectional DC-DC converter
CN103441566B (zh) 一种市电、光伏电池和储能电池协同供电***及方法
CN103401463B (zh) 直流母线电容减小的微型光伏并网逆变器及控制方法
Liu et al. Cascade dual-boost/buck active-front-end converter for intelligent universal transformer
CN105471238A (zh) 一种直流母线电压纹波补偿方法和光伏逆变器
CN204886384U (zh) 小功率家用光伏发电储能一体终端
CN203387430U (zh) 直流母线电容优化的微型光伏并网逆变器
CN207269198U (zh) 一种基于电容串并联结构的高增益双输入直流变换器
CN203352246U (zh) 一种基于超级电容储能器的小型光伏控制器
CN103312136B (zh) 一种工频纹波电流的抑制方法及其装置
CN110912245A (zh) 一种三端口集成式光伏储能变换器
CN103312168A (zh) 双向双输入zeta直流变换器及其功率分配方法
CN105186919A (zh) 非隔离并网变换器、空调***及变换器控制方法
CN103296879A (zh) 双向双输入cuk直流变换器及其功率分配方法
CN203574386U (zh) 多电平多端口发电储能混合装置
CN105356744A (zh) 一种空间用交错并联双向直流斩波电路拓扑
CN103312160A (zh) 双向双输入cuck/sepic直流变换器及其功率分配方法
Monny et al. Electric vehicle charging station with solar-grid interactive system for maximum power exchange
CN205017230U (zh) 非隔离并网变换器及空调***
Bharatiraja et al. A stand alone building integrated PV tied bidirectional capability direct DC electric vehicle charging system through Z-source inverter impedance network capacitors
Hosseini et al. Grid-connected three-input PV/FC/Battery power system with active power filter capability

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121212

Termination date: 20150721

EXPY Termination of patent right or utility model