CN101847772A - 双频微波谐振器 - Google Patents

双频微波谐振器 Download PDF

Info

Publication number
CN101847772A
CN101847772A CN 201010187933 CN201010187933A CN101847772A CN 101847772 A CN101847772 A CN 101847772A CN 201010187933 CN201010187933 CN 201010187933 CN 201010187933 A CN201010187933 A CN 201010187933A CN 101847772 A CN101847772 A CN 101847772A
Authority
CN
China
Prior art keywords
srr
width
srr structure
electric
dual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010187933
Other languages
English (en)
Inventor
杨青慧
张怀武
刘颖力
粱栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN 201010187933 priority Critical patent/CN101847772A/zh
Publication of CN101847772A publication Critical patent/CN101847772A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

双频微波谐振器,涉及电磁波技术。本发明包括基板和基板上的金属SRR结构,所述金属SRR结构由electric-SRR结构和electric-SRR结构两侧的两个矩形金属环组成;矩形金属环和electric-SRR结构具有共同的金属壁,矩形金属环在共用金属壁的相对边设置有开口缝隙。本发明的有益效果是,整体尺寸小,有利于小型化,共振频率比较高,两共振峰的位置离得比较开,有利于降低相互耦合。

Description

双频微波谐振器
技术领域
本发明涉及电磁波技术。
背景技术
21世纪以来,人工复合材料在固体物理、材料科学、光学和应用电磁学领域内获得了愈来愈广泛的应用,而自从Smith等利用SRR结构第一次在实验室制造出自然界并不存在的异向介质后,SRR结构便在电磁学领域得到了广泛的关注与应用。各种周期性排的SRR结构不仅能够有效模拟实现异向介质的特性,而且因其自身的谐振性能,此结构也被用来设计制作小型慢波传输线、相位传感器、滤波器等器件。而关于异向介质在矩形波导中的研究与应用,也有很多文献提及,详细分析了SRR结构在方形波导管中的传播特性。
图1是现有的electric-SRR结构,其内部具有两个平台,平台之间为内缝。
发明内容
本发明所要解决的技术问题是,提供一种具有高共振频率的双频微波谐振器。
本发明解决所述技术问题采用的技术方案是,双频微波谐振器,包括基板和基板上的金属SRR结构,其特征在于,所述金属SRR结构由electric-SRR结构和electric-SRR结构两侧的两个矩形金属环组成;矩形金属环和electric-SRR结构具有共同的金属壁,矩形金属环在共用金属壁的相对边设置有开口缝隙。
进一步的,所述矩形金属环的开口缝隙宽度与electric-SRR结构的内缝宽度相等。所述SRR结构为上下轴对称和左右轴对称设置。所述金属SRR结构由基板表面的覆铜刻蚀形成,其介电常数ε为2.2,基板厚度为0.508mm,覆铜厚度为0.07mm。
所述金属SRR各项结构数据为:
a=2.6mm,b=5mm,d=0.1mm,h=2.2mm,l=2.9mm,t1=0.2mm,t2=0.2mm,t3=0.7mm,t4=0.5mm;
其中a为外边高度,b为外边长度,d为裂缝的宽度和平台的高度,h为内边高度,l为内环长度,t1为对称轴宽度,t2为共用金属壁宽度,t3为外边宽度,t4为平台宽度。
本发明的有益效果是,整体尺寸小,有利于小型化,共振频率比较高,两共振峰的位置离得比较开,有利于降低相互耦合。
以下结合附图和具体实施方式对本发明作进一步的说明。
附图说明
图1是现有的electric-SRR金属层结构示意图。
图2是本发明的SRR金属层结构示意图。
图3是本发明的SRR测试环境示意图。
图4是本发明谐振器的测试S参数曲线图。纵坐标为散射参数,横坐标为频率。S11是反射曲线,S21是***损耗参数曲线。
具体实施方式
参见图2-4。
本发明主要基于异向介质理论通过设计一种新型SRR结构来实现双频谐振器功能。该SRR结构在传统electric-SRR基础上两侧各添加一对称开口矩形环,并共用同一金属壁。通过调节线圈长度和开口缝隙宽度,在矩形波导TE波激励下,产生双频点谐振,从而实现双频谐振器的功能。
具体的说,本发明由基板和基板上刻蚀为electric-SRR结构和electric-SRR结构两侧的两个矩形金属环组成;矩形金属环和electric-SRR结构具有共同的金属壁,矩形金属环在共用金属壁的相对边设置有开口缝隙。
进一步的,所述矩形金属环的开口缝隙宽度与electric-SRR结构的内缝宽度相等。所述SRR结构为上下轴对称和左右轴对称设置。所述金属SRR结构由基板表面的覆铜刻蚀形成,其介电常数ε为2.2,基板厚度为0.508mm,覆铜厚度为0.07mm。
所述金属SRR各项结构数据为:
a=2.6mm,b=5mm,d=0.1mm,h=2.2mm,l=2.9mm,t1=0.2mm,t2=0.2mm,t3=0.7mm,t4=0.5mm;
其中a为外边高度,b为外边长度,d为裂缝的宽度和平台的高度,h为内边高度,l为内环长度,t1为对称轴宽度,t2为共用金属壁宽度,t3为外边宽度,t4为平台宽度。
由测试结果可见,谐振器在15.4GHz和21.0GHz附近产生两个谐振点,-10dB带宽分别为700MH和130MHz。现有技术只有一个谐振点,本发明的效果明显优于现有技术。

Claims (5)

1.双频微波谐振器,包括基板和基板上的金属SRR结构,其特征在于,所述金属SRR结构由electric-SRR结构和electric-SRR结构两侧的两个矩形金属环组成;矩形金属环和electric-SRR结构具有共同的金属壁,矩形金属环在共用金属壁的相对边设置有开口缝隙。
2.如权利要求1所述的双频微波谐振器,其特征在于,所述矩形金属环的开口缝隙宽度与electric-SRR结构的内缝宽度相等。
3.如权利要求1所述的双频微波谐振器,其特征在于,所述SRR结构为上下轴对称和左右轴对称设置。
4.如权利要求1所述的双频微波谐振器,其特征在于,所述金属SRR结构由基板表面的覆铜刻蚀形成,其介电常数ε为2.2,基板厚度为0.508mm,覆铜厚度为0.07mm。
5.如权利要求1所述的双频微波谐振器,其特征在于,所述金属SRR各项结构数据为:
a=2.6mm,b=5mm,d=0.1mm,h=2.2mm,l=2.9mm,t1=0.2mm,t2=0.2mm,t3=0.7mm,t4=0.5mm;
其中a为外边高度,b为外边长度,d为裂缝的宽度和平台的高度,h为内边高度,l为内环长度,t1为对称轴宽度,t2为共用金属壁宽度,t3为外边宽度,t4为平台宽度。
CN 201010187933 2010-05-31 2010-05-31 双频微波谐振器 Pending CN101847772A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010187933 CN101847772A (zh) 2010-05-31 2010-05-31 双频微波谐振器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010187933 CN101847772A (zh) 2010-05-31 2010-05-31 双频微波谐振器

Publications (1)

Publication Number Publication Date
CN101847772A true CN101847772A (zh) 2010-09-29

Family

ID=42772284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010187933 Pending CN101847772A (zh) 2010-05-31 2010-05-31 双频微波谐振器

Country Status (1)

Country Link
CN (1) CN101847772A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290637A (zh) * 2011-06-16 2011-12-21 电子科技大学 基于异向介质理论的双频吸收器
WO2012059741A1 (en) 2010-11-01 2012-05-10 University College Cardiff Consultants Limited In-vivo monitoring with microwaves
CN105552565A (zh) * 2015-12-29 2016-05-04 武汉科技大学 偏振不敏感的超材料微波能量捕获器
CN106229640A (zh) * 2016-08-31 2016-12-14 重庆大学 宽带双层微带天线
CN106299557A (zh) * 2016-08-11 2017-01-04 电子科技大学 波导带通滤波器
CN109980326A (zh) * 2019-04-04 2019-07-05 南京工业大学 基于新型双模谐振环结构的带通滤波器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101072017A (zh) * 2006-05-11 2007-11-14 精工爱普生株式会社 带通滤波器、包括其的电子装置以及制造其的方法
US20080165079A1 (en) * 2004-07-23 2008-07-10 Smith David R Metamaterials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080165079A1 (en) * 2004-07-23 2008-07-10 Smith David R Metamaterials
CN101072017A (zh) * 2006-05-11 2007-11-14 精工爱普生株式会社 带通滤波器、包括其的电子装置以及制造其的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Infrared,Millimeter,and Terahertz Waves,2009,IRMMW-THZ 2009》 20091231 Qi-Ye Wen et al. Strong and low-loss dual-resonant metamateiral in the terahertz regime 第1页第1栏倒数第2段至第2栏倒数第2段,图1(a)、1(b) 1-5 , *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059741A1 (en) 2010-11-01 2012-05-10 University College Cardiff Consultants Limited In-vivo monitoring with microwaves
CN103298399A (zh) * 2010-11-01 2013-09-11 加的夫大学学院咨询有限公司 使用微波的体内监测
US9408564B2 (en) 2010-11-01 2016-08-09 University College Cardiff Consultants Limited In-vivo monitoring with microwaves
CN102290637A (zh) * 2011-06-16 2011-12-21 电子科技大学 基于异向介质理论的双频吸收器
CN102290637B (zh) * 2011-06-16 2014-03-26 电子科技大学 基于异向介质理论的双频吸收器
CN105552565A (zh) * 2015-12-29 2016-05-04 武汉科技大学 偏振不敏感的超材料微波能量捕获器
CN106299557A (zh) * 2016-08-11 2017-01-04 电子科技大学 波导带通滤波器
CN106229640A (zh) * 2016-08-31 2016-12-14 重庆大学 宽带双层微带天线
CN109980326A (zh) * 2019-04-04 2019-07-05 南京工业大学 基于新型双模谐振环结构的带通滤波器

Similar Documents

Publication Publication Date Title
Yang et al. A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit
CN101847772A (zh) 双频微波谐振器
TWI484698B (zh) 印刷式濾波天線
CN104064840B (zh) 小型化带阻型频率选择表面
Bait-Suwailam et al. Size reduction of microstrip patch antennas using slotted complementary split-ring resonators
Boutejdar et al. A simple transformation from lowpass to bandpass filter using a new quasi‐arrow head defected ground structure resonator and gap‐J‐inverter
CN103165986B (zh) 一种超介质吸波材料及制备方法
WO2017075847A1 (zh) 基于阻抗匹配的对无线信号无阻挡的装置
Wang et al. Compact 60 GHz low‐temperature cofired ceramic filter with quasi‐elliptic bandpass response
Ho et al. Compact balanced bandpass filter design using miniaturised substrate integrated waveguide cavities
Farzami et al. Design and modeling of a miniaturized substrate integrated waveguide using embedded SRRs
Yusuf et al. Integration of three‐dimensional high‐Q filters with aperture antennas and bandwidth enhancement utilising surface waves
Zhou et al. Dual-band UWB filter with LTCC technology
Norooziarab et al. Substrate integrated waveguide loaded by 3-dimensional embedded split ring resonators
Xu et al. Hilbert‐shaped complementary ring resonator and application to enhanced‐performance low pass filter with high selectivity
Bemani et al. Dual‐band microstrip‐to‐coplanar stripline Wilkinson balun using composite right‐and left‐handed transmission lines and its application in feeding dual‐band bow‐tie antenna
Ortiz et al. Radiation efficiency improvement of dual band patch antenna based on a complementary rectangular split ring resonator
Xu et al. Fractal-shaped metamaterials and applications to enhanced-performance devices exhibiting high selectivity
Borja et al. Synthesis of compact and highly selective filters via metamaterial-inspired coplanar waveguide line technologies
Tyagi et al. Enhancement of bandwidth in microstrip patch antenna using EBG
Basuki et al. Artificial circular dielectric resonator with resonant mode selectability
Awasthi et al. Compact bandstop filter using triangular metamaterial mushroom resonators
Ghosh et al. Bandpass characteristics of substrate integrated waveguide loaded with Hilbert curve fractal slot
Lee et al. A novel compact microstrip bandstop filter based on complementary split-ring resonators
WO2013023423A1 (zh) 一种谐振腔及具有该谐振腔的滤波器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20100929