CN101899726B - 一种制备纳米碳纤维的方法 - Google Patents

一种制备纳米碳纤维的方法 Download PDF

Info

Publication number
CN101899726B
CN101899726B CN2010102552573A CN201010255257A CN101899726B CN 101899726 B CN101899726 B CN 101899726B CN 2010102552573 A CN2010102552573 A CN 2010102552573A CN 201010255257 A CN201010255257 A CN 201010255257A CN 101899726 B CN101899726 B CN 101899726B
Authority
CN
China
Prior art keywords
fiber
nano
decomposition
cupric tartrate
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102552573A
Other languages
English (en)
Other versions
CN101899726A (zh
Inventor
简贤
周祚万
吕军
姜曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN2010102552573A priority Critical patent/CN101899726B/zh
Publication of CN101899726A publication Critical patent/CN101899726A/zh
Application granted granted Critical
Publication of CN101899726B publication Critical patent/CN101899726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种制备纳米碳纤维的方法,在催化条件下催化C2H2得到线形和螺旋形纳米碳纤维,包括以下步骤:(a).酒石酸铜粉末分散于陶瓷舟基板载体上,分散于陶瓷小舟基板载体的量的范围是0.5-2.5mg/cm2;(b)装有酒石酸铜粉末的陶瓷小舟放入卧室炉中的石英管中部,控制加热炉温度270℃-390℃,在分解气氛中分解酒石酸铜15-60分钟得到催化剂颗粒;(c).控制反应温度在195℃-274℃,采用乙炔气体为反应物,在催化剂颗粒上原位制备出线形或者螺旋形纳米纤维。采用本发明的手段,通过催化剂前驱体的分解气氛不同,来影响催化剂颗粒的大小、几何形貌,从而催化乙炔得到不同形貌的纳米碳纤维。

Description

一种制备纳米碳纤维的方法
所属技术领域
本发明涉及一种纳米碳纤维材料的制备方法,特别是线形和螺旋形纳米纤维制备方法。
背景技术
螺旋碳纤维自从Davis(1953)发现以来,引起了同行们的广泛关注。这是因为螺旋碳纤维除具有一般碳纤维的性能(低密度、高比强度、耐热性、电热传导、化学稳定性)外,还拥有弹性、耐冲击性、吸波性能和存储氢气等性能,可应用于吸波隐身、能量存储、微机械组件、传感器和电极材料等领域。
目前报道的螺旋碳纤维的螺径有微米和纳米尺度。微米螺旋碳纤维的专利报道如:中国专利(公开号CN 1327093A),其特点是:通过控制C2H2/H2和C2H2/N2的气流量及比例,在700-800℃制备出高弹性的微螺旋状碳纤维;中国专利(公开号CN 101451278A),其特征是:采用化学镀工艺在石墨表面形成镍磷合金层为催化剂,控制C2H2/H2气流量及比例,在600-800℃制备出单、双螺旋炭纤维。
旋管直径为纳米级的螺旋碳纤维国内制备方法主要有:中国专利(公开号CN 1641083A),其特点是:通过电化学模板法和真空溅射使铜催化剂颗粒纳米结构化的方法,在750℃左右催化乙炔制得纳米螺旋碳纤维;中国专利(公开号CN 1517458A),其特征是:采用氢为载气、乙炔为碳源、泡沫镍为催化剂,加碳源的同时加入含硫生长促进剂,在较低温度下制备纳米碳管、纳米纤维或螺旋形碳纤维;(公开号CN 1995503A),其特征是:采用乙炔为碳源、氢气为载气、氮气或氩气为稀释气体、镍板为催化剂、PCl3为助催化剂,在较低温度下制备出螺旋形纳米碳纤维;期刊“carbon”(2003,41:3063-3074)报道崔作林教授课题组在250℃裂解酒石酸铜10分钟得到的纳米铜粉为催化剂,在250-400℃之间催化乙炔制备一种新型螺旋碳纤维。之后高等学校化学学报[2005,26(1):5-8]又报道了该课题组使用纳米铜-镍合金为催化剂,通过乙炔的催化热解制备对称生长的螺旋纳米碳纤维。但是他们制备催化剂过程中需要真空条件或者借助氢电弧等离子法。以上这些方法,需要采用多级步骤,或需要特殊的催化助剂或昂贵的设备,制备纳米螺旋碳纤维的成本较高。
发明内容
鉴于现有技术的以上缺点,本发明的目的是提供一种工艺简单、产量高、低成本制备线形和螺旋形纳米碳纤维的方法。
本发明的目的是通过如下的手段实现的:
一种制备纳米碳纤维的方法,在催化条件下催化C2H2得到纳米碳纤维,在由卧式加热装置和设置在卧式加热装置内并具有外接气源进出口的内置石英管构成的设备内完成所述纳米碳纤维的原位制备,包含以下步骤:
(a).酒石酸铜粉末分散于乙醇中,超声10-30分钟后喷涂在陶瓷小舟上,乙醇挥发后酒石酸铜粉末作为催化剂前驱体均匀分散在陶瓷小舟基板载体上;
(b).将(a)得到的装有酒石酸铜粉末的陶瓷小舟放入直径45mm、长度1300mm的所述石英管中部,然后将石英管放入管状卧式加热炉中,石英管通入选定的分解气氛,加热并控制温度为270℃-390℃,保持15-60分钟,催化剂前驱体分解得到作为催化剂的纳米铜颗粒;
(c).调控管状卧式加热炉温度195℃-274℃,石英管以20-60ml/min流量通入反应物乙炔,30-90分钟后通入终止气体终止反应,通过调控所述分解气氛的成份,制备出线形或者螺旋形纳米碳纤维。
采用本发明的手段,通过催化剂前驱体的分解气氛不同,来影响催化剂颗粒的大小、几何形貌,从而催化乙炔得到不同形貌的纳米碳纤维。本发明可根据需要的纳米碳纤维(线形或螺旋形),来调控催化剂前驱体的分解气氛,主要分为五类:
Figure BSA00000232220300031
上表表明,采用本发明方法,所述常压下分解酒石酸铜的分解气氛选定为氩气、氮气之一时,得到所述目标碳纤维主要为线形纳米纤维;分解气氛选定为乙炔时,得到所述目标碳纤维主要为螺旋形纳米纤维;分解气氛选定为氢气时,制备线形和螺旋形两种混合的纳米纤维。
附图说明
图1A是实施例1制备催化剂的典型扫描电镜图。
图1B是实施例1制备产品的典型扫描电镜图。
图2A是实施例2制备催化剂的典型扫描电镜图。
图2B是实施例2制备产品的典型扫描电镜图。
图3是实施例3制备产品的典型扫描电镜图。
图4是实施例4制备产品的典型扫描电镜图。
图5A是实施例5制备催化剂的典型扫描电镜图。
图5B是实例5制备产品的典型扫描电镜图。
图6是纤维在不同温度下氮气中裂解2h后产物的红外图谱。
图7是螺旋纤维含量为90%的纤维在900℃氮气中裂解4h后的典型扫描电镜图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
所述酒石酸铜为催化剂前驱体,分散于陶瓷舟基板载体的用量范围0.5-2.5mg/cm2。前驱体分解气氛为氩气(99%-99.999%)、氮气(99%-99.99%)、氢气(99.9%-99.99%)或乙炔气(98%-99.9%)中的一种或几种。
实施例1:取40mg酒石酸铜粉末加入到5mL的无水乙醇中,超声10分钟后,转移至陶瓷小舟中;待无水乙醇自动挥发后,酒石酸铜粉末均匀分散在陶瓷舟(底面积16.5cm2)上;把分散有催化剂前驱体的陶瓷舟置于石英管中部,检查气密性并充入氩气(或氮气)150ml/min 20分钟排出空气;将卧室炉升温(1-2℃/min)至270℃,恒温30分钟,酒石酸铜分解为铜颗粒(如图1A);停止充入氩气,引入乙炔40ml/min,反应60分钟后停止通入乙炔,引入终止气体氩气终止反应;随炉冷却至室温,取出样品,其微观典型形貌如图1B,螺旋纤维含量约为3%。
在实际实验中终止气体采用氮气具有同样的效果。
图1A是实施例1制备催化剂的典型扫描电镜观测结果,从图中可见催化剂的形貌不规则,有粒状和棒状,平均粒径为200nm。图1B是实例1制备产品的典型扫描电镜观测结果,从图中可见产品具有较高的纯度线形纤维,纤维的直径为150-300nm。
实施例2:取30mg酒石酸铜粉末加入到5mL的无水乙醇中,超声15分钟后,转移至陶瓷小舟中;待无水乙醇自动挥发后,酒石酸铜粉末均匀分散在陶瓷舟(底面积16.5cm2)上;把分散有催化剂前驱体的陶瓷舟置于石英管中部,检查气密性并充入氢气150ml/min 20分钟排出空气;将卧室炉缓慢升温(2-3℃/min)至300℃,恒温20min后冷却至240℃,酒石酸铜分解为铜颗粒(如图2A);停止充入氢气,引入乙炔40ml/min,反应60分钟后停止通入乙炔,引入氩气终止反应;随炉冷却至室温,取出样品,其微观典型形貌如图2B,螺旋纤维含量约为55%。
图2A是实施例2制备催化剂的典型扫描电镜观测结果,从图中可见催化剂的形貌为团聚状,小颗粒平均粒径为60nm。图2B是实例2制备产品的典型扫描电镜观测结果,从图中可见产品含有线形和螺旋形纳米纤维,纤维的直径为100-150nm。
实施例3:取20mg酒石酸铜粉末加入到10mL的无水乙醇中,超声20分钟后,转移至陶瓷小舟中;待无水乙醇自动挥发后,酒石酸铜粉末均匀分散在陶瓷舟(底面积16.5cm2)上;把分散有催化剂前驱体的陶瓷舟置于石英管中部,检查气密性并充入混合气体N2/H2,(N2/H2=3,H2=30ml/min)25分钟排出空气;将卧室炉缓慢升温(1-2℃/min)至320℃,恒温10min冷却至230℃,酒石酸铜分解为铜颗粒(如图3A);停止充入混合气体N2/H2,引入乙炔60ml/min,反应90分钟后停止通入乙炔,引入氮气终止反应;随炉冷却至室温,取出样品,其微观典型形貌如图3,螺旋纤维含量约为15%。
图3是实施例3制备催化剂的扫描电镜观测结果,从图中可见产品含有线形和螺旋形纳米纤维,纤维的直径为100-300nm。
图5A是实施例3制备催化剂的典型扫描电镜观测结果,从图中可见催化剂的形貌规整,尺寸单一,平均粒径为50nm。图5B是实施例3制备产品的扫描电镜观测结果,从图中可见产品含有高纯螺旋纳米纤维,纤维的直径为100nm左右。
实施例4:取15mg酒石酸铜粉末加入到10mL的无水乙醇中,超声20分钟后,转移至陶瓷小舟中;待无水乙醇自动挥发后,酒石酸铜粉末均匀分散在陶瓷舟(底面积16.5cm2)上;把分散有催化剂前驱体的陶瓷舟置于石英管中部,检查气密性并充入混合气体N2/H2,(N2/H2=3,H2=30ml/min)25分钟排出空气;将卧室炉缓慢升温(2-3℃/min)至390℃,恒温10分钟冷却至195℃,酒石酸铜分解为铜颗粒(如图3A);停止充入混合气体N2/H2,引入乙炔20ml/min,反应30分钟后停止通入乙炔,引入氮气终止反应;随炉冷却至室温,取出样品,其微观典型形貌如图4,螺旋纤维含量约为75%。
图4是实施例4制备催化剂的扫描电镜观测结果,从图中可见产品含有线形和螺旋形纳米纤维,纤维的直径为100-150nm。
实施例5:取10mg酒石酸铜粉末加入到5mL的无水乙醇中,超声30分钟后,转移至陶瓷小舟中;待无水乙醇自动挥发后,酒石酸铜粉末均匀分散在陶瓷舟(底面积16.5cm2)上;把分散有催化剂前驱体的陶瓷舟置于石英管中部,检查气密性并充入乙炔150ml/min 20分钟排出空气;将乙炔气流量调至最小,并保证尾气管中不产生倒吸现象;将卧室炉缓慢升温(0.5-2℃/min)至270℃,引入乙炔40ml/min,反应60分钟后停止通入乙炔,引入氩气终止反应;随炉冷却至室温,取出样品,其微观典型形貌如图5B。采用混合气体(乙炔/氢气=1/10),在270℃裂解15min,观察到催化剂颗粒形貌如图5A,颗粒规则、尺寸单一,平均粒径约为50nm,螺旋纤维含量约为98%。
实施例1至实例5中制备好的纤维(包含线形和螺旋形)在800-1000℃氮气中常压裂解1-4h后得到相应的线形或者螺旋形碳纤维。图6是纤维在不同温度下氮气中裂解2h后产物的红外图谱。从图中可以得出在温度达到800℃后,纤维已碳化为相应的碳纤维。
图7是螺旋纤维含量为90%的纤维在900℃氮气中裂解4h后的SEM图。从图中可以得知,纤维的螺旋形态保持完好。
所述常压下裂解酒石酸铜的裂解气氛为氩气、氮气之一时,得到的所述目标碳纤维为高纯线形纳米纤维(95%-99%);裂解气氛为乙炔时,得到的所述目标碳纤维为高纯螺旋形纳米纤维(95%-99%);裂解气氛为氢气时,可制备线形和螺旋形两种混合的纳米纤维。
线形和螺旋形纤维的含量可通过前驱体分解气氛的配比情况,分别在5%~95%之间调节。以螺旋纤维说明,当前驱体分解气氛为N2和H2,且N2/H2=0.01~100,螺旋形纤维含量为5%~40%;当前驱体分解气氛为N2和H2,且C2H2/H2=0.01~100,螺旋形纤维含量为40%~95%。

Claims (2)

1.一种制备纳米碳纤维的方法,在催化条件下催化C2H2得到纳米碳纤维,在由卧式加热装置和设置在卧式加热装置内并具有外接气源进出口的内置石英管构成的设备内完成所述纳米碳纤维的原位制备,包含以下步骤:
(a).酒石酸铜粉末分散于乙醇中,超声10-30分钟后喷涂在陶瓷小舟上,乙醇挥发后酒石酸铜粉末作为催化剂前驱体均匀分散在陶瓷小舟基板载体上;
(b).将(a)得到的装有酒石酸铜粉末的陶瓷小舟放入直径45mm、长度1300mm的所述石英管中部,然后将石英管放入管状卧式加热炉中,石英管通入选定的分解气氛,加热并控制温度为270℃-390℃,保持15-60分钟,催化剂前驱体分解得到作为催化剂的纳米铜颗粒;
(c).调控管状卧式加热炉温度195℃-274℃,石英管以20-60ml/min流量通入反应物乙炔,30-90分钟后通入终止气体终止反应;
通过调控所述分解气氛的成份,制备出线形或者螺旋形纳米碳纤维:所述常压下分解酒石酸铜的分解气氛选定为氩气、氮气之一时,得到所述目标碳纤维主要为线形纳米纤维;所述常压下分解酒石酸铜的分解气氛选定为乙炔时,得到所述目标碳纤维主要为螺旋形纳米纤维;所述常压下分解酒石酸铜的分解气氛选定为氢气时,制备线形和螺旋形两种混合的纳米纤维。
2.根据权利要求1所述之制备纳米碳纤维的方法,其特征在于:所述酒石酸铜粉末分散于陶瓷舟基板载体的用量范围是0.5-2.5mg/cm2
CN2010102552573A 2010-08-17 2010-08-17 一种制备纳米碳纤维的方法 Active CN101899726B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102552573A CN101899726B (zh) 2010-08-17 2010-08-17 一种制备纳米碳纤维的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102552573A CN101899726B (zh) 2010-08-17 2010-08-17 一种制备纳米碳纤维的方法

Publications (2)

Publication Number Publication Date
CN101899726A CN101899726A (zh) 2010-12-01
CN101899726B true CN101899726B (zh) 2012-05-23

Family

ID=43225625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102552573A Active CN101899726B (zh) 2010-08-17 2010-08-17 一种制备纳米碳纤维的方法

Country Status (1)

Country Link
CN (1) CN101899726B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320590B (zh) * 2011-06-22 2013-01-23 天津大学 铜基体上直接生长单双螺旋纳米碳纤维的方法
CN102367164A (zh) * 2011-10-27 2012-03-07 无锡英普林纳米科技有限公司 一维微结构阵列及其制备方法
CN103276476B (zh) * 2013-04-09 2015-03-25 西南交通大学 T-ZnOw表面原位聚合制备纳米碳纤维的方法
CN103590141B (zh) * 2013-08-26 2015-09-16 国家纳米科学中心 一种银-谷胱甘肽手性纳米纤维及其制备方法
CN103723703B (zh) * 2014-01-06 2015-07-15 四川理工学院 低温制备螺旋碳纳米管的方法
CN104157834B (zh) * 2014-08-26 2017-03-08 四川理工学院 螺旋钠米碳纤维作为锂离子电池负极材料的应用及电池负极制备方法
CN105070914B (zh) * 2015-07-27 2017-10-20 四川理工学院 Dna双螺旋状纳米碳纤维的制备方法、应用及锂离子电池负极材料的制备方法
CN112479730A (zh) * 2020-12-17 2021-03-12 中南大学 一种弯曲状纳米炭纤维增强c/c复合材料的制备方法
CN113463226B (zh) * 2021-06-30 2023-02-14 杭州富通通信技术股份有限公司 一种线缆护套填料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643193A (zh) * 2002-05-22 2005-07-20 昭和电工株式会社 蒸气生长碳纤维的生产方法
CN1995503A (zh) * 2006-01-06 2007-07-11 北京化工大学 一种制备螺旋形纳米碳纤维的方法
CN101314129A (zh) * 2008-07-04 2008-12-03 浙江大学 制备多孔碳纤维的无载体铜锌合金催化剂及其制备和使用方法
CN101384358A (zh) * 2006-02-16 2009-03-11 拜尔材料科学股份公司 催化剂的连续制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071571B2 (ja) * 1992-07-24 2000-07-31 住友ベークライト株式会社 気相法炭素繊維の製造方法
US9725314B2 (en) * 2008-03-03 2017-08-08 Performancy Polymer Solutions, Inc. Continuous process for the production of carbon nanofiber reinforced continuous fiber preforms and composites made therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643193A (zh) * 2002-05-22 2005-07-20 昭和电工株式会社 蒸气生长碳纤维的生产方法
CN1995503A (zh) * 2006-01-06 2007-07-11 北京化工大学 一种制备螺旋形纳米碳纤维的方法
CN101384358A (zh) * 2006-02-16 2009-03-11 拜尔材料科学股份公司 催化剂的连续制备方法
CN101314129A (zh) * 2008-07-04 2008-12-03 浙江大学 制备多孔碳纤维的无载体铜锌合金催化剂及其制备和使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙海军等.螺旋纤维的制备与表征.《中国优秀硕士论文全文数据库》.2008,(第12期),16-17、42、44、49. *

Also Published As

Publication number Publication date
CN101899726A (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
CN101899726B (zh) 一种制备纳米碳纤维的方法
CN102471065B (zh) 取向碳纳米管集合体的制造装置
CN110148760B (zh) 一种多孔碳-碳纳米管复合材料及其制备方法和应用
US10758898B2 (en) Method for manufacturing carbon nanotube agglomerate having controlled bulk density
Cao et al. Direct synthesis of high concentration N-doped coiled carbon nanofibers from amine flames and its electrochemical properties
CN100432009C (zh) 碳纳米管/纳米粘土纳米复合材料及其制备方法
KR20100067048A (ko) 금속나노촉매, 그 제조방법 및 이를 이용하여 제조된 탄소나노튜브
CN101302006A (zh) 管壁层数可控的碳纳米管的制备方法
CN105198447A (zh) 一种氧化铝-碳纳米管复合粉体材料的制备方法
CN104668554A (zh) 一种金属粉体材料的石墨烯包覆方法
Xue et al. Large-scale synthesis of nitrogen-doped carbon nanotubes by chemical vapor deposition using a co-based catalyst from layered double hydroxides
Mansoor et al. Optimization of ethanol flow rate for improved catalytic activity of Ni particles to synthesize MWCNTs using a CVD reactor
CN101585526A (zh) 一种叠杯状纳米碳管的制备方法
Zhang et al. Selective synthesis of single/double/multi-walled carbon nanotubes on MgO-supported Fe catalyst
CN1995503A (zh) 一种制备螺旋形纳米碳纤维的方法
CN103276476B (zh) T-ZnOw表面原位聚合制备纳米碳纤维的方法
US10421061B2 (en) Preparation method of alumina-carbon nano tube composite powder material
CN102849694A (zh) 一种批量制备氮化硼纳米管的制备方法
KR20120092344A (ko) 금속유기구조체(MOFs)를 이용한 탄소나노튜브 또는 탄소나노섬유의 제조방법 및 이에 따라 제조되는 탄소나노튜브 또는 탄소나노섬유
Zhao et al. Carbon nanotube formation over plasma reduced Pd/HZSM-5
CN102976325A (zh) 气相裂解法制备β-SiC超细微粉工艺
Li et al. W clusters in situ assisted synthesis of layered carbon nanotube arrays on graphene achieving high-rate performance
Taleshi Evaluation of new processes to achieve a high yield of carbon nanotubes by CVD method
Nie et al. Very high-quality single-walled carbon nanotubes grown using a structured and tunable porous Fe/MgO catalyst
CN110306261B (zh) 一种螺旋纳米碳纤维的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Jian Xian

Inventor after: Zhou Zuowan

Inventor after: Lv Jun

Inventor after: Jiang Man

Inventor before: Zhou Zuowan

Inventor before: Jian Xian

Inventor before: Lv Jun

Inventor before: Jiang Man

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: ZHOU ZUOWAN JIAN XIAN LV JUN JIANG MAN TO: JIAN XIAN ZHOU ZUOWAN LV JUN JIANG MAN

C14 Grant of patent or utility model
GR01 Patent grant