CN101877906B - The collocation method of transmitting power and device - Google Patents

The collocation method of transmitting power and device Download PDF

Info

Publication number
CN101877906B
CN101877906B CN201010189365.5A CN201010189365A CN101877906B CN 101877906 B CN101877906 B CN 101877906B CN 201010189365 A CN201010189365 A CN 201010189365A CN 101877906 B CN101877906 B CN 101877906B
Authority
CN
China
Prior art keywords
pusch
mrow
power
transmission power
component carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010189365.5A
Other languages
Chinese (zh)
Other versions
CN101877906A (en
Inventor
朱鹏
喻斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhu Dongliang
Original Assignee
ZTE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZTE Corp filed Critical ZTE Corp
Priority to CN201010189365.5A priority Critical patent/CN101877906B/en
Publication of CN101877906A publication Critical patent/CN101877906A/en
Priority to PCT/CN2011/074136 priority patent/WO2011144011A1/en
Application granted granted Critical
Publication of CN101877906B publication Critical patent/CN101877906B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The invention discloses a kind of collocation method and device of transmitting power, wherein, the collocation method of this transmitting power comprises: the power parameter calculating each Physical Uplink Shared Channel PUSCH; Judge whether to exist the PUSCH that power parameter is greater than threshold value; If exist, then the transmitting power of above-mentioned PUSCH is at least partially set to 0; Judge the above-mentioned PUSCH that transmitting power does not set to 0 estimate transmitting power and Physical Uplink Control Channel PUCCH estimate the maximum configured power output whether transmitting power sum be greater than subscriber equipment; If be not more than, then what the transmitting power of PUSCH transmitting power do not set to 0 was set to this PUSCH estimates transmitting power.The invention solves the problem cannot carrying out the configuration of transmitting power in prior art to each physical uplink channel on component carrier, effectively reduce the transmitting power of each physical uplink channel.

Description

Method and device for configuring transmission power
Technical Field
The present invention relates to the field of mobile communications, and in particular, to a method and an apparatus for configuring transmit power.
Background
In a 3GPP LTE (The 3rd Generation Partnership Project Long term evolution), Uplink Power Control (Uplink Power Control, abbreviated as Uplink Power Control or Power Control) is used to Control The transmission Power of a Physical Uplink Channel (Uplink Physical Channel) to compensate for The path loss and shadowing of The Channel and suppress inter-cell interference. The Physical Uplink Channel controlled by the Uplink power Control includes a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH), and a Sounding Reference Signal (SRS). The LTE uplink power control adopts a control mode combining Open Loop (Open Loop) and Closed Loop (Closed Loop).
In the LTE system, the transmission power of PUSCH (unit: dBm) of a User Equipment (UE) on a Subframe (Subframe) i is defined as:
PPUSCH(i)=min{PCMAX,10log10(MPUSCH(i))+PO_PUSCH(j)+α(j)·PL+△TF(i)+f(i)}
in the above formula, each parameter represents:
1)PCMAXis the Maximum Configured Output Power (Configured Maximum UE Output Power) set by UE, the Maximum UE Power (Maximum UE Power) whose value range is determined by the UE Power Class (UE Power Class), the IE P-Max Configured by the system, the Maximum Configured Output Power deviation (PCMAX Tolerance), and the co-determined Maximum Power Reduction (MPR) and extra Maximum Power Reduction (A-MPR) due to the working band, system bandwidth, modulation order, transmission bandwidth position, transmission bandwidth configuration, etcDetermining;
line P'PUSCH(i)=10log10(MPUSCH(i))+PO_PUSCH(j)+α(j)·PL+△TF(i) + f (i), wherein, P'PUSCH(i) The UE calculates the transmitting power of the PUSCH according to the open-loop and closed-loop power control instructions of the base station, the path loss estimation and the number of resource blocks of the PUSCH scheduled on the subframe i;
when P'PUSCH(i)≤PCMAXAlways, PUSCH is of power P'PUSCH(i) Sending; when P'PUSCH(i)>PCMAXTime, PUSCH with power PCMAXSending;
2)MPUSCH(i) is the transmission bandwidth of PUSCH in subframe i, expressed in the number of Resource Blocks (RBs);
3)PO_PUSCH(j) is an open-loop power control parameter, is a cell specific (CellSpecific) quantity PO_NOMINAL_PUSCH(j) And a UE Specific (UE Specific) quantity PO_UE_PUSCH(j) The sum of (1); wherein j-0 corresponds to PUSCH transmission by Semi-persistent scheduling (Semi-persistent Scheduled), j-1 corresponds to PUSCH transmission by Dynamic scheduling (Dynamic Scheduled), and j-2 corresponds to PUSCH transmission by random access response scheduling;
4) α is a cell-specific path loss compensation factor, and when j is 0 or 1, α (j) is ∈ {0,0.4,0.5,0.6,0.7,0.8,0.9,1}, and when j is 2, α (j) is 1. Alpha is 1 to complete the path loss compensation, alpha is 1 to compensate the partial path loss;
5) PL is a downlink path loss Estimate (downlink path Estimate) measured and calculated at the UE side;
6)△TF(i) is a power offset related to Modulation Coding Scheme (MCS);
7) f (i) is the current PUSCH power control adjustment state. According to the configuration of high-level parameters, when the accumulated value is power controlled, f (i) ═ f (i-1) +PUSCH(i-KPUSCH) When the absolute value is power control, f (i) ═ fPUSCH(i-KPUSCH)。PUSCHIs a UE-specific closed loop correction value, also known as a transmit power control command (TPC command).
In addition, in the LTE system, the transmit power of PUCCH (in dBm) of UE on subframe i is defined as:
PPUCCH(i)=min{PCMAX,P0_PUCCH+PL+h(nCQI,nHARQ)+△F_PUCCH(F)+g(i)}
in the above formula, each parameter is represented as:
1)PCMAX: same as defined above;
line P'PUCCH(i)=P0_PUCCH+PL+h(nCQI,nHARQ)+△F_PUCCH(F) + g (i), wherein, P'PUCCH(i) The UE calculates the transmitting power of the PUCCH according to the open-loop and closed-loop power control commands of the base station, the path loss estimation and the PUCCH format scheduled on the subframe i;
when P'PUCCH(i)≤PCMAXAlways, PUCCH is provided with power P'PUCCH(i) Sending; when P'PUCCH(i)>PCMAXPUCCH with power PCMAXSending;
2)PO_PUCCHis an open loop power control parameter, is a cell specific quantity PO_NOMINAL_PUCCHAnd one UE-specific quantity PO_UE_PUCCHThe sum of (1);
3)△F_PUCCH(F) is a power offset associated with PUCCH format F (PUCCH format (F)), configured by higher layers;
4) h (n) is a value based on the PUCCH format F, where nCQINumber of information bits, n, for CQIHARQThe number of bits for HARQ;
5) g (i) is the current PUCCH power control adjustment state, PUCCHis a UE-specific closed loop correction value, also known as a transmit power control Command (TPC Command).
It should be noted that in the LTE system, in order to maintain the single carrier characteristic of the uplink signal, the PUSCH and the PUCCH cannot be transmitted simultaneously for the same UE.
An LTE-Advanced system (LTE-a system for short) is a next-generation evolution system of the LTE system. As shown in fig. 1, an LTE-a system extends a transmission bandwidth by using a carrier aggregation (carrier aggregation) technique, and each aggregated carrier is referred to as a "component carrier". The multiple component carriers may be continuous or discontinuous, and may be located in the same frequency band (operating band) or in different frequency bands.
In the LTE-a system, the user equipment may transmit one physical uplink shared channel PUSCH on one (uplink) component carrier, or may simultaneously transmit a plurality of PUSCHs on a plurality of (uplink) component carriers, respectively.
It is also proposed that multiple physical uplink control channels, PUCCHs, may be transmitted on one (uplink) component carrier, and that PUSCH and PUCCH be transmitted simultaneously on one (uplink) component carrier.
According to the related art transmit power configuration method, the transmit power of the PUSCH and/or PUCCH on a single component carrier is configured, which is referred to as the estimated transmit power of the PUSCH and the estimated transmit power of the PUCCH. And the estimated transmitting power of the PUSCH and the estimated transmitting power of the PUCCH both meet the transmitting power requirement and the limiting condition based on the component carrier.
However, when multiple PUSCHs and/or PUCCHs on multiple component carriers are simultaneously transmitted on subframe i, the user equipment must reduce the transmit power if the sum of its estimated transmit powers is greater than the maximum configured output power of the user equipment.
According to the related art transmit power configuration method, only the physical uplink channel on a single component carrier is configured, and the architecture of multiple component carriers in the LTE-a system cannot be supported, that is, when the sum of estimated transmit powers of multiple PUSCHs and/or PUCCHs simultaneously transmitted on multiple component carriers is greater than the maximum configuration output power of the user equipment, the related art configuration method cannot configure the transmit power of each physical uplink channel on multiple component carriers.
Disclosure of Invention
The present invention is proposed to solve the problem in the related art that the transmit power of each physical uplink channel on a component carrier cannot be configured, and therefore, the main object of the present invention is to provide a method and an apparatus for configuring transmit power.
According to an aspect of the present invention, there is provided a method for configuring transmit power, including: calculating power parameters of each Physical Uplink Shared Channel (PUSCH); judging whether a PUSCH with a power parameter larger than a threshold value exists or not; if yes, setting the transmission power of at least one part of the PUSCH as 0; judging whether the sum of the estimated transmitting power of the PUSCH with the transmitting power not set to 0 and the estimated transmitting power of a Physical Uplink Control Channel (PUCCH) is greater than the maximum configuration output power of user equipment or not; and if not, setting the transmission power of the PUSCH with the transmission power not set to 0 as the estimated transmission power of the PUSCH.
According to another aspect of the present invention, there is provided an apparatus for configuring transmit power, including: the processing module is used for calculating the power parameter of each PUSCH; the first judgment module is used for judging whether a PUSCH with the power parameter larger than a threshold value exists or not; a first setting module, configured to set, in the presence of a PUSCH whose power parameter is greater than a threshold, transmission power of at least a portion of the PUSCH to 0; a second judging module, configured to judge whether a sum of the estimated transmit power of the PUSCH with a transmit power not set to 0 and the estimated transmit power of the PUCCH is greater than a maximum configuration output power of the user equipment; and the second setting module is used for setting the transmission power of the PUSCH with the transmission power not set to 0 as the estimated transmission power of the PUSCH under the condition that the sum of the estimated transmission power of the PUSCH with the transmission power not set to 0 and the estimated transmission power of the PUCCH is not more than the maximum configuration output power of the user equipment.
The invention has the following beneficial effects:
when the sum of the estimated transmitting powers of a plurality of physical uplink channels which are simultaneously transmitted is larger than the maximum configuration output power of the user equipment, the method reduces the transmitting powers of all the physical uplink shared channels or sets the transmitting power of one or more physical uplink shared channels to be 0 according to a certain proportion, so that the transmitting power of each physical uplink channel can be effectively reduced.
Drawings
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the invention without limiting the invention. In the drawings:
fig. 1 is a schematic diagram of carrier aggregation of an LTE-a system according to the related art;
fig. 2 is a schematic diagram of a wireless communication system according to an embodiment of the present invention;
fig. 3 is a flowchart of a configuration method of transmission power according to an embodiment of the present invention;
fig. 4 is a preferred flow chart of a method of configuring transmit power according to an embodiment of the present invention;
fig. 5 is a preferred flow chart of a method of configuring transmit power according to an embodiment of the present invention;
fig. 6 is a preferred flow chart of a method of configuring transmit power according to an embodiment of the present invention;
fig. 7 is a schematic diagram of a configuration apparatus of transmission power according to an embodiment of the present invention.
Detailed Description
The invention will be described in detail hereinafter with reference to the accompanying drawings in conjunction with embodiments. It should be noted that the embodiments and features of the embodiments in the present application may be combined with each other without conflict.
Fig. 2 is a schematic diagram of a wireless communication system according to an embodiment of the present invention. As shown in fig. 2, a wireless communication system based on which the embodiment of the present invention is based includes: user equipment 202 and base station 204. The embodiment of the present invention mainly improves a method for configuring the transmit power of the physical uplink channel on the user equipment 202, and will be described below with reference to the accompanying drawings.
Fig. 3 is a flowchart of a configuration method of transmission power according to an embodiment of the present invention. As shown in fig. 3, the method for configuring the transmission power may include the following steps:
s302, calculating power parameters of each Physical Uplink Shared Channel (PUSCH);
s304, judging whether a PUSCH with a power parameter larger than a threshold value exists or not;
s306, if the PUSCH exists, setting the transmitting power of at least one part of the PUSCH as 0;
s308, judging whether the sum of the estimated transmitting power of the PUSCH with the transmitting power not set to 0 and the estimated transmitting power of the physical uplink control channel PUCCH is larger than the maximum configuration output power of the user equipment;
and S310, if the transmission power is not larger than the estimated transmission power of the PUSCH, setting the transmission power of the PUSCH with the transmission power not set to 0 as the estimated transmission power of the PUSCH.
According to the related art transmit power configuration method, only the physical uplink channel on a single component carrier is configured, but the transmit power of the plurality of physical uplink channels on a plurality of component carriers cannot be configured. In contrast to the embodiments of the present invention, when the sum of the estimated transmit powers of a plurality of PUSCHs and PUCCHs simultaneously transmitted on a plurality of component carriers is greater than the maximum configured output power of the user equipment, the transmit powers of all the physical uplink shared channels therein are reduced or the transmit power of one or more physical uplink shared channels therein is set to 0 according to a certain proportion, so that the transmit power of each physical uplink channel can be effectively reduced.
The user equipment may transmit only the PUSCH, only the PUCCH, or both the PUSCH and the PUCCH at subframe i. And the PUCCH is only transmitted on a specific component carrier, and the estimated transmission power of the PUCCH meets the requirements and the limiting conditions based on the transmission power of the component carrier. Therefore, when only PUCCH is transmitted on subframe i, its estimated transmit power is not greater than the maximum configured output power of the user equipment. Further, two scenarios of only transmitting PUSCH and simultaneously transmitting PUSCH and PUCCH on subframe i will be described below.
Scene one: user equipment transmits PUSCH only on subframe i
The user equipment only transmits the PUSCH on the subframe i, which means that the user equipment transmits one PUSCH on one component carrier or respectively transmits a plurality of PUSCHs on a plurality of component carriers (i.e. one PUSCH is transmitted on each of the plurality of component carriers) on the subframe i, and the user equipment does not transmit the PUCCH on any one component carrier.
1) When the power is not limited, namely the sum of the estimated transmission power of the PUSCHs of the user equipment on the subframe i is less than or equal to the maximum configuration output power of the user equipment, namely,
<math> <mrow> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> </math>
in this case, the transmit power of each PUSCH is its estimated transmit power, i.e.,
PPUSCH(i,k)=P′PUSCH(i,k)
2) when the power is limited, that is, the sum of the estimated transmission power of the PUSCH of the user equipment on the subframe i is greater than the maximum configured output power of the user equipment, that is,
<math> <mrow> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>></mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> </math>
in this case, the transmission power of each PUSCH can be configured by the following method.
The method comprises the following steps:
fig. 4 is a preferred flow of a configuration method of transmission power according to an embodiment of the present invention. As shown in fig. 4, the method for configuring the transmission power includes the following steps:
step S402, calculating the power reduction delta of each PUSCH according to a certain rulePUSCH(i,k)。
Preferably, the first and second liquid crystal materials are, <math> <mrow> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <mi>K</mi> </mrow> </math> (where K represents a set of PUSCHs);
preferably, the sum of the power reduction amplitudes of the PUSCHs is greater than or equal to the difference between the sum of the estimated transmission power of the PUSCH of the user equipment on the subframe i and the maximum configuration output power of the user equipment.
<math> <mrow> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <mi>K</mi> </mrow> </math>
Step S404, judging whether the power amplitude reduction is larger than a power amplitude reduction threshold value TPUSCHPUSCH of (i, k).
If not, i.e. deltaPUSCH(i,k)≤TPUSCH(i, k), go to step S414;
if present, ΔPUSCH(i,k)>TPUSCH(i, k), go to step S406;
step S406, selecting a PUSCH from the PUSCHs with the power reduction larger than the corresponding power reduction threshold value according to a certain rule, and setting the PUSCH transmission power to 0, namely not sending the PUSCH; and if the power reduction amplitude of only one PUSCH is larger than the corresponding power reduction amplitude threshold value, setting the transmission power of the PUSCH to be 0, and not sending the PUSCH.
Preferably, the selecting, according to a certain rule, one PUSCH from the PUSCHs whose power reduction is greater than the corresponding power reduction threshold includes: and selecting the PUSCH with the lowest priority from the PUSCHs with the power reduction amplitude larger than the corresponding power reduction amplitude threshold value.
Preferably, the selecting, according to a certain rule, one PUSCH from the PUSCHs whose power reduction is greater than the corresponding power reduction threshold value may further include: selecting weight beta in PUSCH with power reduction larger than corresponding power reduction threshold valuekThe largest one PUSCH.
Step S408, judging whether each PUSCH is set to be 0, if so, turning to step S418; if not, go to step S410.
Step S410, for the PUSCH with transmission power not set to 0, determine whether the sum of the estimated transmission powers is less than or equal to the maximum configured output power of the user equipment.
If the sum of the estimated transmit powers is less than or equal to the maximum configured output power of the UE, i.e.(where K' represents a set of PUSCHs with transmission power not set to 0), go to step S414;
if the sum of the estimated transmit powers is greater than the maximum configured output power, i.e.Go to step S412.
Step S412, recalculating the power reduction delta for the PUSCH with the transmission power not set to 0 by the following formulaPUSCH(i, k), go to step S404, and repeat the above S404-S412 until the sum of the transmission powers of the PUSCHs is less than or equal to the maximum configured output power of the user equipment, and for a PUSCH whose transmission power is not 0, its power reduction is not greater than its corresponding power reduction threshold, or the transmission powers of the PUSCHs are all set to 0:
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>C</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mtd> </mtr> </mtable> </mfenced> </math>
step S414, the transmission power of PUSCH on the component carrier k of the subframe i is the estimated transmission power minus the power reduction amplitude thereof, i.e. PPUSCH(i,k)=P′PUSCH(i,k)-△PUSCH(i, k), and then, goes to S418.
Step S416, for PUSCH with transmission power not set to 0, configure its transmission power to its estimated transmission power, i.e. PPUSCH(i,k)=P′PUSCH(i, K) K ∈ K', and then, go to S418.
And step S418, ending.
The parameters of the above formulas are respectively expressed as:
PCMAXconfiguring the maximum output power of the user equipment in mW;
β (i, k) is the weight of PUSCH on component carrier k of subframe i;
preferably, β (i, k) ≧ 0, the smaller β (i, k) the higher the priority of PUSCH on subframe i component carrier k;
if β (i, k) is 0, the power reduction of PUSCH on component carrier k of subframe i is 0, i.e., ΔPUSCH(i,k)=0;
P′PUSCH(i, k) is the estimated transmit power of the PUSCH of the user equipment on a sub-frame i component carrier k in milliwatts (mW), where k isThe number of the component carrier;
preferably, 10log can be calculated by the following formula10P′PUSCH(i, k), in dBm:
10log10P′PUSCH(i,k)
=min{PCMAX(k),10log10(MPUSCH(i,k))+PO_PUSCH(k)+α(k)·PL+△TF(i, k) + f (i, k) }, or
10log10P′PUSCH(i,k)
=10log10(MPUSCH(i,k))+PO_PUSCH(k)+α(k)·PL+△TF(i,k)+f(i,k)
Wherein M isPUSCH(i, k) is the bandwidth of the PUSCH transmitted on sub-frame i component carrier k, expressed in number of resource blocks;
PO_PUSCH(k) is an open loop power control parameter on component carrier k;
α (k) is a specific path loss compensation factor on component carrier k;
PL is the downlink path loss estimate on component carrier k measured and estimated by the user equipment;
TF(i, k) is a power offset associated with the modulation and coding scheme of the PUSCH transmitted on component carrier k of subframe i;
f (i, k) is the current power control adjustment state of the PUSCH transmitted on sub-frame i component carrier k;
PCMAX(k) configuring the maximum configured output power of the user equipment on a component carrier k, wherein the unit is dBm;
TPUSCH(i, k) is a power amplitude reduction threshold value, and the unit is milliwatt (mW);
preferably, TPUSCH(i,k)≤P′PUSCH(i,k);
Preferably, TPUSCH(i, k) is a predetermined value;
preferably, TPUSCH(i, k) and estimated transmit power P 'of the PUSCH of the user equipment on sub-frame i component carrier k'PUSCH(i, k) positively correlated;
preferably, the first and second electrodes are formed of a metal,is a predetermined value;
preferably, TPUSCH(i, k) is positively correlated with the downlink path loss estimate PL on the component carrier k measured by the UE.
The second method comprises the following steps:
fig. 5 is a preferred flow of a configuration method of transmission power according to an embodiment of the present invention. As shown in fig. 5, the method for configuring the transmission power includes the following steps:
step S502, according to a certain rule, calculating the preallocation value of the transmission power of each PUSCH.
Preferably, the pre-allocated value of the transmission power of each PUSCH can be calculated by the following formula:
P″PUSCH(i,k)=P′PUSCH(i, K) x γ (i, K) K ∈ K, where K represents a set of PUSCHs; γ (i, k) represents the power scaling factor of PUSCH on component carrier k of subframe i;
preferably, the sum of the pre-allocated values of the transmission power of each PUSCH is less than or equal to the maximum configured output power of the user equipment, that is, the sum is
Wherein K represents a set of PUSCHs;
step S504, judge whether there is preallocation value of the transmitting power less than its corresponding transmitting power threshold valueQPUSCHPUSCH of (i, k).
If not, i.e. P ″)PUSCH(i,k)≥QPUSCH(i, k), go to step S514;
if present, i.e. P ″)PUSCH(i,k)<QPUSCH(i, k), go to step S506;
step S506, according to a certain rule, selecting a PUSCH from PUSCHs of which the pre-allocation value of the transmission power is smaller than the corresponding transmission power threshold value, and setting the transmission power of the PUSCH to 0, namely not sending the PUSCH; and if the pre-allocation value of the transmission power of only one PUSCH is smaller than the corresponding transmission power threshold value, setting the actual transmission power of the PUSCH to be 0, and not sending the PUSCH.
Preferably, selecting one PUSCH among PUSCHs having a pre-assigned value of transmission power smaller than a corresponding transmission power threshold value thereof includes: selecting a PUSCH with the lowest priority from the PUSCHs with the pre-distribution value of the transmission power smaller than the corresponding transmission power threshold value;
preferably, selecting one PUSCH among PUSCHs having a pre-assigned value of transmission power smaller than a corresponding transmission power threshold value thereof includes: and selecting the PUSCH with the minimum power scaling factor gamma (i, k) from the PUSCHs with the pre-allocated value of the transmission power smaller than the corresponding transmission power threshold value.
Step S508, judge whether the transmission power of every PUSCH sets up 0, if yes, go to step S518; if not, go to step S510.
Step S510, for the PUSCH with transmission power not set to 0, determine whether the sum of the estimated transmission powers is less than or equal to the maximum configured output power of the user equipment.
If the sum of the estimated transmit powers is less than or equal to the maximum configured output power of the UE, i.e.(where K' represents a set of PUSCHs with transmission power not set to 0), go to step S516;
if the sum of the estimated transmit powers is greater than the maximum configured output power, i.e. <math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>></mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>,</mo> </mrow> </math> Go to step S512;
step S512, recalculating the pre-allocation value of the transmission power of the PUSCHs with the transmission power not set to 0 by the following formula, turning to step S504, and repeatedly executing the steps S504-S512 until the sum of the transmission power of all PUSCHs is less than or equal to the maximum configuration output power of the user equipment, and the transmission power of the PUSCHs with the transmission power not set to 0 is not less than the corresponding transmission power threshold value, or the transmission power of all PUSCHs is set to 0;
P″PUSCH(i,k)=P′PUSCH(i,k)×γ(i,k) k∈K'
wherein, K' represents a set of PUSCHs with transmission power not set to 0; γ (i, k) represents the power scaling factor of PUSCH on component carrier k of subframe i;
step S514, configuring the transmission power of PUSCH on the component carrier k of the subframe i to the pre-allocated value of the transmission power, namely PPUSCH(i,k)=P″PUSCH(i, K) K ∈ K, and then, it goes to step S518.
Step S516, configure the transmission power of PUSCH with transmission power not set to 0 as its estimated transmission power, i.e. PPUSCH(i,k)=P′PUSCH(i, K) K ∈ K', and then, it goes to step S520.
And step S518, ending.
In the second method of scenario one, in particular, in subframe i, when the ue transmits PUSCH on only one component carrier, if P'PUSCH(i,k)>PCMAXThen P isPUSCH(i,k)=PCMAX
In the second method of the first scenario, the parameters of the formulas are respectively expressed as:
PCMAX: the definition is the same as that in the method one of the scene one;
P′PUSCH(i, k): the definition is the same as that in the method one of the scene one;
γ (i, k) is the power scaling factor for PUSCH on sub-frame i component carrier k;
preferably, 0 ≦ γ (i, k) ≦ 1, the larger γ (i, k), the higher the priority of PUSCH on sub-frame i component carrier k;
if γ (i, k) ═ 0, the pre-allocated value of the transmission power of the PUSCH on the component carrier k of subframe i is P ″PUSCH(i,k)=0;
Preferably, γ (i, k) is dynamically variable during the iteration of method two above.
QPUSCH(i, k) is a transmit power threshold in milliwatts (mW);
preferably, QPUSCH(i,k)<P′PUSCH(i,k);
Preferably, QPUSCH(i, k) is a predetermined value;
preferably, QPUSCH(i, k) and estimated transmit power P 'of the PUSCH of the user equipment on sub-frame i component carrier k'PUSCH(i, k) positively correlated;
preferably, the first and second electrodes are formed of a metal,is a presetA value of (d);
the third method comprises the following steps:
fig. 6 is a preferred flow of a configuration method of transmission power according to an embodiment of the present invention. As shown in fig. 6, the method for configuring the transmission power includes the following steps:
step S602, according to a certain rule, calculates a pre-allocation value of the transmission power of each PUSCH.
Preferably, the pre-allocated value of the transmission power of each PUSCH can be calculated by the following formula:
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mfrac> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mrow> <munder> <mi>&Sigma;</mi> <mi>k</mi> </munder> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <mi>K</mi> <mo>,</mo> </mrow> </math> wherein K represents a set of PUSCHs;
preferably, the sum of the pre-allocated values of the transmission power of each PUSCH is less than or equal to the maximum configured output power of the user equipment, that is, the sum is
Wherein K represents a set of PUSCHs;
step S604, judging whether PUSCH with the pre-distribution value of the transmitting power larger than the estimated transmitting power exists.
If not, i.e. P ″)PUSCH(i,k)≤P′PUSCH(i, k), go to step S608;
if present, i.e. P ″)PUSCH(i,k)>P′PUSCH(i, k), go to step S606;
step S606, for PUSCHs whose pre-allocation value of all transmission power is larger than its pre-estimated transmission power, the pre-allocation value of its transmission power is configured as its pre-estimated transmission power, that is
P″PUSCH(i,k)=P′PUSCH(i, K) K ∈ K '", where K'" denotes a set of PUSCHs for which the pre-allocated value of transmit power is greater than the estimated transmit power.
Recalculating the pre-allocation values of the transmission power of the PUSCHs of which the pre-allocation values of all the transmission power are smaller than the pre-estimated transmission power of the PUSCHs by the following formula, and then repeatedly executing S604-S606 until the pre-allocation values of the transmission power of all the PUSCHs are not larger than the pre-estimated transmission power of all the PUSCHs;
<math> <mrow> <msub> <mi>P</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> </mrow> </munder> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> </mrow> </math>
wherein, K' represents the PUSCH set with the preassigned value of the transmission power being more than or equal to the estimated transmission power.
Step S608, judging whether there is pre-distribution value of emission power smaller than its corresponding emission power threshold value QPUSCHPUSCH of (i, k).
If not, i.e. P ″)PUSCH(i,k)≥QPUSCH(i, k), go to step S618;
if present, i.e. P ″)PUSCH(i,k)<QPUSCH(i, k), go to step S610;
step S610, according to a certain rule, selecting a PUSCH from PUSCHs of which the pre-allocation value of the transmission power is smaller than the corresponding transmission power threshold value, and setting the transmission power of the PUSCH to 0, namely not sending the PUSCH; and if the pre-allocation value of the transmission power of only one PUSCH is smaller than the corresponding transmission power threshold value, setting the actual transmission power of the PUSCH to be 0, and not sending the PUSCH.
Preferably, selecting one PUSCH among PUSCHs having a pre-assigned value of transmission power smaller than a corresponding transmission power threshold value thereof includes: selecting a PUSCH with the lowest priority from the PUSCHs with the pre-distribution value of the transmission power smaller than the corresponding transmission power threshold value;
preferably, selecting one PUSCH among PUSCHs having a pre-assigned value of transmission power smaller than a corresponding transmission power threshold value thereof includes: selecting weight c in PUSCH with pre-distribution value of transmission power smaller than corresponding transmission power threshold valuekA minimum one PUSCH.
Step S612, judging whether the transmission power of each PUSCH is set to be 0, if so, turning to step S622; if not, go to step S614.
Step S614, for the PUSCH with transmission power not set to 0, determines whether the sum of the estimated transmission powers is less than or equal to the maximum configured output power of the user equipment.
If the sum of the estimated transmit powers is less than or equal to the maximum configured output power of the UE, i.e.(where K' represents a set of PUSCHs with transmission power not set to 0), go to step S620;
if the sum of the estimated transmit powers is greater than the maximum configured output power, i.e.Go to step S616.
Step S616, recalculating the pre-allocation value of the transmission power of the PUSCH with transmission power not set to 0 by the following formula, turning to step S604, and repeatedly executing the above steps S604-S616 until the sum of the transmission power of the PUSCHs is less than or equal to the maximum configuration output power of the user equipment, the transmission power of each PUSCH is not greater than the estimated transmission power thereof, the transmission power of the PUSCH with transmission power not set to 0 is not less than the corresponding transmission power threshold value thereof, or the transmission power of each PUSCH is set to 0.
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </math>
Wherein, K' represents a set of PUSCHs with transmission power not set to 0; c (i, k) represents the weight of the PUSCH on the component carrier k of the subframe i;
step S618, configure the transmission power of PUSCH on component carrier k of subframe i to the pre-allocated value of its transmission power, i.e., PPUSCH(i,k)=P″PUSCH(i, K) K ∈ K. Then, go to step S622.
Step S620, for PUSCH with transmission power not set to 0, configure its transmission power to its estimated transmission power, i.e. PPUSCH(i,k)=P′PUSCH(i, K) K ∈ K', and then, it goes to step S622.
Step S622 ends.
In the third method of scenario one, in particular, in subframe i, when the ue transmits PUSCH on only one component carrier, if P'PUSCH(i,k)>PCMAXThen P isPUSCH(i,k)=PCMAX
In the method iii of the scenario one, the parameters of the formulas are respectively expressed as:
PCMAX: the definition is the same as that in the method one of the scene one;
P′PUSCH(i, k): the definition is the same as that in the method one of the scene one;
c (i, k) is the weight of PUSCH on sub-frame i component carrier k;
preferably, c (i, k) ≧ 0, the larger c (i, k) the higher the priority of PUSCH on sub-frame i component carrier k;
if c (i, k) ═ 0, the pre-allocated value of the transmission power of the PUSCH on the component carrier k of the subframe i is P ″PUSCH(i,k)=0。
QPUSCH(i, k) is the same as defined in method two of scenario one;
scene two: and the user equipment simultaneously transmits PUSCH and PUCCH on the subframe i.
The method for simultaneously transmitting PUSCH and PUCCH by a user equipment in a subframe i refers to that, in the subframe i, the user equipment transmits one PUSCH on one component carrier, or respectively transmits multiple PUSCHs on multiple component carriers (that is, transmits one PUSCH on each of the multiple component carriers), and transmits one or more PUCCHs on one component carrier, including the following cases: a) the user equipment simultaneously transmits PUSCH and PUCCH on one component carrier, b) the user equipment transmits PUSCH on one or more component carriers and PUCCH on another component carrier, c) the user equipment transmits PUSCH on one or more component carriers and PUSCH and PUCCH on another component carrier.
1) When the power is not limited, namely the sum of the estimated transmitting power of each PUSCH and PUCCH on the subframe i of the user equipment is less than or equal to the maximum configuration output power of the user equipment
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <mi>K</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> </math>
Then, the transmission power of each PUSCH is its estimated transmission power, i.e. the estimated transmission power
PPUSCH(i,k)=P′PUSCH(i,k)
The transmit power of each PUCCH is its estimated transmit power, i.e.
PPUCCH(i,l)=P′PUCCH(i,l);
2) When the power is limited, namely the sum of the estimated transmitting power of each PUSCH and PUCCH on the subframe i of the user equipment is larger than the maximum configuration output power of the user equipment
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <mi>K</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>></mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> </math>
Then, the transmission power of each PUCCH is the estimated transmission power thereof
PPUCCH(i,l)=P′PUCCH(i,l)
The transmission power of each PUSCH can be calculated according to the method in scenario one, and only the parameters in each type need to be adaptively adjusted.
Preferably, the determining the transmission power of the PUSCH according to the power parameter of the PUSCH with transmission power not set to 0 includes:
PPUSCH(i,k)=P′PUSCH(i,k)-△PUSCH(i,k) k∈K'
wherein i represents a subframe number, and k represents a serial number of a component carrier; k' represents a set of PUSCH with transmission power not set to 0;
PUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
PPUSCH(i, k) representsTransmit power of PUSCH on component carrier k of subframe i.
As a preferred aspect of the present invention, the power parameter is a power reduction amplitude, where the power reduction amplitude satisfies the following formula:
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>K</mi> <mo>&Element;</mo> <msup> <mi>k</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> </math>
wherein, i represents a subframe number, K represents a serial number of a component carrier, K' represents a set of PUSCHs with transmission power not set to 0, L represents a serial number of a PUCCH, and L represents a set of the PUCCH;
PUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment.
As another preferred embodiment of the present invention, the power parameter is a power reduction amplitude, wherein the power reduction amplitude satisfies the following formula:
<math> <mrow> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>C</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </math>
wherein, i represents a subframe number, K represents a serial number of a component carrier, K' represents a set of PUSCHs with transmission power not set to 0, L represents a serial number of a PUCCH, and L represents a set of the PUCCH;
PUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment;
β (i, k) represents the weight of PUSCH on component carrier k of subframe i.
Preferably, β (i, k) ≧ 0, where a smaller β (i, k) indicates a higher priority for PUSCH on subframe i component carrier k.
Preferably, the power parameter is a power amplitude reduction, and the threshold is a power amplitude reduction threshold T of the PUSCHPUSCH(i, k), judging whether the PUSCH with the power parameter larger than the threshold value exists or not through the following steps:
PUSCH(i,k)>TPUSCH(i,k)
wherein i represents a subframe number, and k represents a serial number of a component carrier;
PUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
TPUSCH(i, k) represents the power reduction threshold value of the PUSCH on component carrier k of subframe i.
As still another preferable mode of the present invention, the power parameter includes a pre-allocated value of the transmission power.
As another preferred mode of the present invention, the power parameter includes a pre-allocated value of transmission power, and the transmission power of the PUSCH with transmission power not set to 0 is determined by the following formula:
PPUSCH(i,k)=P″PUSCH(i,k) k∈K'
wherein, i represents a subframe number, K represents a serial number of a component carrier, and K' represents a set of PUSCHs with transmission power not set to 0;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
PPUSCH(i, k) represents the transmit power of the PUSCH on sub-frame i component carrier k.
As another preferred mode of the present invention, the power parameter includes a pre-allocation value of transmission power, and the threshold is a power reduction threshold T of the PUSCHPUSCH(i, k), judging whether the PUSCH with the power parameter larger than the threshold value exists through the following formula:
P′PUSCH(i,k)-P″PUSCH(i,k)>TPUSCH(i,k),
wherein i represents a subframe number, and k represents a serial number of a component carrier;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P″PUSCH(i, k) represents a transmit power pre-allocation value for PUSCH on component carrier k of subframe i;
TPUSCH(i, k) represents the power reduction threshold value of the PUSCH on component carrier k of subframe i.
As another preferred mode of the present invention, the power reduction threshold T of the PUSCHPUSCH(i,k)≤P′PUSCH(i, k) of which P'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
As another preferred mode of the present invention, the power reduction threshold T of the PUSCHPUSCH(i, k) and P'PUSCH(i, k) are positively correlated, wherein, P'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
As another preferred mode of the present invention, the power parameter includes a pre-allocated value of transmission power, and the threshold is a transmission power threshold Q of a PUSCHPUSCH(i, k), judging whether the PUSCH with the power parameter larger than the threshold value exists through the following formula:
P″PUSCH(i,k)<QPUSCH(i,k)
wherein i represents a subframe number, and k represents a serial number of a component carrier;
P″PUSCH(i, k) represents a pre-allocated value of the transmission power of the PUSCH on the component carrier k of subframe i.
As another preferred mode of the present invention, the transmission power threshold Q of the PUSCHPUSCH(i,k)<P′PUSCH(i, k), wherein i represents a subframe number and k represents a sequence number of a component carrier; qPUSCH(i, k) represents a transmission power threshold value of PUSCH on component carrier k of subframe i; p'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
As another preferred mode of the present invention, the transmission power threshold Q of the PUSCHPUSCH(i, k) and estimated transmit power P 'of the PUSCH'PUSCH(i, k) are positively correlated, wherein, P'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
As another preferred mode of the present invention, the pre-allocated value of the transmission power satisfies the following formula:
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein, i represents a subframe number, K represents a serial number of a component carrier, K' represents a set of PUSCHs with transmission power not set to 0, L represents a serial number of a PUCCH, and L represents a set of the PUCCH;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment.
As still another preferred mode of the present invention, the pre-allocation value of the transmission power is calculated by the following formula:
P″PUSCH(i,k)=P″PUSCH(i,k)×γ(i,k) k∈K'
wherein, i represents a subframe number, K represents a serial number of a component carrier, and K' represents a set of PUSCHs with transmission power not set to 0;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
γ (i, k) denotes the power scaling factor of PUSCH on component carrier k of subframe i.
As still another preferable mode of the present invention, 0 ≦ γ (i, k) ≦ 1, where the larger γ (i, k) indicates the higher priority of PUSCH on the component carrier k of subframe i.
As still another preferred mode of the present invention, the pre-allocation value of the transmission power is calculated by the following formula:
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> <mo>&cap;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> </mrow> </munder> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> <mo>&cap;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> </mrow> </math>
wherein i represents a subframe number, k represents a serial number of a component carrier, L represents a serial number of a PUCCH, and L represents a set of the PUCCH; k' represents a set of PUSCH with transmission power not set to 0; k' represents a set of PUSCHs with pre-allocated values of transmit power equal to the estimated transmit power;
c (i, k) represents the weight of the PUSCH on the component carrier k of the subframe i;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment.
Preferably, after the pre-allocated values of the transmission power are calculated, the following steps are repeatedly executed until the sum of the pre-allocated values of the transmission power of the PUSCH of which the transmission power is not set to 0 is not greater than the difference between the maximum configuration output power of the user equipment and the estimated transmission power of the PUCCH, and the pre-allocated value of the transmission power of each PUSCH is not greater than the estimated transmission power of the PUSCH:
1) judging whether a PUSCH with the pre-allocated value of the transmitting power larger than the estimated transmitting power exists or not;
2) if yes, setting the pre-allocation value of the transmission power of the PUSCH as the estimated transmission power of the PUSCH;
3) executing the formula on the PUSCH of which the pre-allocation value of the transmission power is smaller than the estimated transmission power:
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> <mo>&cap;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> </mrow> </munder> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> <mo>&cap;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> <mo>.</mo> </mrow> </math>
as another preferred embodiment of the present invention, the weight c (i, k) ≧ 0 of the PUSCH on the sub-frame i component carrier k, where the larger c (i, k) indicates the higher priority of the PUSCH on the sub-frame i component carrier k.
As another preferred mode of the present invention, setting the transmission power of at least a part of the PUSCH to 0 includes: selecting one or more PUSCHs with the lowest priority from the PUSCHs with the power parameter larger than a threshold value; the transmit power of the selected PUSCH is set to 0.
As another preferred mode of the present invention, setting the transmission power of at least a part of the PUSCH to 0 includes: selecting one or more PUSCHs with the largest weight value beta (i, k) from the PUSCHs with the power parameter larger than the threshold value; setting the transmission power of the selected PUSCH to 0; where i denotes a subframe number and k denotes a sequence number of a component carrier.
As another preferred mode of the present invention, setting the transmission power of at least a part of the PUSCH to 0 includes: selecting one or more PUSCHs with the smallest scaling factor c (i, k) from the PUSCHs with the power parameter larger than a threshold value; setting the transmission power of the selected PUSCH to 0; where i denotes a subframe number and k denotes a sequence number of a component carrier.
As another preferred mode of the present invention, setting the transmission power of at least a part of the PUSCH to 0 includes: selecting one or more PUSCHs with the smallest weight value gamma (i, k) from the PUSCHs with the power parameter larger than the threshold value; setting the transmission power of the selected PUSCH to 0; where i denotes a subframe number and k denotes a sequence number of a component carrier.
As another preferred mode of the present invention, when only PUSCH is transmitted on subframe i, the estimated transmission power and the transmission power of PUCCH are both 0.
It should be emphasized that the calculated transmission power of the PUSCH and PUCCH in each of the above methods is obtained by using the above calculation method for reducing power, on the basis of the estimated transmission power of each PUSCH and PUCCH, in order to satisfy the condition that the sum of the estimated transmission power of the PUSCH and/or PUCCH is less than or equal to the maximum configured output power of the user equipment, and the final transmission power may be limited by other parameters.
Example one
Suppose an LTE-a system, which operates in a frequency division duplex mode, has 5 downlink component carriers D1, D2, D3, D4, D5, and 5 uplink component carriers U1, U2, U3, U4, and U5.
In subframe i, a user equipment is scheduled by a base station to transmit a physical uplink shared channel PUSCH (i,1) and a PUSCH (i,2) on 2 uplink component carriers U1 and U2, respectively, and no other physical uplink channel is transmitted on 5 uplink component carriers U1, U2, U3, U4 and U5. Estimated transmission power of PUSCH (i,1) is P'PUSCHThe estimated transmission power of (i,1) and PUSCH (i,2) is P'PUSCH(i,2) the maximum configured output power of the UE is PCMAXThe unit of the above three values is mW.
1) When the power is not limited, namely the sum of the estimated transmission power of the PUSCH (i,1) and the PUSCH (i,2) on the subframe i of the user equipment is less than or equal to the maximum configuration output power of the user equipment
P′PUSCH(i,1)+P′PUSCH(i,2)≤PCMAX
Then, the transmission power of PUSCH (i,1) and PUSCH (i,2) is the estimated transmission power thereof
PPUSCH(i,1)=P′PUSCH(i,1)
PPUSCH(i,2)=P′PUSCH(i,2)
2) When the power is limited, namely the sum of the estimated transmission power of the PUSCH (i,1) and the PUSCH (i,2) on the subframe i of the user equipment is larger than the maximum configuration output power of the user equipment
P′PUSCH(i,1)+P′PUSCH(i,2)>PCMAX
Then, there is the following calculation method for the transmission power of PUSCH (i,1) and PUSCH (i,2) 2.
The method comprises the following steps:
(1) step 101:
calculating the power reduction amplitude Delta of the PUSCH (i,1) and the PUSCH (i,2)PUSCH(i,1) and ΔPUSCH(i,2);
<math> <mrow> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> <mrow> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> <mrow> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
β (i,1) and β (i,2) are weights of PUSCH (i,1) and PUSCH (i,2), respectively, on subframe i;
assuming that β (i,1) is 0 and β (i,2) ≠ 0, the power reduction Δ of PUSCH (i,1) isPUSCH(i,1)=0。
Power reduction Delta of PUSCH (i,2)PUSCH(i,2)=P′PUSCH(i,1)+P′PUSCH(i,2)-PCMAX
(2) Step 102:
judging whether the power reduction amplitude is larger than the corresponding power reduction amplitude threshold value or not by the following formula:
PUSCH(i,1)>TPUSCH(i,1)
PUSCH(i,2)>TPUSCH(i,2)
wherein,
TPUSCH(i, k) is a power amplitude reduction threshold value, and the unit is milliwatt (mW);
TPUSCH(i, k) and estimated transmit power P 'of the PUSCH of the user equipment on sub-frame i component carrier k'PUSCH(i, k) is proportional;
TPUSCH(i,1)=0.1P′PUSCH(i,1)
TPUSCH(i,2)=0.1P′PUSCH(i,2)
PUSCH(i,1)=0≤TPUSCH(i,1), the transmission power of PUSCH (i,1) is the estimated transmission power minus the power reduction amplitude,
PPUSCH(i,1)=P′PUSCH(i,1)-△PUSCH(i,1)=P′PUSCH(i,1)
if ΔPUSCH(i,2)≤TPUSCH(i,2), the transmission power of PUSCH (i,2) is its estimated transmission powerThe rate minus its power reduction, i.e. PPUSCH(i,2)=P′PUSCH(i,2)-△PUSCH(i, 2); then, go to step 107;
if ΔPUSCH(i,2)>TPUSCH(i,2), turning to step 103;
(3) step 103:
setting the transmission power of the PUSCH (i,2) to be 0, namely not sending the PUSCH (i, 2);
(4) step 104:
judging whether the transmission power of the PUSCH (i,1) and the PUSCH (i,2) is set to be 0 or not, if so, turning to step 107; if not, go to step 105;
(5) step 105:
judging whether the estimated transmission power of the PUSCH (i,1) with the transmission power not set to 0 is less than or equal to the maximum configuration output power of the user equipment, namely P'PUSCH(i,1)≤PCMAX
If the above condition is satisfied, the transmission power of PUSCH (i,1) is its estimated transmission power, i.e., PPUSCH(i,1)=P′PUSCH(i, 1); then, go to step 107;
if the condition is not met, go to step 106;
(6) step 106:
for PUSCH (i,1), the power reduction Δ is recalculated by the following formulaPUSCH(i,k):
<math> <mrow> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> <mrow> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> </math>
Then, go to step 102.
For example, after turning to step 102 again, it is determined whether there is a power reduction greater than its corresponding power reduction threshold value by the following formula:
PUSCH(i,1)>TPUSCH(i,1)
if ΔPUSCH(i,1)≤TPUSCH(i,1), the transmission power of PUSCH (i,1) is its estimated transmission power minus its power reduction, i.e., PPUSCH(i,1)=P′PUSCH(i,1)-△PUSCH(i, 1); then, go to step 107;
if ΔPUSCH(i,1)>TPUSCH(i,1), go to step 103, i.e. set the transmission power of the PUSCH (i,1) to 0, i.e. not transmit PUSCH (i, 1).
Step 107: and (6) ending.
This embodiment is also a scenario for simultaneous transmission of PUSCH and PUCCH.
The second method comprises the following steps:
(1) step 201:
calculating a pre-allocation value of the transmission power of the PUSCH (i,1) and the PUSCH (i, 2);
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mrow> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
c (i,1) and c (i,2) are weights of PUSCH (i,1) and PUSCH (i,2), respectively;
assuming that c (i,1) ═ c (i,2), the pre-allocated values of the transmission power of the PUSCH (i,1) and the PUSCH (i,2) are:
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mn>2</mn> </mfrac> </mrow> </math>
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mn>2</mn> </mfrac> </mrow> </math>
(2) step 202:
judging whether the pre-distribution value of the transmission power of the PUSCH is larger than the pre-estimated transmission power of the PUSCH or not
P″PUSCH(i,1)>P′PUSCH(i,1)
P″PUSCH(i,2)>P′PUSCH(i,2)
If not, go to step 204;
if yes, go to step 203;
in the present embodiment, it is assumed that <math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mn>2</mn> </mfrac> <mo>></mo> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mn>2</mn> </mfrac> <mo>&lt;</mo> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
(3) Step 203:
for PUSCH (i,1), the pre-allocated value of its transmit power is its estimated transmit power, i.e., P ″PUSCH(i,1)=P′PUSCH(i,1)
For PUSCH (i,2), the pre-allocated value of its transmit power is recalculated by the following formula,
P″PUSCH(i,2)=PCMAX-P′PUSCH(i,1), then go to step 202.
Then, in step 202, it is continuously determined whether there is a pre-allocated value of the transmission power of the PUSCH larger than the estimated transmission power, that is, it is determined whether there is any PUSCH transmission power
P″PUSCH(i,2)=PCMAX-P′PUSCH(i,1)>P′PUSCH(i,2)
Since it has been assumed that the power is limited PCMAX<P′PUSCH(i,1)+P′PUSCH(i,2), that is, the pre-allocated value of the transmission power of the PUSCH (i,2) is smaller than the estimated transmission power, go to step 204;
(4) step 204:
judging whether the pre-distribution value of the transmission power of the PUSCH is smaller than the corresponding transmission power threshold value
P″PUSCH(i,1)<QPUSCH(i,1)
P″PUSCH(i,2)<QPUSCH(i,2)
Wherein,
QPUSCH(i,1) and QPUSCH(i,2) are the threshold values of the transmission power of the PUSCH (i,1) and the PUSCH (i,2), respectively, and the unit is milliwatt (mW);
in the present embodiment, let Q be <math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>Q</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.9</mn> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.9</mn> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
If not, the transmission powers of the PUSCH (i,1) and the PUSCH (i,2) are respectively pre-allocated values of the transmission powers, go to step 208;
if yes, go to step 205;
in the present embodiment, it is assumed that
P″PUSCH(i,2)=PCMAX-P′PUSCH(i,1)<QPUSCH(i,2)=0.9P′PUSCH(i,2)
And is
P″PUSCH(i,1)=P′PUSCH(i,1)>QPUSCH(i,1)=0.9P′PUSCH(i,1)
Under the above assumption, go to step 205;
(5) in step 205, for PUSCH (i,2), the transmission power is set to 0, i.e. PUSCH (i,2) is not transmitted;
(6) step 206, judging whether the transmission power of each PUSCH is set to be 0, if so, turning to step 208; if not, go to step 207;
(7) step 207, for the PUSCH with transmission power not set to 0, determine whether the sum of the estimated transmission powers is less than or equal to the maximum configured output power of the user equipment.
Because P ″)PUSCH(i,1)=P′PUSCH(i,1),PPUSCH(i,2) = 0, and P 'is assumed here'PUSCH(i,1)<PCMAXGo to step 208;
(8) step 208: and (6) ending.
The embodiment of the invention also provides a configuration device of the transmitting power, which is suitable for the configuration method of the transmitting power. As shown in fig. 7, the apparatus for configuring the transmission power includes: a processing module 702, configured to calculate a power parameter of each PUSCH; a first determining module 704, configured to determine whether there is a PUSCH whose power parameter is greater than a threshold; a first setting module 706, configured to set, in the presence of a PUSCH whose power parameter is greater than a threshold, transmission power of at least a portion of the PUSCH to 0; a second determining module 708, configured to determine whether a sum of the estimated transmit power of the PUSCH with the transmit power not set to 0 and the estimated transmit power of the PUCCH is greater than a maximum configured output power of the user equipment; a second setting module 710, configured to set the transmission power of the PUSCH with transmission power not set to 0 as the estimated transmission power of the PUSCH when the sum of the estimated transmission power of the PUSCH with transmission power not set to 0 and the estimated transmission power of the PUCCH is not greater than the maximum configuration output power of the user equipment.
Preferably, the determining the transmission power of the PUSCH according to the power parameter of the PUSCH with transmission power not set to 0 includes:
PPUSCH(i,k)=P′PUSCH(i,k)-△PUSCH(i,k) k∈K'
wherein i represents a subframe number, and k represents a serial number of a component carrier; k' represents a set of PUSCH with transmission power not set to 0;
PUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
PPUSCH(i, k) represents the transmit power of the PUSCH on sub-frame i component carrier k.
As a preferred aspect of the present invention, the power parameter is a power reduction amplitude, where the power reduction amplitude satisfies the following formula:
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> </math>
wherein, i represents a subframe number, K represents a serial number of a component carrier, K' represents a set of PUSCHs with transmission power not set to 0, L represents a serial number of a PUCCH, and L represents a set of the PUCCH;
PUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment.
As another preferred embodiment of the present invention, the power parameter is a power reduction amplitude, wherein the power reduction amplitude satisfies the following formula:
<math> <mrow> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>C</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </math>
wherein, i represents a subframe number, K represents a serial number of a component carrier, K' represents a set of PUSCHs with transmission power not set to 0, L represents a serial number of a PUCCH, and L represents a set of the PUCCH;
PUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting the most of the user equipmentA large configuration output power;
β (i, k) represents the weight of PUSCH on component carrier k of subframe i.
Preferably, β (i, k) ≧ 0, where a smaller β (i, k) indicates a higher priority for PUSCH on subframe i component carrier k.
Preferably, the power parameter is a power amplitude reduction, and the threshold is a power amplitude reduction threshold T of the PUSCHPUSCH(i, k), judging whether the PUSCH with the power parameter larger than the threshold value exists or not through the following steps:
PUSCH(i,k)>TPUSCH(i,k)
wherein i represents a subframe number, and k represents a serial number of a component carrier;
PUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
TPUSCH(i, k) represents the power reduction threshold value of the PUSCH on component carrier k of subframe i.
As still another preferable mode of the present invention, the power parameter includes a pre-allocated value of the transmission power.
As another preferred mode of the present invention, the power parameter includes a pre-allocated value of transmission power, and the transmission power of the PUSCH with transmission power not set to 0 is determined by the following formula:
PPUSCH(i,k)=P″PUSCH(i,k) k∈K'
wherein, i represents a subframe number, K represents a serial number of a component carrier, and K' represents a set of PUSCHs with transmission power not set to 0;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
PPUSCH(i, k) represents the transmit power of the PUSCH on sub-frame i component carrier k.
As another preferred mode of the present invention, the power parameter includes a pre-allocation value of transmission power, and the threshold is a power reduction threshold T of the PUSCHPUSCH(i, k), judging whether the PUSCH with the power parameter larger than the threshold value exists through the following formula:
P′PUSCH(i,k)-P″PUSCH(i,k)>TPUSCH(i,k),
wherein i represents a subframe number, and k represents a serial number of a component carrier;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P″PUSCH(i, k) represents a transmit power pre-allocation value for PUSCH on component carrier k of subframe i;
TPUSCH(i, k) represents the power reduction threshold value of the PUSCH on component carrier k of subframe i.
As another preferred mode of the present invention, the power reduction threshold T of the PUSCHPUSCH(i,k)≤P′PUSCH(i, k) of which P'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
As another preferred mode of the present invention, the power reduction threshold T of the PUSCHPUSCH(i, k) and P'PUSCH(i, k) are positively correlated, wherein, P'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
As another preferred mode of the present invention, the power parameter includes a pre-allocated value of transmission power, and the threshold is a transmission power threshold Q of a PUSCHPUSCH(i, k), judging whether the PUSCH with the power parameter larger than the threshold value exists through the following formula:
P″PUSCH(i,k)<QPUSCH(i,k)
wherein i represents a subframe number, and k represents a serial number of a component carrier;
P″PUSCH(i, k) represents a pre-allocated value of the transmission power of the PUSCH on the component carrier k of subframe i.
As another preferred mode of the present invention, the transmission power threshold Q of the PUSCHPUSCH(i,k)<P′PUSCH(i, k), wherein i represents a subframe number and k represents a sequence number of a component carrier; qPUSCH(i, k) represents a transmission power threshold value of PUSCH on component carrier k of subframe i; p'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
As another preferred mode of the present invention, the transmission power threshold Q of the PUSCHPUSCH(i, k) and estimated transmit power P 'of the PUSCH'PUSCH(i, k) are positively correlated, wherein, P'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
As another preferred mode of the present invention, the pre-allocated value of the transmission power satisfies the following formula:
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein, i represents a subframe number, K represents a serial number of a component carrier, K' represents a set of PUSCHs with transmission power not set to 0, L represents a serial number of a PUCCH, and L represents a set of the PUCCH;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment.
As still another preferred mode of the present invention, the pre-allocation value of the transmission power is calculated by the following formula:
P″PUSCH(i,k)=P′PUSCH(i,k)×γ(i,k) k∈K'
wherein, i represents a subframe number, K represents a serial number of a component carrier, and K' represents a set of PUSCHs with transmission power not set to 0;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
γ (i, k) denotes the power scaling factor of PUSCH on component carrier k of subframe i.
As still another preferable mode of the present invention, 0 ≦ γ (i, k) ≦ 1, where the larger γ (i, k) indicates the higher priority of PUSCH on the component carrier k of subframe i.
As still another preferred mode of the present invention, the pre-allocation value of the transmission power is calculated by the following formula:
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> <mo>&cap;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> </mrow> </munder> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> <mo>&cap;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> </mrow> </math>
wherein i represents a subframe number, k represents a serial number of a component carrier, L represents a serial number of a PUCCH, and L represents a set of the PUCCH; k' represents a set of PUSCH with transmission power not set to 0; k' represents a set of PUSCHs with pre-allocated values of transmit power equal to the estimated transmit power;
c (i, k) represents the weight of the PUSCH on the component carrier k of the subframe i;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment.
Preferably, after the pre-allocated values of the transmission power are calculated, the following steps are repeatedly executed until the sum of the pre-allocated values of the transmission power of the PUSCH of which the transmission power is not set to 0 is not greater than the difference between the maximum configuration output power of the user equipment and the estimated transmission power of the PUCCH, and the pre-allocated value of the transmission power of each PUSCH is not greater than the estimated transmission power of the PUSCH:
1) judging whether a PUSCH with the pre-allocated value of the transmitting power larger than the estimated transmitting power exists or not;
2) if yes, setting the pre-allocation value of the transmission power of the PUSCH as the estimated transmission power of the PUSCH;
3) executing the formula on the PUSCH of which the pre-allocation value of the transmission power is smaller than the estimated transmission power:
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> <mo>&cap;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> </mrow> </munder> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> <mo>&cap;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> <mo>.</mo> </mrow> </math>
as another preferred embodiment of the present invention, the weight c (i, k) ≧ 0 of the PUSCH on the sub-frame i component carrier k, where the larger c (i, k) indicates the higher priority of the PUSCH on the sub-frame i component carrier k.
As another preferred mode of the present invention, setting the transmission power of at least a part of the PUSCH to 0 includes: selecting one or more PUSCHs with the lowest priority from the PUSCHs with the power parameter larger than a threshold value; the transmit power of the selected PUSCH is set to 0.
As another preferred mode of the present invention, setting the transmission power of at least a part of the PUSCH to 0 includes: selecting one or more PUSCHs with the largest weight value beta (i, k) from the PUSCHs with the power parameter larger than the threshold value; setting the transmission power of the selected PUSCH to 0; where i denotes a subframe number and k denotes a sequence number of a component carrier.
As another preferred mode of the present invention, setting the transmission power of at least a part of the PUSCH to 0 includes: selecting one or more PUSCHs with the smallest scaling factor c (i, k) from the PUSCHs with the power parameter larger than a threshold value; setting the transmission power of the selected PUSCH to 0; where i denotes a subframe number and k denotes a sequence number of a component carrier.
As another preferred mode of the present invention, setting the transmission power of at least a part of the PUSCH to 0 includes: selecting one or more PUSCHs with the smallest weight value gamma (i, k) from the PUSCHs with the power parameter larger than the threshold value; setting the transmission power of the selected PUSCH to 0; where i denotes a subframe number and k denotes a sequence number of a component carrier.
As another preferred mode of the present invention, when only PUSCH is transmitted on subframe i, the estimated transmission power and the transmission power of PUCCH are both 0.
In the embodiment of the invention, when the sum of the estimated transmission powers of a plurality of PUSCHs and PUCCHs simultaneously transmitted on a plurality of component carriers is greater than the maximum configuration output power of user equipment, the transmission powers of all physical uplink shared channels in the PUSCHs and PUCCHs are reduced or the transmission power of one or more physical uplink shared channels in the PUSCHs and PUCCHs is set to 0 according to a certain proportion, so that the transmission power of each physical uplink channel can be effectively reduced.
It should be noted that the steps illustrated in the flowcharts of the figures may be performed in a computer system such as a set of computer-executable instructions and that, although a logical order is illustrated in the flowcharts, in some cases, the steps illustrated or described may be performed in an order different than presented herein.
It will be apparent to those skilled in the art that the modules or steps of the present invention described above may be implemented by a general purpose computing device, they may be centralized on a single computing device or distributed across a network of multiple computing devices, and they may alternatively be implemented by program code executable by a computing device, such that they may be stored in a storage device and executed by a computing device, or fabricated separately as individual integrated circuit modules, or fabricated as a single integrated circuit module from multiple modules or steps. Thus, the present invention is not limited to any specific combination of hardware and software.
The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (29)

1. A method for configuring transmit power, comprising:
calculating power parameters of each Physical Uplink Shared Channel (PUSCH);
judging whether a PUSCH with a power parameter larger than a threshold value exists or not;
if yes, setting the transmission power of at least one part of the PUSCH as 0;
judging whether the sum of the estimated transmitting power of the PUSCH with the transmitting power not set to 0 and the estimated transmitting power of a Physical Uplink Control Channel (PUCCH) is greater than the maximum configuration output power of user equipment or not;
if not, setting the transmission power of the PUSCH with the transmission power not set to 0 as the estimated transmission power of the PUSCH;
wherein, the sum of the estimated transmission power of the PUSCH with the transmission power not set to 0 and the estimated transmission power of the physical uplink control channel PUCCH is greater than the maximum configuration output power of the user equipment, the method further includes repeatedly performing the following steps until the sum of the estimated transmission power of the PUSCH with the transmission power not set to 0 and the estimated transmission power of the PUCCH is not greater than the maximum configuration output power of the user equipment, and the power parameter of the PUSCH with the transmission power not set to 0 is not greater than the threshold value: calculating a power parameter of the PUSCH with the transmission power not set to 0; judging whether a PUSCH with a power parameter larger than a threshold value exists or not; if yes, setting the transmission power of at least one part of PUSCHs with the transmission power not set to 0 as 0; judging whether the sum of the estimated transmitting power of the PUSCH with the transmitting power not set to 0 and the estimated transmitting power of the PUCCH is larger than the maximum configuration output power of the user equipment or not; and if not, setting the transmission power of the PUSCH with the transmission power not set to 0 as the estimated transmission power of the PUSCH.
2. The method of claim 1, wherein there is no PUSCH with a transmit power not set to 0 with a power parameter greater than a threshold value, the method further comprising:
and determining the transmission power of the PUSCH according to the power parameter of the PUSCH with the transmission power not set to 0.
3. The method according to claim 1, wherein before calculating the power parameter of each physical uplink shared channel, PUSCH, further comprising:
judging whether the sum of the estimated transmitting power of each PUSCH and PUCCH of the user equipment on a subframe i is larger than the maximum configuration output power of the user equipment;
and if so, executing the step of calculating the power parameter of each Physical Uplink Shared Channel (PUSCH).
4. The method of claim 1, wherein the power parameter is power droop.
5. The method of claim 2, wherein the power parameter is power reduction, and wherein the determining the transmission power of the PUSCH according to the power parameter of the PUSCH with transmission power not set to 0 comprises:
the transmission power of each PUSCH is
PPUSCH(i,k)=P′PUSCH(i,k)-ΔPUSCH(i,k) k∈K′
Wherein i represents a subframe number, and k represents a serial number of a component carrier; k' represents a set of PUSCH with transmission power not set to 0;
ΔPUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
PPUSCH(i, k) represents the transmit power of the PUSCH on sub-frame i component carrier k.
6. The method of claim 1, wherein the power parameter is a power droop, and wherein the power droop satisfies the following equation:
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> </mrow> </math>
wherein, i represents a subframe number, K represents a serial number of a component carrier, K' represents a set of PUSCHs with transmission power not set to 0, L represents a serial number of a PUCCH, and L represents a set of the PUCCH;
ΔPUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment.
7. The method of claim 1, wherein the power parameter is a power droop calculated by:
<math> <mrow> <msub> <mi>&Delta;</mi> <mi>PUSCH</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mrow> <mo>(</mo> <mi>C</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </math>
wherein, i represents a subframe number, K represents a serial number of a component carrier, K' represents a set of PUSCHs with transmission power not set to 0, L represents a serial number of a PUCCH, and L represents a set of the PUCCH;
ΔPUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment;
β (i, k) represents the weight of PUSCH on component carrier k of subframe i.
8. The method according to claim 7, wherein the weight β (i, k) ≧ 0 of the PUSCH on subframe i component carrier k, wherein a smaller β (i, k) indicates a higher priority for PUSCH on subframe i component carrier k.
9. The method of claim 1, wherein the power parameter is power reduction, and the threshold is a power reduction threshold T of PUSCHPUSCH(i, k), the determining whether there is a PUSCH whose power parameter is greater than a threshold value includes:
determining whether the following formula holds
ΔPUSCH(i,k)>TPUSCH(i,k)
Wherein i represents a subframe number, and k represents a serial number of a component carrier;
ΔPUSCH(i, k) represents the power reduction of the PUSCH on component carrier k of subframe i;
TPUSCH(i, k) represents the power reduction threshold value of the PUSCH on component carrier k of subframe i.
10. The method of claim 1, wherein the power parameter comprises a pre-allocated value of transmit power.
11. The method of claim 2, wherein the power parameter comprises a pre-allocated value of transmission power, and wherein the determining the transmission power of the PUSCH according to the power parameter of the PUSCH with transmission power not set to 0 comprises:
PPUSCH(i,k)=P″PUSCH(i,k) k∈K′
wherein, i represents a subframe number, K represents a serial number of a component carrier, and K' represents a set of PUSCHs with transmission power not set to 0;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
PPUSCH(i, k) represents the transmit power of the PUSCH on sub-frame i component carrier k.
12. The method of claim 1, wherein the power parameter comprises a pre-allocated value of transmission power, and wherein the threshold is a power reduction threshold T of PUSCHPUSCH(i, k), the determining whether there is a PUSCH whose power parameter is greater than a threshold value includes:
judging whether the following formula is satisfied:
P′PUSCH(i,k)-P″PUSCH(i,k)>TPUSCH(i,k),
wherein i represents a subframe number, and k represents a serial number of a component carrier;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P″PUSCH(i, k) represents a transmit power pre-allocation value for PUSCH on component carrier k of subframe i;
TPUSCH(i, k) represents the power reduction threshold value of the PUSCH on component carrier k of subframe i.
13. The method according to claim 9 or 12, wherein the PUSCH power reduction threshold TPUSCH(i,k)≤P′PUSCH(i, k) of which P'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
14. The method according to claim 9 or 12, wherein the PUSCH power reduction threshold TPUSCH(i, k) and P'PUSCH(i, k) are positively correlated, wherein, P'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
15. The method of claim 1, wherein the power parameter comprises a pre-allocated value of transmission power, and wherein the threshold is a transmission power threshold Q of PUSCHPUSCH(i, k), the determining whether there is a PUSCH whose power parameter is greater than a threshold value includes:
determining whether the following formula holds
P″PUSCH(i,k)<QPUSCH(i,k)
Wherein i represents a subframe number, and k represents a serial number of a component carrier;
P″PUSCH(i, k) represents a pre-allocated value of the transmission power of the PUSCH on the component carrier k of subframe i.
16. The method of claim 15, wherein a transmission power threshold Q of the PUSCH is setPUSCH(i,k)<P′PUSCH(i,k),
Wherein i represents a subframe number, and k represents a serial number of a component carrier;
QPUSCH(i, k) represents a transmission power threshold value of PUSCH on component carrier k of subframe i;
P′PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
17. The method of claim 15, wherein a transmission power threshold Q of the PUSCH is setPUSCH(i, k) and estimated transmit power P 'of the PUSCH'PUSCH(i, k) are positively correlated, wherein, P'PUSCH(i, k) represents the estimated transmit power of the PUSCH on sub-frame i component carrier k.
18. The method of claim 10, wherein the pre-allocated value of transmit power satisfies the following equation:
<math> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&le;</mo> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein, i represents a subframe number, K represents a serial number of a component carrier, K' represents a set of PUSCHs with transmission power not set to 0, L represents a serial number of a PUCCH, and L represents a set of the PUCCH;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment.
19. The method of claim 10, wherein the pre-allocated value of the transmit power is calculated by the following formula:
P″PUSCH(i,k)=P′PUSCH(i,k)×γ(i,k) k∈K′
wherein, i represents a subframe number, K represents a serial number of a component carrier, and K' represents a set of PUSCHs with transmission power not set to 0;
P′PUSCH(i, k) represents the estimated transmit power of PUSCH on component carrier k of subframe i;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
γ (i, k) denotes the power scaling factor of PUSCH on component carrier k of subframe i.
20. The method of claim 19, wherein 0 ≦ γ (i, k) ≦ 1, wherein a larger γ (i, k) indicates a higher priority for PUSCH on component carrier k of subframe i.
21. The method of claim 10, wherein the pre-allocated value of the transmit power is calculated by the following formula:
<math> <mrow> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>P</mi> <mi>CMAX</mi> </msub> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUCCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>l</mi> <mo>)</mo> </mrow> <mo>-</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> </mrow> </munder> <msubsup> <mi>P</mi> <mi>PUSCH</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> <mo>&cap;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> </mrow> </munder> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&times;</mo> <mi>c</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <msup> <mi>K</mi> <mo>&prime;</mo> </msup> <mo>&cap;</mo> <mover> <msup> <mi>K</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mo>&OverBar;</mo> </mover> </mrow> </math>
wherein i represents a subframe number, k represents a serial number of a component carrier, L represents a serial number of a PUCCH, and L represents a set of the PUCCH; k' represents a set of PUSCH with transmission power not set to 0; k' represents a set of PUSCHs with pre-allocated values of transmit power equal to the estimated transmit power;
c (i, k) represents the weight of the PUSCH on the component carrier k of the subframe i;
P″PUSCH(i, k) represents a pre-assigned value of the transmit power of the PUSCH on sub-frame i component carrier k;
P′PUCCH(i, l) represents the estimated transmit power of the l-th PUCCH on subframe i;
PCMAXrepresenting a maximum configured output power of the user equipment.
22. The method of claim 21, wherein after calculating the pre-assigned value of the transmit power, the method further comprises: repeatedly executing the following steps until the sum of the pre-allocated values of the transmission power of the PUSCH with the transmission power not set to 0 is not greater than the difference between the maximum configuration output power of the user equipment and the estimated transmission power of the PUCCH, and the pre-allocated value of the transmission power of each PUSCH is not greater than the estimated transmission power of the PUSCH:
judging whether a PUSCH with the pre-allocated value of the transmitting power larger than the estimated transmitting power exists or not;
if yes, setting the pre-allocation value of the transmission power of the PUSCH as the estimated transmission power of the PUSCH;
the formula is executed for PUSCHs having a pre-allocated value of transmit power less than its estimated transmit power.
23. The method according to claim 21, wherein the weight c (i, k) ≧ 0 of the PUSCH on subframe i component carrier k, where a larger c (i, k) indicates a higher priority for the PUSCH on subframe i component carrier k.
24. The method of claim 1, wherein the setting the transmit power of at least a portion of the PUSCH to 0 comprises:
selecting one or more PUSCHs with the lowest priority from the PUSCHs with the power parameter larger than a threshold value;
the transmit power of the selected PUSCH is set to 0.
25. The method of claim 1, wherein the setting the transmit power of at least a portion of the PUSCH to 0 comprises:
selecting one or more PUSCHs with the largest weight value beta (i, k) from the PUSCHs with the power parameter larger than the threshold value;
setting the transmission power of the selected PUSCH to 0;
where i denotes the subframe number, k denotes the component carrier number, and β (i, k) is the weight of PUSCH on component carrier k of subframe i.
26. The method of claim 1, wherein the setting the transmit power of at least a portion of the PUSCH to 0 comprises:
selecting one or more PUSCHs with the smallest c (i, k) from the PUSCHs with the power parameter larger than a threshold value;
setting the transmission power of the selected PUSCH to 0;
wherein i represents the subframe number, k represents the sequence number of the component carrier, and c (i, k) represents the weight of the PUSCH on the component carrier k of the subframe i.
27. The method of claim 1, wherein the setting the transmit power of at least a portion of the PUSCH to 0 comprises:
selecting one or more PUSCHs with the minimum gamma (i, k) from the PUSCHs with the power parameter larger than a threshold value;
setting the transmission power of the selected PUSCH to 0;
where i denotes the subframe number, k denotes the component carrier number, and γ (i, k) denotes the power scaling factor of PUSCH on component carrier k of subframe i.
28. The method of claim 1, wherein the estimated transmit power of the PUCCH and the transmit power are both 0 when only PUSCH is transmitted on subframe i.
29. An apparatus for configuring transmit power, comprising:
the processing module is used for calculating the power parameter of each PUSCH;
the first judgment module is used for judging whether a PUSCH with the power parameter larger than a threshold value exists or not;
a first setting module, configured to set transmission power of at least a part of PUSCHs to 0 if there is a PUSCH whose power parameter is greater than a threshold;
the second judgment module is used for judging whether the sum of the estimated transmitting power of the PUSCH with the transmitting power not set to 0 and the estimated transmitting power of the PUCCH is larger than the maximum configuration output power of the user equipment or not;
a second setting module, configured to set the transmission power of the PUSCH with the transmission power not set to 0 as the estimated transmission power of the PUSCH when a sum of the estimated transmission power of the PUSCH with the transmission power not set to 0 and the estimated transmission power of the PUCCH is not greater than a maximum configuration output power of a user equipment;
wherein, the configuration device of the transmission power is further configured to, when the sum of the estimated transmission power of the PUSCH with the transmission power not set to 0 and the estimated transmission power of the physical uplink control channel PUCCH is greater than the maximum configuration output power of the user equipment, repeatedly execute the following steps until the sum of the estimated transmission power of the PUSCH with the transmission power not set to 0 and the estimated transmission power of the PUCCH is not greater than the maximum configuration output power of the user equipment, and the power parameter of the PUSCH with the transmission power not set to 0 is not greater than the threshold value: calculating a power parameter of the PUSCH with the transmission power not set to 0; judging whether a PUSCH with a power parameter larger than a threshold value exists or not; if yes, setting the transmission power of at least one part of PUSCHs with the transmission power not set to 0 as 0; judging whether the sum of the estimated transmitting power of the PUSCH with the transmitting power not set to 0 and the estimated transmitting power of the PUCCH is larger than the maximum configuration output power of the user equipment or not; and if not, setting the transmission power of the PUSCH with the transmission power not set to 0 as the estimated transmission power of the PUSCH.
CN201010189365.5A 2010-05-19 2010-05-19 The collocation method of transmitting power and device Active CN101877906B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201010189365.5A CN101877906B (en) 2010-05-19 2010-05-19 The collocation method of transmitting power and device
PCT/CN2011/074136 WO2011144011A1 (en) 2010-05-19 2011-05-16 Method and apparatus for configuring transmit power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010189365.5A CN101877906B (en) 2010-05-19 2010-05-19 The collocation method of transmitting power and device

Publications (2)

Publication Number Publication Date
CN101877906A CN101877906A (en) 2010-11-03
CN101877906B true CN101877906B (en) 2015-08-12

Family

ID=43020342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010189365.5A Active CN101877906B (en) 2010-05-19 2010-05-19 The collocation method of transmitting power and device

Country Status (2)

Country Link
CN (1) CN101877906B (en)
WO (1) WO2011144011A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131278B (en) * 2010-01-13 2012-04-18 普天信息技术研究院有限公司 Uplink power compression method and user equipment
CN101877906B (en) * 2010-05-19 2015-08-12 中兴通讯股份有限公司 The collocation method of transmitting power and device
CN102143568B (en) 2010-11-26 2015-02-04 华为技术有限公司 Power control method and base station
CN102761969A (en) * 2011-04-26 2012-10-31 中兴通讯股份有限公司 Measuring reference signal transmitting method and device
KR101758592B1 (en) 2011-07-29 2017-07-14 후지쯔 가부시끼가이샤 Power control method and terminal equipment
CN105409297A (en) * 2013-08-13 2016-03-16 富士通株式会社 Power control method of uplink channel, user equipment and communication system
CN105517137A (en) * 2014-09-26 2016-04-20 株式会社日立制作所 Base station used for executing downlink power distribution adjustment and method thereof
CN106572536B (en) * 2015-10-08 2020-04-17 北京大学 Method and system for scheduling multi-cluster resources in uplink shared channel
WO2018000421A1 (en) * 2016-07-01 2018-01-04 广东欧珀移动通信有限公司 Method for signal transmission, network device, and terminal device
WO2018064799A1 (en) * 2016-10-07 2018-04-12 Qualcomm Incorporated Power allocation for uplink transmissions
CN110035485B (en) * 2018-01-11 2022-11-22 华为技术有限公司 Uplink information transmission method and device
CN110113810B (en) * 2018-02-01 2021-02-26 华为技术有限公司 Power control method, related device and product
CN112020128B (en) * 2019-05-29 2022-08-30 中国电信股份有限公司 Terminal and transmission power control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702823A (en) * 2009-11-04 2010-05-05 中兴通讯股份有限公司 Method for sending emissive power control command and base station

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641513B2 (en) * 2006-06-29 2011-03-02 京セラ株式会社 Wireless communication method and wireless communication terminal
UA96181C2 (en) * 2007-02-14 2011-10-10 Квелкомм Инкорпорейтед Power control based on preamble in uplink for lte
CN101877906B (en) * 2010-05-19 2015-08-12 中兴通讯股份有限公司 The collocation method of transmitting power and device
CN101895976B (en) * 2010-07-21 2013-10-23 北京交通大学 LTE-Advanced system-based uplink power adjustment method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702823A (en) * 2009-11-04 2010-05-05 中兴通讯股份有限公司 Method for sending emissive power control command and base station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT.POWER SCALING METHOD FOR MAXIMUM POWER,R1-102784.《3GPP TSG-RAN WG1 #61》.2010, *

Also Published As

Publication number Publication date
CN101877906A (en) 2010-11-03
WO2011144011A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
CN101877906B (en) The collocation method of transmitting power and device
JP6086549B2 (en) Power headroom report, resource allocation and power control method
CN101778416B (en) Measuring and reporting method of power climbing space and terminal
CN101808360B (en) A kind of report method of subscriber equipment total power margin and subscriber equipment
JP5878643B2 (en) Uplink power control method and apparatus
CN104349443B (en) A kind of ascending power control method and device
CN113055992B (en) Method and apparatus for power control processing
CN102348269B (en) Method and device of uplink power control
CN102300305B (en) Method and device for controlling uplink power
CN101720122B (en) Method, base station and terminal for controlling power of physical uplink control channel
CN109309954B (en) Uplink power control method, base station and terminal
CN101969685B (en) A kind of power setting method of Physical Uplink Control Channel and subscriber equipment
CN103124428B (en) Method and device for controlling uplink power
US9918281B2 (en) Physical uplink shared channel power control method and apparatus that carry out power control in accordance with adjacent cell interference
CN103298091B (en) Uplink transmission power determines method and device
CN102752838B (en) Extension carrier power control method and subscriber equipment
JP6081741B2 (en) Mobile station and transmission power determination method
CN101820672A (en) Power control method and device of physical uplink control channel
CN102577533B (en) Method and device for controlling transmission power of subscriber terminal equipment
CN101945424B (en) A kind of method for reporting of margin of power and subscriber equipment
Sonia et al. Uplink power control schemes in long term evolution
CN101883417B (en) The method and device that power climbing space is arranged
KR101653927B1 (en) Method and Apparatus for Power Headroom Report-based Uplink Power Control in 3GPP LTE-A HetNet
CN102724745B (en) Poewr control method, subscriber equipment and base station
CN101883417A (en) Method and device for setting power ascending space

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201204

Address after: No.396 Yongji Road, Tangqiao town, Zhangjiagang City, Suzhou City, Jiangsu Province

Patentee after: Zhu Dongliang

Address before: 518057 Nanshan District science and technology, Guangdong Province, South Road, No. 55, No.

Patentee before: ZTE Corp.

TR01 Transfer of patent right