CN101833100A - 一种全数字式gnss兼容导航接收机的构建方法 - Google Patents

一种全数字式gnss兼容导航接收机的构建方法 Download PDF

Info

Publication number
CN101833100A
CN101833100A CN 201010137410 CN201010137410A CN101833100A CN 101833100 A CN101833100 A CN 101833100A CN 201010137410 CN201010137410 CN 201010137410 CN 201010137410 A CN201010137410 A CN 201010137410A CN 101833100 A CN101833100 A CN 101833100A
Authority
CN
China
Prior art keywords
signal
frequency
sampling
navigation
sampling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010137410
Other languages
English (en)
Other versions
CN101833100B (zh
Inventor
常青
于渊
陈媛
刘永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN 201010137410 priority Critical patent/CN101833100B/zh
Publication of CN101833100A publication Critical patent/CN101833100A/zh
Application granted granted Critical
Publication of CN101833100B publication Critical patent/CN101833100B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种全数字式GNSS兼容导航接收机的构建方法,它有四个步骤:一、综合考虑卫星信号特点,性能指标及现有器件水平,构建出符合实际需求的接收链路;二、选择合适的A/D芯片和时钟源完成直接射频采样,构建出符合宽带采样要求的采样率;三、构建滤波抽取网络降低采样率,完成射频的下变频,并将1.2G和1.5G两个频点附近的宽带卫星导航信号,在高采样率下,下变频至低中频,最终输出采样时钟和GNSS中频信号;四、构建数字射频前端和后端中频接收机接口,方便兼容其它的中频接收机。本发明利用软件无线电的思想,实现全频段GNSS卫星导航信号的集成接收,可以由中频接收机完成导航解算并输出观测值,实现多***多频点兼容导航。它在通信技术领域里具有应用发展前景。

Description

一种全数字式GNSS兼容导航接收机的构建方法
(一)技术领域:
本发明涉及一种全数字式GNSS兼容导航接收机的构建方法,它与全球卫星导航***、卫星导航接收机及软件无线电研究方向有关,属于通信技术领域。
(二)背景技术:
近年,GNSS卫星导航***的建设有了很大的发展,在各个领域里对低成本、高性能、灵活易用的GNSS兼容接收机的需求大大增加。一般导航接收机都采用模拟多级下变频结构,下变频至中频后才进行数字化和信号处理,这种信号接收方式灵活性差,容易引入误差。而基于软件无线电思想的GNSS接收机不需要为信号结构、体制升级而重新更换设备,只需要为用户提供统一的硬件平台,以软件升级的方式对导航接收机进行更新换代,具有成本低、功能升级扩展方便的优点。
软件无线电的关键思想是将A/D尽可能靠近天线,用软件完成尽可能多的信号处理功能。而基于射频直接采样的GNSS接收机结构正是利用了这种想法,它具有所需器件少、成本低、功耗低、容易取得高性能的优点,是一种全数字式导航接收机架构。相比于传统的模拟多级下变频的射频前端,射频直接采样的射频前端不需要复杂的混频方案设计;对于新卫星信号体制,只需选择合适的采样率和带通滤波器;对于多频多星座的GNSS接收机,不需要多通道的射频前端,减少了器件占用,消除了通道间潜在干扰;不会像超外差式接收机引入额外的相位误差。国内外研究表明,和传统的接收机架构相比,数字化的射频前端有相同的性能。对于某个或某几个窄带信号的采样,采样率可以选的比较低,信号通过采样的方式完成下变频;但是对于宽带信号采样,如整个导航频段信号,选取的采样率往往比较高,但是目前A/D及其后的器件水平很难达到很高的时钟速率。全数字式导航接收机需要综合考虑采样率与现有器件水平。
软件无线电的思想是由米特拉(J.Mitola)最早提出的。而基于直接带通采样技术的GNSS接收机设计思路是布朗(Brown)等人1994年首次提出。当时设计的接收机被用来完成空间测量任务,如重力测量和大气层监测等。这些任务对接收机的跟踪性能以及L1和L2波段的相位稳定性、伪距的一致性以及载波测量等提出了新的要求。为了达到这种要求布朗等人设计了一种全数字化前端取代了当前GPS接收机中的由混频器件以及频率合成器等构成的模拟变频前端,文中提出了800MHz的A/D采样速率,受当时半导体技术的限制,没有商业的A/D器件可用,数据的采集由专用的AD芯片实现,当时只能实现1bit量化。
在1999年阿克斯(Dennis M.Akos)等人在布朗等人的基础上提出了一种能够接收两个或者多个相互独立信号GNSS接收机的前端设计方法,即使用选择性带通采样技术,只选择感兴趣的有用信号折叠到最终的奈奎斯特频带里面,当时采用的是TRW AMAD-7芯片,量化位数最高为4bit,实现了GPS L1信号和GLONASS L1信号的采集。2002年阿克斯等人通过商用的MAX104 ADC评估板和FPGA开发板搭建了完整的GPS L1和L3波段射频直接采样数据采集***,并经过对采集到的真实的GPS数据处理完成信号的捕获,再一次验证了射频直接采样技术的优越性,数据采集板采用DMA传输接口,最高速率为132MB/s。2003年康奈尔大学的兹亚基(Mark L.Psiaki)等人使用商业化的部件组装实现了基于选择性带通采样技术的能够接收L1C/A码和L2波段信号的数据采集***,并使用不同频率和不同稳定度的采样时钟采集实际GPS数据,然后经过处理这些数据,对比分析了采样频率该如何选择以及时钟稳定度对接收机性能的影响。2004年阿克斯和兹亚基等人又做了关于下变频前端和射频直采前端的性能优劣的对比,随后西班牙的加泰罗尼亚理工大学、澳大利亚的新南威尔士大学、瑞典的耶夫勒大学、芬兰的坦佩雷理工大学、美国的L-3通信综合***公司和瑞士的洛桑联邦理工学院也在基于射频直接采样技术的GNSS接收机方面做了深入的研究。
国***频直接采样的研究起步较晚,研究机构主要集中在各大专院校中。如电子科技大学,北京理工大学,北京航空航天大学。电子科技大学的研究主要将射频直接采样用在无线通信宽带数字接收机,功能和结构复杂,实现难度大。其方法并不适合导航信号处理。北理工,北航近年也研制出了类似阿克斯的***并取得了不错的效果。
本发明直接针对在1.2G和1.5G频点附近的两个频段的GNSS卫星导航信号,占用频带187MHz,经计算,不可能以低采样率完成直接带通采样且不混叠。借鉴无线通信***的多速率数字信号处理技术,设计针对卫星信号的抽取滤波分离网络。通过选择合适的芯片,解决了***处理高采样率的问题。
(三)发明内容:
1、目的:本发明的目的是提供一种全数字式GNSS兼容导航接收机的构建方法,它利用软件无线电的思想,实现全频段GNSS卫星导航信号的集成接收,可以由中频接收机完成导航解算并输出观测值,实现多***多频点兼容导航。
2、技术方案:
本发明一种全数字式GNSS兼容导航接收机的构建方法,它主要包括如下几个步骤:
步骤一:卫星导航信号的地面接收功率低于噪声功率,要对其进行直接采样,模数转换器(A/D)的性能要求比较高,其前端的模拟接收链路需特殊设计。首先,本发明采用三级低噪声放大器(LNA)放大噪声功率,使其满足A/D的信号最低功率要求。第一级LNA后通过一个宽带预滤波器,滤出导航频段信号;第三级LNA之后经过分路器分成两路信号,各通过一个带通滤波器,滤出1.2G附近带宽136MHz的导航频段信号以及1.5GHz附近带宽51MHz的导航信号;滤波器后经过合路器合路,再通过自动增益控制(AGC)形成供A/D采样的信号。整个前端接收电路的噪声系数由第一级LNA的噪声系数(2dB)决定。A/D的输入带宽需要大于输入信号带宽。A/D的窗口抖动和采样时钟的抖动必须尽量小,否则将影响采样后的信噪比。
步骤二:对于宽带导航信号,需选择合适的采样率fs以保证采样后信号的频谱不互相混叠。由带通采样原理,多个带通信号的采样率的取值范围最低是其所有带通信号带宽之和,最高是最高信号频率的两倍。采样后落入[-fs/2,fs/2]区间的信号需满足如下三个条件:a.采样后信号频谱不跨越0轴;b.采样后信号之间不混叠;c.采样后信号在区间内的最高频率不超过fs/2。根据以上条件,可以构建一个函数,在Matlab中以上述采样率范围为自变量求函数值并记录满足条件的采样率值。经过仿真,满足条件的最低采样率大约536MHz。本发明将采样率选择为744MHz,能够满足条件要求,选择这个采样率也是方便和已有的射频模块作性能对比。
步骤三:由于选择的采样率对于目前的大多数器件(如FPGA(现场可编程门阵列),DSP(数字信号处理器))难于处理,因此设计了滤波抽取网络来降低采样率并且完成射频下变频,这部分可在FPGA中实现。A/D主要将1.2G和1.5G两个频点附近的宽带卫星导航信号,在高采样率下,下变频至低中频,通过滤波抽取网络,结合A/D半速率输出特性,完成目标频点信号的分离、下变频和降低采样率。采样后得信号通过一个低通滤波器可以分离出1.5G频段信号,然后进行两倍抽取使采样率降低到744MHz的一半,这样的速率对于FPGA来讲是可以适应的,低通滤波器加2倍抽取的处理设计成高效结构,先对低通滤波器进行多相分解,由等效原理2倍抽取器可以放到滤波器之前形成高效结构,同时利用A/D输出速率为采样时钟速率一半的特性,可将两个抽取器省去,在FPGA中只需做两个滤波器,主时钟变成了fs/2而不是难以实现的744MHz。其后对1.5G频段中感兴趣的目标导航信号乘以相应载频完成下变频,低通滤波滤出目标信号,此时的目标是将信号速率降低至62MHz,还需进行6倍抽取,这是通过先3倍抽取后2倍抽取的两级级联方式实现,3倍抽取前的抗混叠滤波器和之前的低通滤波器合并为一个来实现,2倍抽取前的抗混叠滤波器采用半带滤波器,抽取完后的信号通过一个低通滤波器滤除带外噪声。对于1.2G频段的信号则首先是针对其中感兴趣的频点先下变频到基带后,低通滤波滤出目标信号,然后2倍抽取,同样利用前述原理可以将乘法和滤波都放到2倍抽取之后,形成高效的结构。其后的部分和对1.5G频段信号的处理类似,不再赘述。
步骤四:由步骤三的介绍可知,滤波抽取网络可以直接输出基带导航信号供零中频接收机进行处理;可以通过将基带数字信号上变频到中频,输出数字中频信号供数字中频接收机使用;将数字中频信号经过D/A数模转换(D/A)输出模拟中频信号,可为模拟中频接收机提供信号。数字射频前端部分和后端中频接收机的接口方式灵活,可以方便的兼容其它的中频接收机。数字射频前端的采样率和输出中频可以灵活配置。本发明通过数字中频接收机完成信号的捕获跟踪等信号处理功能及星历解析,多频多星座兼容定位测速等信息处理功能,输出观测结果到PC上位机。
3、本发明与现有技术相比具有的有益效果:
1.通过设计数字化的射频前端,实现了导航频段卫星信号的集成接收,而不是只针对某个导航***或者某些导航信号频点的导航信号进行处理。
2.相比于传统的模拟多级下变频的射频前端,省去了复杂的混频方案设计;对于多频多星座的GNSS接收机,不需要传统多通道的射频前端,减少了器件占用,消除了通道间潜在干扰;不会像超外差式接收机引入额外的相位误差。
3.采样率和各卫星信号中频频点灵活可配置。
4.对于新卫星信号体制,只需选择合适的采样率和带通滤波器,有良好的扩展性。
5.设计多频点分离的滤波抽取网络完成多频点采样率降低,设计中考虑硬件的可实现性,资源的占用;考虑了抽取滤波网络的输入输出信噪比;达到了同传统模拟下变频和窄带带通直接采样相同的性能。
(四)附图说明:
图1.发明的总体设计框图
图2.导航频段示意图
图3.三级串联***示意图
图4.导航频段附近无线电频段示意图
图5.多频带带通采样结果示意图
图6.采样率选择结果示意图
图7.采样后导航信号所处频段示意图
图8.滤波抽取网络总体框图
图9.module_1模块设计框图
图10.module_2模块设计框图
(五)具体实施方式:
本发明的总体框图如图1所示。卫星信号首先通过宽带天线(3db带宽1.15~1.65GHz)接收,经过三级低噪放(LNA)放大,其中第一级LNA后,通过一个宽带预滤波器,带宽范围大约是1.2~1.5GHz的大宽带;最后一级LNA后,紧跟一个分路器,分成两路各通过一个带通滤波器,滤出1.2G附近带宽136MHz的导航频段信号以及1.5GHz附近带宽51MHz的导航信号;滤波器后经过合路器合路,合路后的频带如图2示;信号随后经过AGC完成增益控制,由采样率最高支持1GHz的A/D芯片采样,A/D输出两路一半采样时钟速率的信号;该信号将通过在FPGA实现的滤波抽取网络,完成降采样率和多频点信号分离;FPGA输出包含数据时钟,此外还可以输出基带数字信号,数字中频信号,经D/A和滤波可输出模拟中频信号;最后,中频接收机接收FPGA输出的中频数字信号进行导航解算,结果由串口上传至PC机。
1.A/D前接收链路设计
由于GNSS信号采用扩频信号体制,信号淹没在噪声中,所以A/D前的接收链路设计相对一般的无线通信链路比较特殊,主要考虑信号增益,噪声系数,非线性特性,滤波器的特性,A/D的动态范围和输入带宽等因素。
(1)信号增益
由于GNSS导航信号均被噪声所覆盖,要保证A/D能够采样到导航信号,必须以一定增益的LNA放大电路对信号放大。
如图2所示,两个导航频段的总带宽是187MHz,噪声功率N大约为:
N=-174+10log(187·106)=-91dBmW
选取的A/D芯片满量程电压最大800mV,最低信号的接收功率大约-0.9dBm,信号需要放大大约90dB,本发明中链路采用三级放大,每级放大30dB,总增益90dB。
(2)动态范围和输入带宽
A/D的最大信号输入带宽为1.7GHz,而目标信号的带宽最大值大约1.6G,能够保证信号的全频带接收。
增益的动态范围主要考虑3个因素:a.由温度引起的信号功率的变化,假设温度变化在-45°~85°,变化大约2dB;b.天线部分增益变化,大约10dB;c.由于设计、工艺、温度和电源电压变化引起的射频前端芯片的增益变化大约6dB;考虑5dB裕量,增益动态范围为2+10+6+5=23dB,作为AGC控制范围。
(3)噪声系数
如图3所示的三级串联***,其总的噪声系数由下式表示:
F = F 1 + F 2 - 1 G 1 + F 3 - 1 G 1 G 2 + . . .
从上面的表达式我们可以看出:如果第一子***的增益G1很高,那么第二、三子***的影响不是特别重要,或者被消除,第一个子***的噪声系数F1对整个接收机噪声系数F起决定性的影响;如果第一级子***的增益不是很大,而第二级子***的增益G2很大,那么第一、二级子***的噪声影响非常大,决定着整个接收机噪声系数。在大多数无线电接收机中,整个***的噪声性能都被前几级子***控制,因为前面子***的噪声会被后级子***放大。本发明中,噪声系数主要取决于第一级LNA的噪声系数,大约2dB。
(4)滤波器特性
GNSS频带内理论上不存在大的干扰信号,但是在带外存在有强干扰信号,如图4所示,1.8GHz PCS信号对GNSS应用而言即为强的干扰信号。通常,滤波器对在0-900MHz和1800-5000MHz的GNSS带外信号的衰减应满足30dB以上。如果不经过任何滤波过程,产生近100dB的增益,则会将ADC饱和,影响电路正常工作;并且,带外信号通过接收机链路后,会对接收机整体的噪声性能产生影响,因此,本设计中在接收机链路中加入了两级预选滤波器对带外信号进行抑制。
图1中LNA1后的滤波器主要滤除导航频段外的信号;分路器后的滤波器则滤出两个频段的宽带导航信号。滤波器的参数设计时需要满足带宽最大值1.6G到A/D输入带宽1.7G间有好的止带特性。
(5)抖动噪声
通常ADC中的噪声来源包括A/D转换器的量化噪声(或者交流微分非线性错误),转换器内部热噪声和***抖动(jitter)。GNSS卫星信号载波频率非常高,因而在信号被ADC采样时,采样时刻的不一致,比如时钟抖动和ADC的窗口抖动,引入的相位噪声会使ADC输出信号的噪底增高,信噪比下降。***抖动是由采样时钟抖动和窗口抖动共同带来的
窗口抖动,也称孔不定性,是指孔径时间的不确定。窗口抖动代表随机的ADC采样时间变动,是由采样和保持电路的热噪声带来的。窗口抖动是限制可达到信噪比的主导性错误来源。大多数ADC产品的技术手册附带其窗口抖动说明。窗口抖动通常以均方根值(rms)来描述,均方根值(rms)代表窗口时间的标准偏离。
窗口抖动限制了正弦信号能被ADC准确采样的最大频率。窗口抖动带来了采样信号时间上的不确定性,降低了ADC的噪声等级,增加了码间干扰的可能性。这些影响直接与信号瞬间改变电平的比率相适应,比如信号的斜率。因此,更高频率的信号信噪比会由于窗口抖动而比频率低一些的信号恶化的更严重。根据输入信号的频率和ADC的分辨率给出最大容许的窗口抖动计算式。如下:
σ a = 1 2 N π f max
N为量化位数,fmax为最大输入载频,这里N取8bit,fmax取1610MHz,可以得到最大容许窗口抖动σa=0.77ps。而ADC的窗口抖动为0.4ps,满足要求。
时钟抖动是提供给ADC时钟信号的时钟产生器的特性。它是由振荡器相位噪声产生的,并且带来了额外的ADC器件采样时间误差。大多数高速通信***包括射频接收和发送器,都使用锁相环路进行频率合成。这些***会受到时钟抖动的影响。时钟抖动是以采样时钟信号相位随机变化的时间范围,或者说相位噪声的频率范围来定义的。外部时钟可以通过频综芯片,也可以通过外接信号源获得。外部时钟的抖动要尽量的小,同时应满足A/D的电气特性要求。
2.采样率的确定
本发明是对全频段的导航信号采样,如图2所示,目标信号包含两个频段,我们将1.2G附近的信号看成一个通带,中心频率为1.232G,带宽136MHz;1.5G附近的信号看成一个通带,中心频率为1.5845G,带宽51MHz。
射频直接采样的目的是以合适的采样率将高频信号采到中频,假设有M个频段信号,载波频率是fcj,j=1,.....,M。采样后的中频频率为:
f ‾ ifj = f ‾ ifj ( f s ) = f cj - f s round ( f cj / f s ) , j = 1 , . . . . . , M
采样后的信号中频将位于[-fs/2,fs/2]区间,有的载频可能混频到负值,由对称性,我们取正值频率作为中频值即
Figure GSA00000070791200073
如图5所示,当某些频段信号被采到[-fs/2,fs/2]区间内时,会造成几种情况:如fif2那样频带跨越0轴;如fif4那样频带跨越了fs/2;如fif1和fif3那样,频带相互混叠。这些都是我们不希望看到的。由此衍生出了几个约束条件:
a j ( f s ) = f ifj ( f s ) B j / 2 ≥ 1
b j ( f s ) = f s / 2 - f ifj ( f s ) B j / 2 ≥ 1
c j ( f s ) = | f ifj ( f s ) - f ifk ( f s ) | B j / 2 + B k / 2 ≥ 1
这里,j=1,……,M,k=(j+1),……,M,B代表第j个频段的带宽。必须保证以上各式非负且都大于等于1,才能确保以fs采样后,各频段不相混叠。将以上3个式子联合起来可写成:
d(fs)=min[a1(fs),....,aM(fs),b1(fs),....,bM(fs),
c12(fs),c13(fs)....,cM-1,M(fs)]
可供使用的采样率fs将是这样一个集合{fs:d(fs)≥1}。d(fs)将是分段线性的。而fs的范围必须满足如下两个式子:
f s ≥ Σ j = 1 M B j
fs≤2max(fcj)
根据以上范围的fs,可以画出d(fs)的图并记录d(fs)≥1的值,如图6所示。可以看到,满足条件的最低采样率大约536MHz。本发明将采样率选择为744MHz,同样满足条件,此外选择此采样率也是为了和已有的射频模块的性能作对比。
3.抽取滤波网络设计
经744MHz采样的信号频谱如图7所示,两个导航频段的信号都被采样到低的频段。经计算,1.5G频谱内的B1,L1频点被采样至87.42MHz,1.2G频段内的B2频点被采至280.86MHz,B3频点被采至219.48MHz,其它的导航信号采样后频点可以根据采样率计算。
本发明的抽取滤波网络总体框图如图8所示。主要功能是完成1.2G和1.5G两个导航频段信号分离及降低采样速率,其产生的信号可以直接供后端中频接收机使用。
图8中模块1(module_1)的主要作用是滤出1.5G频段信号,其原理如图9所示。图9的上图中,根据频谱关系,设计一个低通滤波器可以滤除1.2G频段信号,滤波后可以直接两倍抽取;若A/D输出744MHz速率的数据,对于目前的器件难以处理这么高速率的数据,后面的滤波抽取难以实现。图9的两幅图在原理上是等价的。图9下图中,先把低通滤波器进行多相分解,然后将抽取器前置形成高效抽取结构,将滤波所需的乘加运算放在低抽取率一端。本发明采样的A/D芯片专门为射频直接采样设计,输出为两路1/2速率的信号,对应图中A,B两点,实际上module_1只是包含2个多相滤波器,省去了2个抽取器。
A/D输出信号通过module_1之后只有1.5G频带的信号,1.2G信号被滤除。之后的处理,将针对1.5G频带内的感兴趣的信号进行混频,混频至基带(分成I,Q两路)后,先经过一个低通,滤除带外噪声,由于其后的3倍抽取仍需要前面加一个抗混叠滤波器,所以这里把两个低通滤波器合并成一个。后面的2倍抽取使用半带滤波器,其后跟一个FIR低通滤波器,滤除带外噪声及其它频点的信号。最后,IQ两路信号分别上变频至中频输出。信号经12倍抽取,输出采样率为62MHz。
对于1.2G频段内的信号采取先混频至基带(I,Q两路),低通滤出带外噪声,先进行两倍抽取,原理和module_1类似,module_2的功能如图10所示。图10的上图需要一个乘法器完成混频,但是选取的FPGA芯片其乘法器最高的时钟速率为500MHz,这里的思想仍然是把乘法滤波放置在低采样率一端,把乘法器后的低通滤波器进行多相分解,抽取器前移一级,构成高效结构,如图10中图所示。图10下图是把乘法器移到抽取器后,可以看到A,B两点又可以直接利用A/D 1/2速率的输出信号。Module_2后的抽取滤波设计与上面类似,不再赘述。
对于1.2G频段信号的处理还可以通过高通滤波器滤除1.5G低频段信号,然后直接2倍抽取,但是这种高通滤波器加抽取器的形式难以形成高效结构,所以不采用这种方式。通过滤波抽取网络的设计完成了导航频段信号的分离,下变频和降低采样率,可以通过分数倍抽取内插完成任意采样率信号输出,通过设置上变频的不同频率,完成中频频点的灵活可配置。
抽取滤波网络在图1中的FPGA中实现,为以后的芯片化打下了基础,设计中需要注意低通滤波器的设计上,必须防止过多的噪声混叠,带内不能混叠噪声,以保证输出信噪比。
4.和中频接收机的接口和其它功能
本发明选择数字中频接收机作为导航信号接收,解调和信息处理的终端,它接收数字中频信号,可融合多个***和频点,测试结果通过PC存储和显示,同时可以方便的与已有的模拟射频前端作性能对比。此外,FPGA可以直接输出数字基带信号,供零中频接收机使用;还可以将数据先缓存,通过总线存储至PC机,供后处理软件使用。

Claims (1)

1.一种全数字式GNSS兼容导航接收机的构建方法,其特征在于:该方法具体步骤如下:步骤一:卫星导航信号的地面接收功率低于噪声功率,要对其进行直接采样,模数转换器即A/D的性能要求比较高,其前端的模拟接收链路需特殊设计;首先,采用三级低噪声放大器即LNA放大噪声功率,使其满足A/D的信号最低功率要求;第一级LNA后通过一个宽带预滤波器,滤出导航频段信号;第三级LNA之后经过分路器分成两路信号,各通过一个带通滤波器,滤出1.2G附近带宽136MHz的导航频段信号以及1.5GHz附近带宽51MHz的导航信号;滤波器后经过合路器合路,再通过自动增益控制即AGC形成供A/D采样的信号;整个前端接收电路的噪声系数由第一级LNA的噪声系数2dB决定;A/D的输入带宽需要大于输入信号带宽;A/D的窗口抖动和采样时钟的抖动必须尽量小,否则将影响采样后的信噪比;
步骤二:对于宽带导航信号,需选择合适的采样率fs以保证采样后信号的频谱不互相混叠;由带通采样原理,多个带通信号的采样率的取值范围最低是其所有带通信号带宽之和,最高是最高信号频率的两倍;采样后落入[-fs/2,fs/2]区间的信号需满足如下三个条件:a.采样后信号频谱不跨越0轴;b.采样后信号之间不混叠;c.采样后信号在区间内的最高频率不超过fs/2;根据以上条件,可以构建一个函数,在Matlab中以上述采样率范围为自变量求函数值并记录满足条件的采样率值;经过仿真,满足条件的最低采样率大约536MHz;将采样率选择为744MHz,能够满足条件要求,选择这个采样率也是方便和已有的射频模块作性能对比;
步骤三:由于选择的采样率对于目前的大多数器件难于处理,因此设计了滤波抽取网络来降低采样率并且完成射频下变频,这部分可在现场可编程门阵列即FPGA中实现;模数转换器A/D将1.2G和1.5G两个频点附近的宽带卫星导航信号,在高采样率下,下变频至低中频,通过滤波抽取网络,结合A/D半速率输出特性,完成目标频点信号的分离、下变频和降低采样率;采样后得信号通过一个低通滤波器可以分离出1.5G频段信号,然后进行两倍抽取使采样率降低到744MHz的一半,这样的速率对于FPGA来讲是可以适应的,低通滤波器加2倍抽取的处理设计成高效结构,先对低通滤波器进行多相分解,由等效原理2倍抽取器可以放到滤波器之前形成高效结构,同时利用A/D输出速率为采样时钟速率一半的特性,可将两个抽取器省去,在FPGA中只需做两个滤波器,主时钟变成了fs/2而不是难以实现的744MHz;其后对1.5G频段中感兴趣的目标导航信号乘以相应载频完成下变频,低通滤波滤出目标信号,此时的目标是将信号速率降低至62MHz,还需进行6倍抽取,这是通过先3倍抽取后2倍抽取的两级级联方式实现,3倍抽取前的抗混叠滤波器和之前的低通滤波器合并为一个来实现,2倍抽取前的抗混叠滤波器采用半带滤波器,抽取完后的信号通过一个低通滤波器滤除带外噪声;对于1.2G频段的信号则首先是针对其中感兴趣的频点先下变频到基带后,低通滤波滤出目标信号,然后2倍抽取,同样利用前述原理可以将乘法和滤波都放到2倍抽取之后,形成高效的结构,其后的部分和对1.5G频段信号的处理类似;
步骤四:由步骤三可知,滤波抽取网络可以直接输出基带导航信号供零中频接收机进行处理;可以通过将基带数字信号上变频到中频,输出数字中频信号供数字中频接收机使用;将数字中频信号经过数模转换器D/A输出模拟中频信号,可为模拟中频接收机提供信号,数字射频前端部分和后端中频接收机的接口方式灵活,可以方便的兼容其它的中频接收机,数字射频前端的采样率和输出中频可以灵活配置;通过数字中频接收机完成信号的捕获跟踪等信号处理功能及星历解析,多频多星座兼容定位测速信息处理功能,输出观测结果到PC上位机。
CN 201010137410 2010-03-29 2010-03-29 一种全数字式gnss兼容导航接收机的构建方法 Expired - Fee Related CN101833100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010137410 CN101833100B (zh) 2010-03-29 2010-03-29 一种全数字式gnss兼容导航接收机的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010137410 CN101833100B (zh) 2010-03-29 2010-03-29 一种全数字式gnss兼容导航接收机的构建方法

Publications (2)

Publication Number Publication Date
CN101833100A true CN101833100A (zh) 2010-09-15
CN101833100B CN101833100B (zh) 2012-12-12

Family

ID=42717239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010137410 Expired - Fee Related CN101833100B (zh) 2010-03-29 2010-03-29 一种全数字式gnss兼容导航接收机的构建方法

Country Status (1)

Country Link
CN (1) CN101833100B (zh)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023302A (zh) * 2010-12-17 2011-04-20 浙江大学 卫星导航接收机中的多通道协同控制方法和装置
CN102183771A (zh) * 2011-03-21 2011-09-14 华南理工大学 基于多核处理器的多模gnss软件接收机的实现方法
CN102540219A (zh) * 2010-12-31 2012-07-04 和芯星通科技(北京)有限公司 全球卫星导航***信号的接收方法及接收机
CN102801459A (zh) * 2011-05-24 2012-11-28 中国科学院微电子研究所 多模卫星信号接收装置及其方法
CN103248380A (zh) * 2013-04-25 2013-08-14 中国电子科技集团公司第三十六研究所 一种无模拟变频射频数字化接收机的设计方法及其接收机
CN103323860A (zh) * 2013-05-28 2013-09-25 中国电子科技集团公司第三十八研究所 一种基于射频直接采样的导航接收机的抗饱和装置
CN103675842A (zh) * 2013-11-26 2014-03-26 航天恒星科技有限公司 一种空频联合抗干扰实现方法
CN103837878A (zh) * 2014-02-12 2014-06-04 深圳市峰华经纬科技有限公司 一种gnss卫星信号捕捉方法
CN104614743A (zh) * 2014-12-30 2015-05-13 北京理工雷科电子信息技术有限公司 一种基于fpga的兼容新旧体制卫星导航信号跟踪装置
CN104901719A (zh) * 2015-04-10 2015-09-09 北京航空航天大学 一种常见卫星干扰信号生成方法
CN105277956A (zh) * 2014-12-26 2016-01-27 上海华测导航技术股份有限公司 一种将gps卫星信号转换为基带信号的方法
CN105553487A (zh) * 2015-12-10 2016-05-04 中国航空工业集团公司西安航空计算技术研究所 一种基于软件无线电的机载导航通信处理模块
CN105846835A (zh) * 2016-03-16 2016-08-10 中国矿业大学 一种软件无线电多带通信号接收方法
CN106411340A (zh) * 2016-09-30 2017-02-15 金陵科技学院 自组网宽带无线通讯数字接收机
CN106549684A (zh) * 2015-09-23 2017-03-29 中兴通讯股份有限公司 一种双频段射频信号的接收方法及其装置、基站
CN107015063A (zh) * 2017-03-21 2017-08-04 中国科学院国家天文台 宽带多信道数字相关接收机及接收方法
CN107247245A (zh) * 2017-05-17 2017-10-13 上海东软医疗科技有限公司 接收机、信号接收处理方法和磁共振成像设备
CN108132392A (zh) * 2017-12-26 2018-06-08 北京无线电计量测试研究所 一种毫米波数字化脉冲调制信号相位噪声测量装置和方法
CN108599805A (zh) * 2018-07-06 2018-09-28 航天恒星科技有限公司 一种基于基带射频一体化设计的前向通信电路
CN109032961A (zh) * 2018-07-11 2018-12-18 中国科学院地质与地球物理研究所 一种井下振动冲击数据记录方法
CN109450520A (zh) * 2018-12-04 2019-03-08 北京卫星信息工程研究所 卫星通信方法及相应的卫星通信终端
CN109756238A (zh) * 2017-11-08 2019-05-14 中兴通讯股份有限公司 一种多频段信号的处理方法及装置
CN110954923A (zh) * 2019-12-10 2020-04-03 北京空间飞行器总体设计部 一种gnss欺骗干扰信号的检测***
CN110988925A (zh) * 2019-12-17 2020-04-10 北京遥测技术研究所 一种卫星导航接收机脉冲干扰检测与参数确定方法
CN111220846A (zh) * 2020-03-10 2020-06-02 星汉时空科技(北京)有限公司 一种高速采样全数字化频率稳定度的测试设备及方法
CN111812686A (zh) * 2020-07-21 2020-10-23 山东大学 一种导航信号接收机及其时钟分配方法
CN111988050A (zh) * 2020-08-13 2020-11-24 淮南师范学院 基于射频直接采样的soc芯片采样率选择方法及装置
CN112422139A (zh) * 2020-11-20 2021-02-26 中国电子科技集团公司第二十九研究所 一种宽带下变频装置
CN112986927A (zh) * 2021-02-06 2021-06-18 江苏信息职业技术学院 一种宽带射频信号直接采样模块及直接采样方法
CN113691475A (zh) * 2021-08-25 2021-11-23 湖南迈克森伟电子科技有限公司 一种ook解调电路
CN114690213A (zh) * 2022-05-30 2022-07-01 长沙金维信息技术有限公司 卫星导航接收机的基带时钟抖动分析方法
CN117200813A (zh) * 2023-11-07 2023-12-08 成都飞机工业(集团)有限责任公司 一种无线电导航***突发信号的检测方法及检测***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109794A (zh) * 2007-07-26 2008-01-23 北京航空航天大学 一种兼容gnss信号处理算法的测试平台
US20090160704A1 (en) * 2007-12-20 2009-06-25 Qualcomm Incorporated Navigation receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109794A (zh) * 2007-07-26 2008-01-23 北京航空航天大学 一种兼容gnss信号处理算法的测试平台
US20090160704A1 (en) * 2007-12-20 2009-06-25 Qualcomm Incorporated Navigation receiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《信息与电子工程》 20091231 蒋昊等 GPS/BD-2兼容接收机信息处理***的设计与实现 第506-510页 1 第7卷, 第6期 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023302A (zh) * 2010-12-17 2011-04-20 浙江大学 卫星导航接收机中的多通道协同控制方法和装置
CN102540219A (zh) * 2010-12-31 2012-07-04 和芯星通科技(北京)有限公司 全球卫星导航***信号的接收方法及接收机
CN102183771A (zh) * 2011-03-21 2011-09-14 华南理工大学 基于多核处理器的多模gnss软件接收机的实现方法
CN102801459B (zh) * 2011-05-24 2015-05-06 中国科学院微电子研究所 多模卫星信号接收装置及其方法
CN102801459A (zh) * 2011-05-24 2012-11-28 中国科学院微电子研究所 多模卫星信号接收装置及其方法
CN103248380A (zh) * 2013-04-25 2013-08-14 中国电子科技集团公司第三十六研究所 一种无模拟变频射频数字化接收机的设计方法及其接收机
CN103323860A (zh) * 2013-05-28 2013-09-25 中国电子科技集团公司第三十八研究所 一种基于射频直接采样的导航接收机的抗饱和装置
CN103323860B (zh) * 2013-05-28 2015-09-02 中国电子科技集团公司第三十八研究所 一种基于射频直接采样的导航接收机的抗饱和装置
CN103675842A (zh) * 2013-11-26 2014-03-26 航天恒星科技有限公司 一种空频联合抗干扰实现方法
CN103675842B (zh) * 2013-11-26 2015-11-25 航天恒星科技有限公司 一种空频联合抗干扰实现方法
CN103837878A (zh) * 2014-02-12 2014-06-04 深圳市峰华经纬科技有限公司 一种gnss卫星信号捕捉方法
CN105277956A (zh) * 2014-12-26 2016-01-27 上海华测导航技术股份有限公司 一种将gps卫星信号转换为基带信号的方法
CN104614743A (zh) * 2014-12-30 2015-05-13 北京理工雷科电子信息技术有限公司 一种基于fpga的兼容新旧体制卫星导航信号跟踪装置
CN104614743B (zh) * 2014-12-30 2017-03-22 北京理工雷科电子信息技术有限公司 一种基于fpga的兼容新旧体制卫星导航信号跟踪装置
CN104901719A (zh) * 2015-04-10 2015-09-09 北京航空航天大学 一种常见卫星干扰信号生成方法
CN104901719B (zh) * 2015-04-10 2017-04-05 北京航空航天大学 一种常见卫星干扰信号生成方法
CN106549684A (zh) * 2015-09-23 2017-03-29 中兴通讯股份有限公司 一种双频段射频信号的接收方法及其装置、基站
CN105553487A (zh) * 2015-12-10 2016-05-04 中国航空工业集团公司西安航空计算技术研究所 一种基于软件无线电的机载导航通信处理模块
CN105846835B (zh) * 2016-03-16 2018-03-02 中国矿业大学 一种软件无线电多带通信号接收方法
CN105846835A (zh) * 2016-03-16 2016-08-10 中国矿业大学 一种软件无线电多带通信号接收方法
CN106411340A (zh) * 2016-09-30 2017-02-15 金陵科技学院 自组网宽带无线通讯数字接收机
CN107015063A (zh) * 2017-03-21 2017-08-04 中国科学院国家天文台 宽带多信道数字相关接收机及接收方法
US10641848B2 (en) 2017-05-17 2020-05-05 Shanghai Neusoft Medical Technology Co., Ltd. Signal reception of magnetic resonance imaging device
CN107247245A (zh) * 2017-05-17 2017-10-13 上海东软医疗科技有限公司 接收机、信号接收处理方法和磁共振成像设备
CN109756238A (zh) * 2017-11-08 2019-05-14 中兴通讯股份有限公司 一种多频段信号的处理方法及装置
CN108132392A (zh) * 2017-12-26 2018-06-08 北京无线电计量测试研究所 一种毫米波数字化脉冲调制信号相位噪声测量装置和方法
CN108599805A (zh) * 2018-07-06 2018-09-28 航天恒星科技有限公司 一种基于基带射频一体化设计的前向通信电路
CN108599805B (zh) * 2018-07-06 2020-09-18 航天恒星科技有限公司 一种基于基带射频一体化设计的前向通信电路
CN109032961A (zh) * 2018-07-11 2018-12-18 中国科学院地质与地球物理研究所 一种井下振动冲击数据记录方法
CN109032961B (zh) * 2018-07-11 2019-10-01 中国科学院地质与地球物理研究所 一种井下振动冲击数据记录方法
CN109450520A (zh) * 2018-12-04 2019-03-08 北京卫星信息工程研究所 卫星通信方法及相应的卫星通信终端
CN110954923A (zh) * 2019-12-10 2020-04-03 北京空间飞行器总体设计部 一种gnss欺骗干扰信号的检测***
CN110988925B (zh) * 2019-12-17 2022-09-27 北京遥测技术研究所 一种卫星导航接收机脉冲干扰检测与参数确定方法
CN110988925A (zh) * 2019-12-17 2020-04-10 北京遥测技术研究所 一种卫星导航接收机脉冲干扰检测与参数确定方法
CN111220846A (zh) * 2020-03-10 2020-06-02 星汉时空科技(北京)有限公司 一种高速采样全数字化频率稳定度的测试设备及方法
CN111220846B (zh) * 2020-03-10 2022-04-19 星汉时空科技(北京)有限公司 一种高速采样全数字化频率稳定度的测试设备及方法
CN111812686A (zh) * 2020-07-21 2020-10-23 山东大学 一种导航信号接收机及其时钟分配方法
CN111812686B (zh) * 2020-07-21 2023-07-14 山东大学 一种导航信号接收机及其时钟分配方法
CN111988050A (zh) * 2020-08-13 2020-11-24 淮南师范学院 基于射频直接采样的soc芯片采样率选择方法及装置
CN112422139A (zh) * 2020-11-20 2021-02-26 中国电子科技集团公司第二十九研究所 一种宽带下变频装置
CN112986927A (zh) * 2021-02-06 2021-06-18 江苏信息职业技术学院 一种宽带射频信号直接采样模块及直接采样方法
CN113691475B (zh) * 2021-08-25 2022-07-08 湖南迈克森伟电子科技有限公司 一种ook解调电路
CN113691475A (zh) * 2021-08-25 2021-11-23 湖南迈克森伟电子科技有限公司 一种ook解调电路
CN114690213A (zh) * 2022-05-30 2022-07-01 长沙金维信息技术有限公司 卫星导航接收机的基带时钟抖动分析方法
CN117200813A (zh) * 2023-11-07 2023-12-08 成都飞机工业(集团)有限责任公司 一种无线电导航***突发信号的检测方法及检测***
CN117200813B (zh) * 2023-11-07 2024-03-15 成都飞机工业(集团)有限责任公司 一种无线电导航***突发信号的检测方法及检测***

Also Published As

Publication number Publication date
CN101833100B (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
CN101833100B (zh) 一种全数字式gnss兼容导航接收机的构建方法
CN101378263B (zh) 基于数字中频的多载波数字接收机及多载波数字接收方法
CN101075814B (zh) 基于数字中频结构的数字接收机***及数字信号处理方法
CN104793189B (zh) 一种基于fpga的船舶雷达数字化中频相参接收处理***
CN101198160B (zh) 采用单通路射频前端实现gnss多模并行接收的方法及装置
CN104297768B (zh) 一种在前端***中同时接收gps和北斗二代信号的方法
CN103412317A (zh) 实现gnss卫星信号转换为基带信号功能的射频电路结构
CN102916712B (zh) 无线接收器
CN102207549A (zh) 一体化的抗干扰卫星导航接收***及其抗干扰处理方法
CN101174840B (zh) 多组频带的可程控直接射频数字化接收器及其方法
CN104849729A (zh) 一种北斗卫星导航抗干扰***
CN103248380B (zh) 一种无模拟变频射频数字化接收机的设计方法及其接收机
EP1982425B1 (en) Method and apparatus for sampling rf signals
CN102751998A (zh) 一种基于软件无线电接收机的数字中频模块
CN107749764A (zh) 多通道大动态信号的采样方法
CN203894414U (zh) 一种有单片机控制的多模单射频通道gnss接收器
CN102064875B (zh) 一种新型的数字化信标接收装置
CN104698476A (zh) 一种基于三级混频结构的gps卫星导航接收机
CN104730545A (zh) 用于实施导航卫星的降低的带宽处理的方法和装置
CN201048372Y (zh) 基于特殊数字中频结构的数字接收机***
CN101872008A (zh) 一种北斗卫星导航***接收模块
CN203535230U (zh) 实现gnss卫星信号转换为基带信号的射频电路结构
CN101814940A (zh) 数字中频光纤直放站及所采用的多信道数字选频数字信号处理方法
CN201114162Y (zh) 一种基于数字中频技术的多载波数字接收机***
CN204694850U (zh) 北斗二号卫星导航***双通道结构的射频接收机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121212

Termination date: 20140329